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Abstract

Automatic detection of empty spaces (gaps) between the displayed products as

seen in the images of shelves of a supermarket is an interesting image segmentation

problem. This paper presents the first known attempt to solve this commercially

relevant challenge. The shelf image is first over-segmented into a number of

superpixels to construct a graph of superpixels (SG). Subsequently, a graph

convolutional network and a Siamese network are built to process the SG.

Finally, a structural support vector machine based inference model is formulated

based on SG for segmenting the gap and non-gap regions. In order to validate

our method, we manually annotate the images of shelves of three benchmark

datasets of retail products. We have achieved ∼70 to ∼85% segmentation

accuracy (in terms of mean intersection-over-union) on the annotated datasets.

A part of the annotated data is released at https://github.com/gapDetection/

gapDetectionDatasets.
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1. Introduction

In supermarkets, as a part of the marketing strategy, the products are placed

on the shelves based on a predefined plan, commonly known as planogram [1].

In regular intervals, store associates check the compliance of the planogram.

In recent years, various attempts have been made for designing a vision-based5

system to automatically check the planogram compliance [2, 3]. Classification

[4, 5, 6] and accurate localization [7, 8, 9] of retail products on the shelf are the

associated sub-problems in order to check the planogram compliance. However,

these state-of-the-art solutions ignore a key direction of the problem, which is

the automatic identification of the gaps between the products (or empty shelves10

in the stores). This automatic identification of the gaps on the shelves is the

focus of this paper.

As a part of the checking of planogram compliance, the store associate needs

to manually identify the gap. This is time-consuming and error-prone. Delays

in identifying out-of-stock (OOS) conditions lead to a significant loss in revenue,15

especially when the product is present in the inventory [10]. There exists several

automated OOS detection systems like radio-frequency identification (RFID)

tags [11] and weighted sensor shelves [10]. They are expensive and difficult to

reconfigure for fast-changing retail product lines. On the other hand, there exists

only one known published work [12] that uses computer vision to detect gaps20

automatically. The use of a camera, either hand-held by a store associate or

fixed on the opposite facing rack, seems to be a feasible economic option for

continuous monitoring of the gap regions and planogram compliance. In this

paper, we introduce a solution for detecting gaps in the images of shelves. Fig. 1

illustrates gap regions in an example shelf image.25

We define a gap as an empty space (or a region) created on the shelf after

a product is picked up from the shelf. For example, the region covered by the

green boundary in Fig. 1 indicates that a (or few) product(s) is (are) missing.

Note that different gap regions may exist in the same image having different

textures, colors or features. For example, in Fig. 1, the regions highlighted by30
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Figure 1: In an example shelf image, the regions covered with the green polygon represent the

gap regions. Red and yellow dotted circles highlight different textures for the gaps.

the red and yellow dotted circles on the shelf present different textures for the

gap. The absence of unique inherent characteristics of the gap regions amplifies

the challenges in solving the gap detection problem.

The sales and promotion programme of products is required to comply

with a given planogram (defined in the first line of this section). The gaps35

created on the racks due to sales or due to interference by the customer disrupts

planogram compliance. The proposed algorithm for gap detection helps in

assessing planogram compliance.

Further, the detection of gap in a shelf quickly estimates the extent of refilling

required in that gap. Store associates can continuously monitor the status of a40

rack and disruption of the display plan based on the output of the gap detection

framework. Temporal study of gap detection may help in studying the consumer

behaviour which in turn helps to design a better planogram.

To identify the gaps, one method could be to take the difference of the

fully-stacked rack image from the subsequent images of the partially empty45

rack. This is similar to the background subtraction approach which needs a

fully-stacked reference image. On the contrary, our proposed method does not

need any reference image.

A straightforward image subtraction does not work in a real store environment.

First, the cameras taking pictures of racks are not in fixed locations. Therefore,50
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the sequence of images of any particular rack varies as the pictures are taken

by different store associates by different handheld cameras and that too, from

different vantage points. Second, the store level illumination and shadow due to

occlusion, change the image content and thus making the difference image an

unfit case for estimating gap.55

Finally, for a wide range of fast-changing product lines, products with minor

variations in appearance, dynamic nature of disruption of display due to customer

behaviour, all put together, makes processing of background-subtracted results

complicated and threshold driven. Such thresholds and rules for image pruning

are difficult to set and need to be customized for racks, products and at store60

level. Compared to this, the proposed approach is far more generalized and

better-motivated considering planogram compliance.

We have posed our task of identifying gaps in the shelf images as a seg-

mentation problem and the objective is to estimate the pixel-level binary mask

identifying the empty regions as white and the remaining portion as black. The65

flow chart of our proposal is shown in Fig. 2. Our scheme first over-segments

the entire image into superpixel regions and construct a graph of superpixels

(say, G), where the edges of G capture the association between two superpixels.

Subsequently, the features of each superpixel (or each node of G) are extracted

by feeding this G as input to a graph convolutional network (GCN) [13] that70

imbibes the neighbourhood information of superpixels. Further, the represen-

tation of the association/similarity between superpixels i.e. the weights of the

edges in G (referred to as edge features) are encoded with a Siamese network

Superpixel
Segmentation

Formulation
of SSVM

Node Feature Extraction
using Graph

Convolutional Network

Input Output

Construction of
Superpixel

Graph
Edge Feature Extraction
using Siamese Network

Architecture

Figure 2: Process flow of our proposed scheme for the identification of gaps in the shelves
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[14]. This way, our proposal establishes the relationship between the adjacent

superpixels being part of a gap or non-gap region in a shelf image. Using these75

sets of features for the nodes and edges in G, we formulate a structural support

vector machine (SSVM) [15] to generate a binary mask that classifies the gap

and non-gap regions.

From the above discussion, it is evident that GCN finds representation

of superpixels observing their neighbours whereas Siamese network finds the80

representation of similarity of superpixels. Therefore, GCN and Siamese Network

need a classifier for the identification of gaps. SSVM serves the purpose.

The proposed scheme is compared with the recent state-of-the-art deep

learning based image segmentation approaches U-Net [16], DeepLabV3 [17],

LinkNet [18], FPN [19], PSPNet [20], DeepLabV3+ [21], PAN [22], MA-Net [23]85

for the identification of gap regions on the shelves. Contributions of our proposed

scheme compared to all these state-of-the-art approaches are three-folds:

1) To the best of our knowledge, we are the first to release the benchmark

datasets in GitHub [24] for the identification of gaps in the shelves. The

identified and annotated gaps are marked in the publicly available datasets90

Grocery Products [25], WebMarket [26], and GroZi [27].

2) To the best of our knowledge, we are the first to introduce this problem as an

image segmentation task to machine vision community and proposing a novel

solution that outperforms deep learning based state-of-the-art segmentation

approaches in almost all the evaluations.95

3) We utilize a graph convolutional neural network and a Siamese network in

the formulation of structural support vector machine for the detection of

gaps in the shelves.

The rest of the paper is organized as follows. The benchmarking procedure

of the shelf images from publicly available datasets are described in Section 2.100

Section 3 explains our proposed method. The experiments are carried out in

Section 4. Finally, we conclude the paper in Section 5.
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2. Benchmark Datasets for the Identification of Gaps

For designing and validating a model for automatic identification of gaps,

we require ground truth for each shelf image specifying the gap and non-gap105

regions. In order to generate ground truth, we manually annotate the images of

shelves by labelling the gap and non-gap regions with the polygons.

We follow a certain convention and annotate the images with two different

labels: gap and non-gap polygons drawn on the image. The gap region is defined

by (a) the locations of shelves where the background of shelves are visible and110

(b) the dark regions where the objects are invisible. In the end, we obtain

a pixel-level binary mask (which we refer to as ground truth) for each shelf

image depicting 1 as the presence of a gap and 0 as the presence of a non-gap

(product/non-usable parts of the shelf). A pixel-level binary mask corresponding

to an example shelf image of Fig. 3(a) is shown in Fig. 3(b). The regions other115

than gaps on the shelf image are referred to as non-gap in this paper.

The images of shelves for manual annotation are from the publicly available

datasets Grocery Products [25], WebMarket [26], and GroZi [27]. We have used

the graphical annotation tool labelme [28]. Grocery Products dataset includes

680 images of shelves captured from different supermarkets. We select 305 images120

where the gap regions are present. Similarly, we annotate 98 and 50 images of

shelves from the WebMarket and GroZi datasets respectively. A part of these

annotations is made public as benchmark datasets for further studies on the

(a) (b)

Figure 3: (a): An example shelf image, (b): The ground truth i.e. pixel-level binary mask for

the shelf image (a) where white and black regions denote gap and non-gap respectively.
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identification of gaps. They are available at GitHub [24]. Next, we present the

proposed methodology.125

3. Methodology

We approach the problem under discussion as a binary segmentation problem

in which pixels are classified into either of the two classes, 1 (gap) and 0 (non-

gap). The overall block diagram of our proposed scheme is illustrated in Fig. 2.

The steps of our scheme are explained in the following subsections.130

3.1. Superpixel Segmentation

In order to identify the gap regions on the shelves, the proposed scheme aims

to label each pixel of the images of shelves. In our case, the number of pixels in

the image of a shelf is in the order of 105. The procedure for extracting features

from each of these many pixels and labelling them is computationally expensive.135

In order to reduce the complexity, all the images are initially over-segmented

into a few regions consisting of a group of pixels, called superpixels. Assume we

obtain N number of superpixels in the images of shelves and each superpixel is

denoted as xi, ∀ i = {1, 2, . . . , N}. In our implementation, we utilize the simple

linear iterative clustering (SLIC) algorithm [29] for generating superpixels for a140

shelf image. Next, we construct the graph of superpixels for each image.

3.2. Construction of the Graph of Superpixels

For every shelf image, we construct a graph with the superpixels as the nodes.

The edges are connected for the pairs of adjacent superpixels. It is evident that

the graph will be a connected graph as each superpixel is adjacent to at least145

one other superpixel. We refer to this graph of superpixels as superpixel graph

(SG) in the rest of the paper.

Assume, we have a shelf image I which has four superpixels x1, x2, x3, and

x4 as illustrated in Fig. 4(a). Further assume, G be the SG for the image

I. Hence, the set of nodes of G is V = {x1, x2, x3, x4} and the set of edges is150

E = {e1 = (x1, x2), e2 = (x1, x3), e3 = (x2, x3), e4 = (x2, x4), e5 = (x3, x4)} as
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(a) (b) (c) (d) (e)

Figure 4: (a): A segmented image I. (b): Superpixel graph of I. (c): Ground truth pixels

overlaid on I (referred as pixel-level binary mask). (d): Superpixel-level binary mask for I

labelling each superpixel, where the white and black regions indicate gap and non-gap regions,

respectively. The majority of pixels in superpixel x1 is white as shown in (c). Therefore, the

label of superpixel x1 is given as white as shown in (d). The labels of superpixels x2, x3 and

x4 are determined in a similar manner. (e): The labels for the nodes of (b).

shown in Fig. 4(b). In this work, this SG is an equivalent representation of the

superpixels in I. Thus, in the rest of the paper, the node xi of G essentially

refers to the superpixel xi of I.

In G, each node xi is characterized by the unary feature embedding u(xi), and155

each edge (xi, xj) is characterized by the pairwise feature embedding p(xi, xj)

for the adjacent superpixels xi and xj . Thus, the unary feature embedding refers

to the feature vector of a superpixel i.e. a node of G, while pairwise feature

embedding represents a feature vector for two adjacent superpixels i.e. an edge

of G. In the rest of the paper, node and unary features, and edge and pairwise160

features are interchangeably used. Given these, for the example shown in Fig.

4(a), we define a structured data X which consists of:

(a) Adjacency list A of G,

(b) Pairwise feature embedding for the edges e1, e2, e3, e4, e5 and,

(c) Unary feature embedding for the nodes x1, x2, x3, x4.165

This X is essentially the input to Structural Support Vector Machine (SSVM)

for the identification of gap/non-gap regions in I. But before discussing SSVM,

we define the unary and pairwise feature embedding for nodes and edges using

GCN and a Siamese network respectively.

In our proposal, GCN or Siamese network learn the labels of the nodes (gap170
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being labelled as 1, and non-gap as 0) of G (as described at the beginning

of Section 3) for all the shelf images in the train set. We extract the feature

embedding for nodes and edges of G from learnt GCN and Siamese network

respectively. However, in order to learn GCN or Siamese network, an SG and

the labels of superpixels are required. We have already explained the procedure175

of constructing SG. Next, the procedure for assigning labels to the superpixels is

described.

Labelling of Superpixels. The training set includes ground truth images i.e.

pixel-level binary masks where each pixel is labelled as either gap or non-gap.

Given this, we now demonstrate the procedure of labelling superpixels using180

the example given in Fig. 4. For the shelf image I in Fig. 4(a), Fig. 4(c) is

the ground truth image (or the pixel-level binary mask Igt) with each pixel

marked either as white (i.e. label 1) or black (i.e. label 0) representing gap or

non-gap region respectively. Fig. 4(b) is the superpixel graph of I. Fig. 4(c)

shows that superpixel x1 has more white pixels than black pixels. Therefore,185

the label of superpixel x1 is assigned as white as shown in Fig. 4(d). Similarly,

based on majority voting of white or black pixels, superpixels x2, x3 and x4 are

labelled as black, white and black, respectively as shown in Fig. 4(d). Fig. 4(e)

shows the labels of the nodes of the superpixel graph in Fig. 4(b). This way

the superpixel-level binary mask B of the shelf image I is determined. Next, we190

extract features for the nodes of G.

3.3. Feature Representation of the Nodes in SG

The unary feature embedding in the structured data X of G is essentially

the feature representation for the nodes (i.e. superpixels) of G. Since we look for

a novel feature representation for each superpixel of I considering not only the195

superpixel itself but also its neighbouring superpixels, we design a GCN [13] that

principally accumulates the local neighbourhood information of each superpixel

utilizing graph convolution. So naturally, the SG G is input to the GCN.

The block diagram of the proposed GCN model is presented in Fig. 5. The

architecture of the proposed three-layered GCN is detailed in our implementation200
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details in Section 4. However, a GCN usually takes the adjacency matrix of

the graph G and an initial feature vector for each node of G. In this work, the

initial feature vectors for the nodes or superpixels are determined using a CNN

based feature extractor (referred to as initial linear feature extractor or ILFE)

designed on top of the pre-trained VGG-19 [30] (see Fig. 5). The architectural205

details of this ILFE are also provided in the implementation details. Assume,

ILFE returns d1-dimensional feature vector f
(i)
L for each ith node in G. In our

implementation, d1 = 128.

Then G along with the initial linear feature vectors for all its nodes f
(i)
L , i =

1, 2, . . . , N , are sent to GCN and layer-wise propagated in GCN [13] as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(1)

where Ã = A+ IN is the adjacency matrix of G considering self loops, A is the

adjacency matrix of G, and IN is the identity matrix of size N . Here D̃ii =
∑
j

Ãij210

and D̃ij = 0, ∀i ̸= j. H(l) is the input to the lth layer of GCN and hence H(0) is

essentially the input to GCN i.e. H(0) is a vector of length N, where the elements

are f
(i)
L , i = 1, 2, · · · , N . W (l) is the trainable weight matrix for layer l and σ(·)

is the activation function. Finally, GCN returns a d2-dimensional feature vector

In
pu

t

Segmented
Shelf Image

Superpixel
graph, 

CNN-based
Feature Extractor

Graph
Convolutional

Network

Output
N

od
e 

Fe
at

ur
es

 o
f 

Figure 5: Flow chart of the proposed node feature extraction scheme. For the segmented

image in Fig. 4, superpixels x1, x2, x3, and x4 are sent to CNN-based feature extractor for

determining respective initial linear feature vectors f
(1)
L , f

(2)
L , f

(3)
L , and f

(4)
L . These initial

feature vectors and the SG are passed through the graph convolutional network for obtaining

the features f
(1)
G , f

(2)
G , f

(3)
G , and f

(4)
G of the nodes x1, x2, x3, and x4 respectively.
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f
(i)
G for each ith node in G aggregating the local neighborhood information of215

a superpixel. The aggregation of local information is ensured by the inclusion

of Ã in (1). f
(i)
G is essentially the output of penultimate layer of GCN. In our

implementation, d2 = 16. In other words, the unary feature embedding for each

ith node xi of G can be defined as u(xi) = f
(i)
G . Next we present our method for

finding out features of edges of G.220

3.4. Feature Representation of the Edges in SG

As mentioned earlier, there exists an edge between two nodes xi and xj in

G, if the superpixels xi and xj in I are adjacent. In this work, we aim to define

a feature representation for the edge (xi, xj) that encodes the similarity (or

dissimilarity) between the two neighboring superpixels xi and xj in I. Similar225

superpixels mean either both are gap regions or both are non-gap regions.

In other words, we look for a unique representation for the edges between

superpixels that are similarly (or dis-similarly) labelled. Therefore, we can pose

this as a two-class (similar and dissimilar) classification problem that takes two

superpixels (or sub-images) as input. In order to solve this, we build a Siamese230

network architecture (SNA) [14] from which the features for the edges in G are

extracted. The features for the nodes extracted from GCN, although consider

the neighbourhood superpixel information, do not take the class similarity of the

superpixels into account. On the other hand, SMA learns a similarity measure

that tends to bring feature vectors of similar class labels nearer than those of235

dissimilar class labels in the feature space.

Each pair of adjacent superpixels (xi, xj) in I is the input to our SNA for

finding out the feature for the edge (xi, xj) in G. The schematic of our SNA is

provided in Fig. 6 and its architecture is detailed in our implementation details

in Section 4. For any pair of adjacent superpixels (xi, xj), the superpixel xi is240

first fed to the first convolutional block, conv-block-1 while xj is sent to the

second convolutional block, conv-block-2. A convolutional block essentially refers

to a stack of a number of convolutional layers. According to the principle of

Siamese network, the learnable weights/parameters of the blocks conv-block-1
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Figure 6: Schematic of the proposed Siamese network architecture for extraction of edge

feature. For the example segmented image in Fig. 4, we illustrate the extraction of pairwise

feature p(x2, x4) for the edge (x2, x4) of SG.

and conv-block-2 are shared (see Fig. 6). The shared weights result in similar245

transformation of both the inputs to their respective convolutional maps. The

outputs (i.e. convolutional (conv) maps) of both the blocks are then concatenated

and fitted to the third block conv-block-3 of our SNA. The output of conv-block-3

is finally passed through a fc-block comprising of three consecutive fully connected

(fc) layers. Last fc layer defines the classification score of similarity and dis-250

similarity between two input superpixels xi and xj . Here, we practically look

for a feature representation for the edge between xi and xj which is essentially

determined by the output of penultimate fc layer of SNA. The SNA provides

d3-dimensional pairwise feature vector/embedding p(xi, xj) for each edge (xi, xj)

in G. In our implementation, d3 = 16. Next we present the SSVM for the255

identification of gaps/non-gaps in the shelf images.

3.5. SSVM for the Identification of Gap Regions

SSVM [15] is a classifier that predicts the labels for the nodes of G minimizing

the loss between the predicted and true labels. In our problem, we utilize SSVM

to learn the labels of the nodes (i.e. 0 or 1) of the G (as described in Section260

3.2) for all the shelf images in the train-set. Once the SSVM is learnt, we obtain

the labels of the nodes which we assign to the corresponding superpixels of a

shelf image. In this way, the entire image is segmented into the gap and non-gap

regions (gap being labelled as 1, and non-gap as 0). Next, we formulate the

SSVM with the structured data X and the labels of superpixels (see Section 3.2).265
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3.5.1. Formulation of SSVM

Assume, we have M number of shelf images I(k), k = 1, 2, . . . ,M in the

train-set. Corresponding to each training image I(k), we obtain the structured

data X(k) and the true labels Y (k) for the superpixels. Given these, the gap

identification problem can be posed as follows.270

Each of the superpixels of any shelf image I can be interpreted as a discrete

random variable taking values from the set Ω =
{
0, 1
}
, where 1 signifies gap

and 0 denotes non-gap. Let us assume that Y = {y1, y2, . . . , yN} ∈ Y = ΩN

be a feasible label vector for the N number of nodes in G. In that case, there

exists 2N possible label vectors (or feasible labeling) for the G with N number275

of nodes i.e. |Y| = 2N . Thus, the set of 2N feasible label vectors must include

the true label (Boolean) vector (for the SG). Now the gap identification problem

boils down to finding out the true label vector from 2N possible label vectors for

the G. For example, the possible label vectors for the graph shown in Fig. 4(b)

is Y = (y1, y2, y3, y4), where yi, i = 1, 2, 3, 4 can be 0 or 1. Then the number of280

possible label vectors for this graph is 24 out of which we aim to find out the

true label vector (1, 0, 1, 0) as shown in Fig. 4(e).

In order to obtain the true label vector Y (k) for any input X(k), we define

a potential function E(X,Y ) which will be maximized when Y = Y (k) for the

given X = X(k) i.e.

Y (k) = argmax
Y

E(X(k), Y ), (2)

and the potential function E(X,Y ) is formulated as:

E(X,Y ) = wTϕ(X,Y ), (3)

where w is the weight vector and ϕ is the joint feature vector for an input X

and its any label vector Y . Our target is to learn this weight vector w with

the train-set such that the potential function E is maximized for the true label285

vectors.

The potential function E(X,Y ) can be defined as the sum of the potential

functions Eu(xi, yi) and Ep(xi, xj , yi, yj) contributed by the unary and pairwise
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features as:

argmax
Y

E(X,Y ) = argmax
Y

( N∑
i=1

Eu(xi, yi) +
∑

(xi,xj)∈E

Ep(xi, xj , yi, yj)

)
. (4)

Again Eu can be written as:

Eu(xi, yi) = wT
uϕu(xi, yi), (5)

where ϕu, which is the joint feature vector (for associating features with labels)

of the node xi and its label yi for the unary features, is defined as:

ϕu(xi, yi) =
(
I(yi = 0)u(xi), I(yi = 1)u(xi)

)
, (6)

where I(·) is the indicator function that checks the condition and returns 1 if the

condition holds and 0 otherwise. Again the potential function Ep contributed by

pairwise features can be written as:

Ep(xi, xj , yi, yj) = wT
pϕp(xi, xj , yi, yj), (7)

where ϕp, which is the joint feature vector of the nodes xi, xj and their labels290

yi, yj for pairwise features, is defined as:

ϕp(xi, xj , yi, yj) =
(
I′(yi = 0, yj = 0)p(xi, xj),

I′(yi = 0, yj = 1)p(xi, xj),

I′(yi = 1, yj = 0)p(xi, xj),

I′(yi = 1, yj = 1)p(xi, xj)
)
, (8)

where I′(·, ·) is an indicator function that returns 1 if both the conditions (in

its arguments) are true and return 0 otherwise. As given in (5), ϕu, which is

a function of a node xi and its corresponding label yi in SG, returns a vector

of length 2d2 (as u(xi) is a d2-dimensional vector, see Section 3.3). Similarly

from (8), we can see that ϕp is a function of a pair of adjacent nodes xi, xj and

their corresponding labels yi, yj in G returning a vector of length 4d3 (as p(xi)

is d3-dimensional vector, see Section 3.4). Thus, the joint feature vector ϕ in (3)

can be derived as:

ϕ(X,Y) =
( N∑

i=1

ϕu(xi, yi),
∑

(xi,xj)∈E

ϕp(xi, xj , yi, yj)
)
.
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Given these, we aim to learn w in (3) with the SSVM [15]. However, before

we train the SSVM for determining w, we have to define the loss between the

true and predicted label vectors for any input X by the SSVM model. In order

to do that, we calculate the Hamming loss between true and predicted label

vectors as:

∆(Y (k), Y ) =
N∑
i=1

I(y(k)i ̸= yi), (9)

where Y and Y (k) are (any) feasible and true label vectors of an input X(k)

respectively. In (3), E(X,Y ) eventually is the function which maps each label

vector Y of the SG in X to a scalar value (or score). Hence, SSVM is learnt in

such a way such that (a) the true label vector has the highest score and (b) the

score is lower when the Hamming loss defined in (9) is higher. Keeping all these

in mind, we define an SSVM with the formulation of one slack SVM [31] as:

min
w

λ||w||2 + 1

M

M∑
k=1

εk, (10)

such that,

M∑
k=1

(
∆(Y (k), Ŷ (k))−wTϕ(X(k), Y (k)) +wTϕ(X(k), Ŷ (k))

)
≤

M∑
k=1

εk,

∀(Ŷ (1), Ŷ (2), ..., Ŷ (M)) ∈ Y × Y × ...× Y, (11)

where εk are the slack variables, λ is a positive regularization constant, Y is the

set of all possible label vectors Ŷ (k) for X(k). This (10) is a convex quadratic

optimization problem with |Y|M number of constraints, where (11) represents

all the constraints. Finally, we obtain the weight vector w which is learnt using295

the structured input of the images of shelves from the train-set following the

approach in [31].

For any test shelf image I, we predict the gap/non-gap regions by creating

the structured data X as explained in Section 3.2 and using the trained SSVM

as:

Ŷ = F (X) = argmax
Y ∈Y

wTϕ(X,Y ). (12)
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We solve (12) using AD3 algorithm [32]. Hence Ŷ = F (X) is the predicted

label vector for the nodes of SG in X i.e. the labels of the superpixels in the shelf

image I. Thus Ŷ produces the predicted binary mask B̂ for any shelf image as300

follows. Subsequently, the predicted label in B̂ for each superpixel xi is assigned

to all the pixels contained within the superpixel xi and thus finally the predicted

binary mask is obtained with all pixels labelled either 0 (for non-gap) or 1 (for

gap). Next we present the experiments, results and analysis.

4. Experiments305

We first discuss implementation details of our method followed by the training

protocol for various components of the proposed solution, the competing methods,

and the performance metrics using which the methods are evaluated. Finally,

we present our results and analysis.

Implementation Details. First of all, any shelf image is resized into a fixed-310

size 700× 460 image. Next SLIC segmentation method [29] is run for getting

N = 1000 number of superpixels. The experimental detail for choosing N is

provided in Appendix A. The compactness [29] of SLIC method is experimentally

set to 50 in this work.

The superpixels being of irregular shape cannot be sent to a CNN based315

model (ILFE and Siamese network architecture in our scheme) directly as input.

So in our implementation, a patch of shape 32 × 32 is cropped out for each

superpixel centred at the centroid of the superpixel. First, all these patches of

superpixels are fed to ILFE for extracting linear feature vectors to fit into GCN.

The architecture of ILFE is composed of a convolutional (conv) block (com-320

prising of a number conv and pooling layers) and two fc layers, fc-1 and fc-2

on top of convolutional block. The architecture of the conv block is identical

to the entire conv block of VGG-19 [30]. fc-1 and fc-2 layers have 128 and 2

nodes respectively. fc-2 classifies each superpixel patch to either gap or non-gap.

Further, we perform ReLU and dropout (with dropout probability 0.5) operations325

just after fc-1 and before fc-2. However, the learnable weights of the conv block
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of ILFE is initialized with the pre-trained weights of pytorch [33] implementation

of VGG-19 while the weights of fc-1 and fc-2 layers are randomly initialized with

the values in [−1, 1] drawn following normal distribution. In our implementation,

the input to fc-2 defines the 128-dimensional feature vectors for each of the330

superpixels.

The adjacency matrix of the SG and the 128-dimensional feature vectors

of each superpixel are the input to our GCN. The proposed GCN is composed

of 3 graph convolutional (gc) layers, namely gc-1, gc-2 and gc-3 as shown in

Fig. 5. gc-1, gc-2 and gc-3 layers include 64, 16 and 2 nodes respectively. After335

each of the gc-1 and gc-2 layers, we execute ReLU and dropout (with dropout

probability 0.5) operations. The weights of all these gc layers are randomly

initialized with the values in [−1, 1] drawn following a normal distribution. gc-3

layer eventually classifies each node of SG i.e. each superpixel to gap or non-gap

aggregating the features of adjacent superpixels in gc layers. In this work, the340

output from gc-2 is the (unary) feature vector for any node of SG.

The feature vector for two adjacent pixels or an edge of the SG is determined

by sending their patches to our SNA. As shown in Fig. 6, SNA consists of 3 conv

blocks: conv-block-1, conv-block-2, conv-block-3 and 1 fc block: fc-block. Since,

conv-block-1 and conv-block-2 share their weights, they are essentially treated345

as one block whose architecture is identical to the conv block of VGG-16. The

outputs from conv-block-1 (which takes one superpixel as input) and conv-block-2

(which receives another superpixel as its input) are concatenated and fed to

conv-block-3. The structure of conv-block-3 is identical to the chunk of 10-th

to 16-th conv layers (including intermediate maxpool layer) of VGG-19. The350

weights of these blocks are initialized with weights of respective blocks of the

VGG pre-trained models. The fc-block (consisting of 3 fc layers having 64, 16

and 2 nodes respectively) takes the output of conv-block-3 and classifies the

adjacent superpixels to be identically labeled or not. fc-block also performs

ReLU and dropout (with dropout probability 0.5) operations after each of first355

two fc layers. Weights of all these fc layers are randomly initialized with the

values in [−1, 1] drawn following normal distribution. In our model, the output
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from penultimate layer of fc-block is eventually the (pairwise) feature vector for

the edge between the adjacent superpixels in SG. The SG along with these unary

and pairwise feature vectors are sent to SSVM for the identification of gaps and360

non-gaps in shelf images.

All above discussed deep learning based models ILFE, GCN and SNA are

implemented with pytorch library [33] while SSVM is designed with pystruct

library [34] of python. Next, we explain the training strategies of the above-

discussed models.365

Training of Various Networks. During training of the deep learning based

models ILFE, GCN, and SNA of our proposed approach, approximately 80%

images of the train-set are used for training while the rest 20% images of the

train-set are utilized for validation of the network. All the networks are trained

by applying the softmax function on output (referred to as softmax output) and370

then calculating the cross-entropy loss [35] between the softmax output and one

hot label vector. Adam optimizer at learning rate of 0.0001, weight decay of 5e-4,

and mini-batch (of shelf images) of 1 used to learn the networks. ILFE and SNA

are optimized up to 150 epochs while GCN is trained for at most 400 epochs.

On the other hand, for the training of SSVM, the chosen tunable parameters are375

a maximum iteration of 100, a regularization parameter of 0.1 and a convergence

tolerance of 0.1. Next, we present the competing methods.

Competing Methods. We compare our proposal with the competing methods:

U-Net [16], DeepLabV3 [17], LinkNet [18], FPN [19], PSPNet [20], DeepLabV3+

[21], PAN [22], MA-Net [23]. We have run pytorch implementation of all these380

methods with default setup available in GitHub [36]. All these networks are

trained for 100 epochs. The performance metric is defined next.

Performance Measure. The methods are evaluated using the metric, intersection-

over-union (IoU) [37, 38] used in evaluating the performances of the methods for

semantic segmentation. The IoU essentially determines the similarity between

the predicted binary mask B̂ and pixel-level binary mask Igt (i.e. the ground
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truth) of an image of a shelf. Subsequently, the gap identification performance

for the Mtst number of test images in a dataset is defined by the mean IoU

(mIoU) as :

mIoU =
1

Mtst

(
|Igt ∩ B̂|
|Igt ∪ B̂|

)
. (13)

Next, we present the results and analysis.

4.1. Results and Analysis

The experiments are carried out on three publicly available datasets Grocery385

Products (GrocProd) [25], WebMarket (WebMkt) [26], and GroZi [27] from

which we select 305, 98, and 50 number of shelf images and create ground truth

specifying gap/non-gap regions as explained in Section 2. For each dataset, we

randomly choose approximately 60% of these shelf images as the train-set and

the rest 40% as the test-set. The train-set includes 184, 59, and 30 shelf images390

in GrocProd, WebMkt, and GroZi respectively while the test-set contains 121, 39,

and 20 images in the respective datasets. These train-set and test-set containing

images and their ground truths (or pixel-level binary masks) are made public in

GitHub [24].

Quantitative Results: Table 1 presents the gap identification accuracy in395

terms of mIoU (%) of the proposed approach including the competing ones. The

proposed scheme outperforms deep learning based state-of-the-art methods in

all the evaluations by at least ∼1%. The maximum performance improvement

from the nearest competitor is ∼3% (see rightmost column for GroZi in Table 1)

which is indeed remarkable. In fact, our method achieves higher accuracy for400

the GroZi dataset. Our method performs equally well for the datasets having a

larger or a smaller number of training images (for Grocery Products there are

184 training images while for GroZi there are only 30 training images). On the

contrary, the performance of solely deep learning based methods deteriorates

with the decreasing size of the train-set, which is why the margin of mIoU405

for our method w.r.t. others becomes higher when the train-set is smaller as

witnessed for GroZi. However, the results for all the methods are inferior on the
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Table 1: Gap identification results of various methods on benchmark datasets. DLV3 and

DLV3+ represents DeepLabV3 and DeepLabV3+ respectively.

Methods
mIoU (%) on Benchmark Datasets

GrocProd [25] WebMkt [26] GroZi [27]

U-Net [16] 69.36 66.83 81.76

DLV3 [17] 67.82 64.89 78.47

LinkNet [18] 68.73 66.28 79.25

FPN [19] 67.36 66.19 77.60

PSPNet [20] 66.19 64.55 72.30

DLV3+ [21] 68.98 64.75 75.70

PAN [22] 68.95 64.93 77.31

MA-Net [23] 69.64 63.60 81.66

Proposed 70.62 69.20 84.58

GrocProd and WebMkt datasets compared to GroZi due to the large variation

in the texture of the gaps and in the packaging of products.

Statistical Significance Test: We perform an in-depth comparison of the410

proposed approach with two of its closest competitors (identified from Table

1) U-Net [16] and MA-Net [23]. We have performed 10-fold cross-validation

on all three datasets. The mean (µ) and standard deviation (σ) of the mIoU

accuracy obtained for 10 folds of each dataset are tabulated in Table 2. In order

to highlight the efficacy of the proposed approach against its closest competitors,415

we have carried out a Wilcoxon Rank-Sum (WRS) test [39]. Table 2 provides the

outcome of the WRS test which we express in the form of p-values of rejecting

the null hypothesis.

The null hypothesis for each test is H0: the performances of the control

method (i.e. the proposed one) and the competing method are identical over the420

10-fold cross-validation, versus H1: the performances of the control method and

the competitor are different over the 10-fold cross-validation. In our experiment,
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Table 2: Performance comparison: the results of the 10-fold cross-validation and corresponding

Wilcoxon Rank-Sum (WRS) test. For each dataset, µ±σ of the 10-fold cross-validation results

(mIoU in %) are shown, where µ and σ denote the mean and standard deviation respectively.

Subsequently, the p-values obtained from the WRS and the corresponding selected hypothesis

are presented for each of the competitors on each of the datasets.

U-Net [16] MA-Net [23]
Proposed

(Control Method)

GrocProd

µ± σ 71.64± 3.77 71.21± 4.73 72.36± 4.38

p-values 0.064 0.045 -

Hypothesis H0 H1 -

WebMkt

µ± σ 64.34± 8.66 63.96± 8.73 65.76± 7.97

p-values 0.045 0.021 -

Hypothesis H1 H1 -

GroZi

µ± σ 83.92± 4.64 83.62± 4.47 85.13± 5.18

p-values 0.038 0.025 -

Hypothesis H1 H1 -

NOTES:

H0: The performances of the control method (i.e. the proposed one) and the

competing method are statistically comparable over the 10-fold cross-validation.

H1: The performances of the control method and the competitor are significantly

different over the 10-fold cross-validation.

Threshold for p: 0.05

we consider the 5% significance level, i.e. H0 is rejected if p < 0.05. On any

dataset, for any competitor, assume the hypothesis H1 is selected. Then our

algorithm performs significantly better than its competitor, if the mean (µ)425

performance of the proposed method is greater than that of the competitor. Our

solution performs significantly worse, if the mean performance of our method

is lower than the mean performance of the competitor. In case the hypothesis

H0 is selected, both the methods are statistically comparable. From Table 2,

we can clearly conclude that the proposed method is significantly better than430
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its competitors except in one case (see U-Net on GrocProd dataset), where our

method and the competitor are significantly comparable.

Qualitative Results: A few example qualitative results of our method are

provided in Fig 7. The efficiency of our method is established in the six example

results shown in the top six rows of Fig. 7, where the predicted binary masks435

are almost similar to the true pixel-level binary masks. The bottom two rows of

Fig. 7 illustrate two notable failure cases. Our analysis finds that the non-gap is

misidentified as gap in both the images due to darkness in the packaging of the

product. Next, we perform the ablation study.

4.1.1. Ablation Study440

The ablation study is carried out on all benchmark datasets for investigating

the contributions of different components of the proposed scheme. Our proposal

has three primary components such as: node feature extractor (NFE) i.e. ILFE

+ GCN, edge feature extractor (EFE) i.e. GCN, and SSVM i.e. our classifier.

In the proposed scheme, NFE is the basic component without which SSVM can445

not be executed. Therefore, next, we provide the efficacy of the remaining two

components EFE and SSVM of our proposal to identify the gaps or non-gaps in

the shelf images.

Contribution of EFE: SSVM can be modelled using the SG and its node

features NFE, without explicitly extracting edge features of SG. In that case,450

Table 3: Performances of our method removing or adding different components of it on the

test-set of our benchmark datasets

Components in our scheme
mIoU (%)

GrocProd [25] WebMkt [26] GroZi [27]

(i) NFE 65.98 60.06 79.11

(ii) NFE + SSVM 66.75 63.76 79.89

(iii) Proposal: NFE + EFE + SSVM 70.62 69.20 84.58
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Test Image Ground Truth Mask Predicted Mask

Figure 7: A few qualitative results from the test-set of various datasets. The top six rows show

the efficacy of the proposed scheme while the last two rows present the failure cases of our

solution when the products with darker packaging appear like a gap.
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SSVM considers the adjacency value (1 or 0) in the adjacency matrix of SG as

an edge feature. This setup, which can be denoted as NFE + SSVM, examines

the necessity of EFE i.e. SNA in our proposal. If we remove the EFE module

from our proposal, the performance drops at least ∼5% (compare rows (ii) and

(iii) of Table 3) that clearly shows the importance of EFE. This happens because455

the Siamese network considers each pair of adjacent superpixels and efficiently

captures the discriminatory characteristics between them as the edge feature.

Contribution of SSVM: We can use only NFE for obtaining the gap identifi-

cation results. The results of this model essentially illustrate the contribution

of SSVM. If we look at the performances of our proposal (row (iii)) and NFE460

(row (i)) in Table 3, the difference is at least ∼5% and at most ∼10%. Thus the

necessity of SSVM can be clearly noticed.

Therefore, in Table 3, the three possible cases are studied to perform super-

pixel classification for identifying the gaps. NFE can do the task alone; NFE

and SSVM together can also perform the task; finally, the proposed scheme i.e.465

NFE, EFE, and SSVM put together, is capable of completing the task. We can

see that the improvement of NFE + SSVM over NFE is marginal. When we

add EFE with the NFE + SSVM, we can see a significant performance jump.

But, in the proposed solution, EFE without SSVM cannot exist. EFE is utilized

to extract the edge weights to be used in the SSVM to classify the superpixels.470

And we have witnessed the effectiveness of EFE (our novel contribution in this

work) in Table 3. Therefore, we can see that EFE embedded in SSVM provides

improved performance.

However, our ablation study suggests that all three components of our

proposal are significant in accurately identifying gaps and non-gaps in shelf475

images. To be specific, this study infers that EFE in SSVM contributes most

in achieving higher gap identification performance with respect to competing

approaches. Next we analyze the inference time (i.e. test time) of the proposed

method.
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Figure 8: The pie-chart representing the distribution of the execution time consumed by the

different building blocks of the proposed approach for identifying the gaps in a shelf image

4.1.2. Notes on Inference Time480

The proposed algorithm is implemented in python and tested in a computing

system with the following specifications: 96GB RAM, Intel Core i9-9820X CPU

3.30GHz×20 and 24GB TITAN RTX GPU. The modules of the proposed ap-

proach involved during inference are: (a) Superpixel Segmentation (Section 3.1),

(b) Superpixel Graph Construction (Section 3.2), (c) Node Feature Extraction485

(Section 3.3), (d) Edge Feature Extraction (Section 3.4) and (e) SSVM Inference

(Section 3.5). For identifying the gaps in a (test) shelf image, the time consumed

by each of these modules of our scheme is presented using a pie-chart in Fig. 8.

The total time taken by the un-optimized code per rack of the proposed

approach is ∼0.93 seconds. Among all the modules, as expected, Node Feature490

Extraction consumes higher time due to the Graph Convolution process explained

in Section 3.3. Further, the CPU implementations of graph manipulation

(Superpixel Segmentation and Superpixel Graph Construction) and the SSVM

inference process have increased the overall execution time. However, the (deep

learning based) competing methods take ∼0.45 seconds for identifying the gaps495

in a (test) shelf image. All the competing methods are end-to-end deep learning

based methods, which are entirely implemented in GPU. On the contrary, our

current implementation of the proposed approach involves CPU along with GPU
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implementation. This essentially increases the test time. Our analysis finds that

the test time of our scheme should be close to that of the competitors if we500

implement graph manipulation and SSVM inference in the GPU. However, with

this fraction of second increase of test time w.r.t. the competing approaches, the

proposed scheme yields significantly better performances in almost all the cases.

Next, we discuss the importance of our method in context of retail stores.

4.1.3. Suitability of the proposal for retail store environment505

The deep learning based approaches usually require enormous training data.

Limited training images result in over-fitting of the model during training and

hence poor generalized performance. Due to the availability of limited training

data for the application under consideration, we have used the structured

support vector machine that learns a much lesser number of parameters (2×510

number of node features + 4× number of edge features) compared to any deep

learning based methods.

The deep learning models, that we have utilized in this work, are GCN to

extract the features of the superpixels and a Siamese network to extract the

features of a pair of superpixels. In order to train these networks, a minimal set515

of labelled data (i.e. annotated shelf images) is good enough.

Assume there are 30 shelf images in the training set, each of which has 1000

superpixels as decided through experiments. In that case, the training data,

which is used for training the node feature extractor (GCN), contain 30× 1000

samples. For training the edge feature extractor (Siamese network), we have520

30× number of edges in each SG (obviously more than 1000) training samples.

Such a training scheme is large enough to train the proposed GCN or Siamese

network. On the contrary, all other deep learning based segmentation methods

considered in our comparative study (see Table 1), require to train their millions

of parameters. As a result, the proposed scheme outperforms all these methods525

as evident in Table 1. Hence, in the context of a retail store with a limited

number of training images, given that the product display plan in supermarkets

changes quickly, the proposed scheme is expected to be a better choice for an
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application like identification of gaps. Next, we conclude the paper.

5. Conclusions530

The method presented in this paper uses graph convolutional network (GCN)

for feature extraction of the superpixels independently while Siamese network

architecture (SNA) captures the similarity of the neighbouring superpixels in

a feature embedding framework. Finally, the features extracted from GCN

and SNA are fed to SSVM for the classification of the superpixels. Utilizing535

GCN and SNA to obtain the node and edge features of a superpixel graph for

training SSVM has never been attempted. We have shown their importance in

the classification of gaps on the rack with SSVM. We consider this to be the

key contribution of our proposal. We believe that the release of datasets for the

gap detection problem is an important opportunity for the application-driven540

computer vision research community. We further plan to add more annotated

data. In future, we aim to formulate an end-to-end strategy for training the

learners (ILFE, SNA and SSVM) jointly, to extract node & edge features of

superpixel graphs and to classify the superpixels.
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Appendix A. Choice of Number of Superpixels (N)

An example shelf image I, segmented into four superpixels is shown in Fig.550

4(a). The pixel-level binary mask of I is Igt as shown in Fig. 4(c). In order to

train the SSVM, we label each superpixel by majority voting of white or black

pixels to create the superpixel-level binary mask B as explained in Section 3.2

and as shown in Fig. 4(d).
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Figure 9: Peak signal-to-noise ratio (PSNR) (in dB) values between Igt and B for different

numbers of superpixels N generated by SLIC superpixel segmentation algorithm

The choice of number of superpixels (N) should be such that the (pixel-555

wise) difference between the pixel-level binary mask i.e. ground truth I
(k)
gt and

superpixel-level binary mask B(k) is minimum for the training image I(k). That

is, Fig. 4(c) and Fig. 4(d) become almost identical. In order to ensure that,

we choose N in a way such that the peak signal-to-noise ratio (PSNR) [40] (in

db) between I
(k)
gt and B(k) is maximum. Thus, we compute the mean PSNR560

for the images in the training set of the WM dataset varying N from 200 to
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1400 in intervals of 200. The mean PSNR for various N is plotted in Fig. 9. It

can be seen that till about N = 1000, the PSNR increases. This means that

more the granularity in segmentation, more (pixel-wise) similar are I
(k)
gt and B(k).

However, for N > 1000, PSNR starts to fall due to the inconsistent superpixel565

boundaries determined by the SLIC algorithm. Therefore, we set N = 1000 in

our implementation.
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