
INDIAN STATISTICAL INSTITUTE
Computing for Data Sciences (PGDBA)

July - December 2018

Assignment V

Deadline: November 04, 2018.

1. Neural Networks - In the accompanying Jupyter notebook, you will find a simple im-
plementation of a Multi-Layered Perceptron (MLP). The following are the details of the
implementation:

• The MLP consistes of 3 layers: (i) An Input Layer (ii) A Hidden Layer (iii) An Output
Layer.

• The number of neurons in the Hidden Layer is size h+1 , where size h can be set by
the user. The number of neurons in the Input Layer is d+ 1, where d is the dimension
of the input data. The number of neurons in the Output Layer is c, where c is the
total number of classes.

• The activation function used for every neuron in the Hidden and Output Layers is the

sigmoid function σ(z) =
1

1 + e−z
.

• The cost function that the MLP tries to minimize is
1

2n

n∑
i=1
||o(i) − y(i)||2. Here, o(i)

is the output of the network for input data x(i), and y(i) is the one-hot encoded class
label vector corresponding to data point x(i).

• Gradient descent is used to estimate the network parameters, with a constant step size
of 0.1.

• There are two ways in which an MLP can estimate all its parameters. In online
learning, the network parameters are updated for every data point x(i), i.e., for every
x(i), the gradient of the cost with respect to all parameters are computed, after which
the parameters are immediately updated using gradient descent. The second way
in which the parameters can be estimated is by batch learning, where the average
gradients computed from the entire data set are used to update the parameters. In the
accompanying Jupyter notebook, batch learning is used.

You can go through the implementation to see how the theory translates to the code. Then
solve the following assignment:

(i) Modify the implementation of MLP to train the following network:

• Use the Rectified Linear Units (ReLU) activation function on the neurons of the
hidden layer. The ReLU function is ReLU(z) = max(0, z).

• Keep the sigmoid activation function on the neurons of the output layer.

• Use the mean cross entropy as the cost function, defined as,

− 1

n

n∑
i=1

k∑
j=1
{y(i)j log(o

(i)
j) + (1− y(i)j) log(1− o(i)j)}

(Hint : A lot of expressions cancel out, when the derivative of this cost function
and the sigmoid activation function are calculated in the chain rule of derviatives.)

(ii) sklearn contains an implementation of Multi-Layered Perceptrons (sklearn.neural network

.MLPClassifier). Use sklearn’s implementation to train an MLP on the Digits data
set (present at sklearn.datasets.load digits). The Digits data set contains 1797

1

images of handwritten digits 0 to 9. Each image is an 8× 8 gray-scale image, present
in the data set as a vector of length 64.

• Train an MLP with one hidden layer containing 100 nodes.

• Use ReLU as the activation function.

• Split the data set into 60% training and 40% test data sets.

• From the test results, display 5 correctly classified images, and at most 5 incorrectly
classified images.

2. Learning Decision Trees - A Decision Tree classifier builds a binary search tree to learn to
classify a data set.

• At each node of the tree, a preset criterion is used to select a feature f and a threshold
δ for that feature’ values. Data points xi with f(xi) ≤ δ are passed to the left child of
that node, and data points with f(xi) > δ are passed to the right child of that node.

• The objective of these splitting of the data sets is to reach nodes where all data points
belong to the same class.

• Criterions such as the entropy of the data set can be used to split the data sets at
each node.

In the accompanying Jupyter notebook, an example is presented of how to train a Decision
Tree (present in sklearn.tree.DecisionTreeClassifier). The Decision Tree is trained
on the Iris data set. How can the learned binary search tree be visualized? In the notebook,
we are using the graphviz library to display the entire learned tree. graphviz is not
installed in Anaconda by default, you can install in from the Anaconda prompt by executing
the following command.

conda install python-graphviz

Running the example in the Jupyter notebook will show you the learned Decision Tree.
You can go through the code to see how the Decision Tree is trained, and how graphviz

is used to display the learned tree.

Your assignment - Train a Decision Tree on the Wisconsin Breast Cancer data set (avail-
able in sklearn.datasets.load breast cancer). Display the learned Decision Tree. The
Wisconsin Breast Cancer data set contains the 30 features, which are the medical informa-
tion of 569 anonymous patients, some of which have malignant tumours while others do
not. The binary classification problem on this data set is to accurately identify patients
with malignant tumours.

3. Learning Random Forests - In this exercise, you will train a Random Forest comprised of
Decision Trees.

• Train a Random Forest with 10 Decision Trees (present in sklearn.ensemble.

RandomForestClassifier) on the data set present in synth data1.txt.

• Test data xtest is generated in the Jupyter notebook. Predict class labels ytest for the
test data, and use it to visualize the decision boundary created by Random Forests.

• Save each Decision Tree using graphviz, so that each learned tree in the forest can
be visualized.

4. Compare the classification performance of Random Forests, Multi-Layered Perceptrons,
and Linear Support Vector Machines on the Digits data set. Use 10-fold cross-validation
and measure the average accuracy.

5. Data Visualization - Visualizing data sets can inform you about the underlying structures
present in the data set. However in the real world, it is quite common to come across high-
dimensional data sets, which are impossible to visualize completely. There exists numerous
summarizing statistics (mean, variance, etc.) however they often do not capture the com-
plex structures that might be present in the data set. An alternative approach that is often

2

quite useful, is to use a data dimension reduction technique to project the high-dimensional
data to 2 or 3 dimensions, then visualize it. We will look at two such methods, the fa-
miliar Principal Component Analysis (PCA), and a method called t-distributed Stochastic
Neighbor Embedding (t-SNE).

(i) The Digits data set has 64 features. Use PCA to reduce the data set to 2 dimensions,
then visualize the transformed data. A helper plotting function has been included in
the Jupyter notebook to color each class separately.

(ii) t-SNE is one of several manifold -based data reduction techniques. Manifold-based
data reduction techniques project data to lower dimension spaces, while preserving
the local neighbourhood information in the original space. This implies that points
that are close to each other in the original space, should be close in the reduced space.
The inverse of the statement holds as well, points that are far apart in the original
space should have a large distance between them in the reduced space.

Use t-SNE (present in sklearn.manifold.TSNE) to reduce the data to 2 dimensions.
Use the helper plotting function in the accompanying Jupyter notebook to visualize
the reduced data. Note the differences between the transformations by TSNE and
PCA.

3

