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Abstract

Automatic detection of empty spaces (gaps) between the displayed products as
seen in the images of shelves of a supermarket is an interesting image segmentation
problem. This paper presents the first known attempt to solve this commercially
relevant challenge. The shelf image is first over-segmented into a number of
superpixels to construct a graph of superpixels (SG). Subsequently, a graph
convolutional network and a Siamese network are built to process the SG.
Finally, a structural support vector machine based inference model is formulated
based on SG for segmenting the gap and non-gap regions. In order to validate
our method, we manually annotate the images of shelves of three benchmark
datasets of retail products. We have achieved ~70 to ~85% segmentation
accuracy (in terms of mean intersection-over-union) on the annotated datasets.
A part of the annotated data is released at https://github.com/gapDetection/
gapDetectionDatasets.
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1. Introduction

In supermarkets, as a part of the marketing strategy, the products are placed
on the shelves based on a predefined plan, commonly known as planogram [1].
In regular intervals, store associates check the compliance of the planogram.
In recent years, various attempts have been made for designing a vision-based
system to automatically check the planogram compliance [2 [3]. Classification
[4, B, [6] and accurate localization [7) [8 @] of retail products on the shelf are the
associated sub-problems in order to check the planogram compliance. However,
these state-of-the-art solutions ignore a key direction of the problem, which is
the automatic identification of the gaps between the products (or empty shelves
in the stores). This automatic identification of the gaps on the shelves is the
focus of this paper.

As a part of the checking of planogram compliance, the store associate needs
to manually identify the gap. This is time-consuming and error-prone. Delays
in identifying out-of-stock (OOS) conditions lead to a significant loss in revenue,
especially when the product is present in the inventory [I0]. There exists several
automated OOS detection systems like radio-frequency identification (RFID)
tags [I1] and weighted sensor shelves [I0]. They are expensive and difficult to
reconfigure for fast-changing retail product lines. On the other hand, there exists
only one known published work [12] that uses computer vision to detect gaps
automatically. The use of a camera, either hand-held by a store associate or
fixed on the opposite facing rack, seems to be a feasible economic option for
continuous monitoring of the gap regions and planogram compliance. In this
paper, we introduce a solution for detecting gaps in the images of shelves. Fig.
illustrates gap regions in an example shelf image.

We define a gap as an empty space (or a region) created on the shelf after
a product is picked up from the shelf. For example, the region covered by the
green boundary in Fig. [I| indicates that a (or few) product(s) is (are) missing.
Note that different gap regions may exist in the same image having different

textures, colors or features. For example, in Fig. [I] the regions highlighted by
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Figure 1: In an example shelf image, the regions covered with the green polygon represent the

gap regions. Red and yellow dotted circles highlight different textures for the gaps.

the red and yellow dotted circles on the shelf present different textures for the
gap. The absence of unique inherent characteristics of the gap regions amplifies
the challenges in solving the gap detection problem.

The sales and promotion programme of products is required to comply
with a given planogram (defined in the first line of this section). The gaps
created on the racks due to sales or due to interference by the customer disrupts
planogram compliance. The proposed algorithm for gap detection helps in
assessing planogram compliance.

Further, the detection of gap in a shelf quickly estimates the extent of refilling
required in that gap. Store associates can continuously monitor the status of a
rack and disruption of the display plan based on the output of the gap detection
framework. Temporal study of gap detection may help in studying the consumer
behaviour which in turn helps to design a better planogram.

To identify the gaps, one method could be to take the difference of the
fully-stacked rack image from the subsequent images of the partially empty
rack. This is similar to the background subtraction approach which needs a
fully-stacked reference image. On the contrary, our proposed method does not
need any reference image.

A straightforward image subtraction does not work in a real store environment.

First, the cameras taking pictures of racks are not in fixed locations. Therefore,
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the sequence of images of any particular rack varies as the pictures are taken
by different store associates by different handheld cameras and that too, from
different vantage points. Second, the store level illumination and shadow due to
occlusion, change the image content and thus making the difference image an
unfit case for estimating gap.

Finally, for a wide range of fast-changing product lines, products with minor
variations in appearance, dynamic nature of disruption of display due to customer
behaviour, all put together, makes processing of background-subtracted results
complicated and threshold driven. Such thresholds and rules for image pruning
are difficult to set and need to be customized for racks, products and at store
level. Compared to this, the proposed approach is far more generalized and
better-motivated considering planogram compliance.

We have posed our task of identifying gaps in the shelf images as a seg-
mentation problem and the objective is to estimate the pixel-level binary mask
identifying the empty regions as white and the remaining portion as black. The
flow chart of our proposal is shown in Fig. Our scheme first over-segments
the entire image into superpixel regions and construct a graph of superpixels
(say, G), where the edges of G capture the association between two superpixels.
Subsequently, the features of each superpixel (or each node of G) are extracted
by feeding this G as input to a graph convolutional network (GCN) [13] that
imbibes the neighbourhood information of superpixels. Further, the represen-
tation of the association/similarity between superpixels i.e. the weights of the
edges in G (referred to as edge features) are encoded with a Siamese network

Node Feature Extraction
using Graph

Convolutional Network I

( 0 ) Construction of . .
Superpixel . r | Formulation
-> Segmentation —-> Sugerplxel of SSVM ->
L Y, raph
Edge Feature Extraction
using Siamese Network _f

Architecture

Input Output

Figure 2: Process flow of our proposed scheme for the identification of gaps in the shelves
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[I4]. This way, our proposal establishes the relationship between the adjacent
superpixels being part of a gap or non-gap region in a shelf image. Using these
sets of features for the nodes and edges in GG, we formulate a structural support
vector machine (SSVM) [I5] to generate a binary mask that classifies the gap
and non-gap regions.

From the above discussion, it is evident that GCN finds representation
of superpixels observing their neighbours whereas Siamese network finds the
representation of similarity of superpixels. Therefore, GCN and Siamese Network
need a classifier for the identification of gaps. SSVM serves the purpose.

The proposed scheme is compared with the recent state-of-the-art deep
learning based image segmentation approaches U-Net [16], DeepLabV3 [17],
LinkNet [I8], FPN [19], PSPNet [20], DeepLabV3+ [2I], PAN [22], MA-Net [23]
for the identification of gap regions on the shelves. Contributions of our proposed
scheme compared to all these state-of-the-art approaches are three-folds:

1) To the best of our knowledge, we are the first to release the benchmark
datasets in GitHub [24] for the identification of gaps in the shelves. The
identified and annotated gaps are marked in the publicly available datasets
Grocery Products [25], WebMarket [26], and GroZi [27].

2) To the best of our knowledge, we are the first to introduce this problem as an
image segmentation task to machine vision community and proposing a novel
solution that outperforms deep learning based state-of-the-art segmentation
approaches in almost all the evaluations.

3) We utilize a graph convolutional neural network and a Siamese network in
the formulation of structural support vector machine for the detection of
gaps in the shelves.

The rest of the paper is organized as follows. The benchmarking procedure
of the shelf images from publicly available datasets are described in Section
Section [3| explains our proposed method. The experiments are carried out in

Section [ Finally, we conclude the paper in Section [5}
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2. Benchmark Datasets for the Identification of Gaps

For designing and validating a model for automatic identification of gaps,
we require ground truth for each shelf image specifying the gap and non-gap
regions. In order to generate ground truth, we manually annotate the images of
shelves by labelling the gap and non-gap regions with the polygons.

We follow a certain convention and annotate the images with two different
labels: gap and non-gap polygons drawn on the image. The gap region is defined
by (a) the locations of shelves where the background of shelves are visible and
(b) the dark regions where the objects are invisible. In the end, we obtain
a pixel-level binary mask (which we refer to as ground truth) for each shelf
image depicting 1 as the presence of a gap and 0 as the presence of a non-gap
(product/non-usable parts of the shelf). A pixel-level binary mask corresponding
to an example shelf image of Fig. is shown in Fig. The regions other
than gaps on the shelf image are referred to as non-gap in this paper.

The images of shelves for manual annotation are from the publicly available
datasets Grocery Products [25], WebMarket [26], and GroZi [27]. We have used
the graphical annotation tool labelme [28]. Grocery Products dataset includes
680 images of shelves captured from different supermarkets. We select 305 images
where the gap regions are present. Similarly, we annotate 98 and 50 images of
shelves from the WebMarket and GroZi datasets respectively. A part of these

annotations is made public as benchmark datasets for further studies on the

(a) (b)

Figure 3: (a): An example shelf image, (b): The ground truth i.e. pixel-level binary mask for

the shelf image (a) where white and black regions denote gap and non-gap respectively.
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identification of gaps. They are available at GitHub [24]. Next, we present the
proposed methodology.

3. Methodology

We approach the problem under discussion as a binary segmentation problem
in which pixels are classified into either of the two classes, 1 (gap) and 0 (non-
gap). The overall block diagram of our proposed scheme is illustrated in Fig.

The steps of our scheme are explained in the following subsections.

8.1. Superpizel Segmentation

In order to identify the gap regions on the shelves, the proposed scheme aims
to label each pixel of the images of shelves. In our case, the number of pixels in
the image of a shelf is in the order of 10°. The procedure for extracting features
from each of these many pixels and labelling them is computationally expensive.
In order to reduce the complexity, all the images are initially over-segmented
into a few regions consisting of a group of pixels, called superpixels. Assume we
obtain N number of superpixels in the images of shelves and each superpixel is
denoted as x;, Vi={1,2,...,N}. In our implementation, we utilize the simple
linear iterative clustering (SLIC) algorithm [29] for generating superpixels for a

shelf image. Next, we construct the graph of superpixels for each image.

3.2. Construction of the Graph of Superpizels

For every shelf image, we construct a graph with the superpixels as the nodes.
The edges are connected for the pairs of adjacent superpixels. It is evident that
the graph will be a connected graph as each superpixel is adjacent to at least
one other superpixel. We refer to this graph of superpixels as superpizel graph
(SG) in the rest of the paper.

Assume, we have a shelf image I which has four superpixels x1, x2, x3, and
x4 as illustrated in Fig. Further assume, G be the SG for the image
I. Hence, the set of nodes of G is V = {1, 29, 23,24} and the set of edges is

E = {e1 = (w1,22),e2 = (v1,23),e3 = (T2,23),e4 = (T2,74), €5 = (¥3,74)} as
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(a) (b) (c) (d) (e)

Figure 4: (a): A segmented image I. (b): Superpixel graph of I. (c): Ground truth pixels
overlaid on I (referred as pixel-level binary mask). (d): Superpixel-level binary mask for I
labelling each superpixel, where the white and black regions indicate gap and non-gap regions,
respectively. The majority of pixels in superpixel z1 is white as shown in (c). Therefore, the
label of superpixel z; is given as white as shown in (d). The labels of superpixels z2, z3 and

z4 are determined in a similar manner. (e): The labels for the nodes of (b).

shown in Fig. In this work, this SG is an equivalent representation of the
superpixels in I. Thus, in the rest of the paper, the node z; of G essentially
refers to the superpixel x; of I.

In G, each node z; is characterized by the unary feature embedding u(z;), and
each edge (z;,z;) is characterized by the pairwise feature embedding p(z;, z;)
for the adjacent superpixels x; and x;. Thus, the unary feature embedding refers
to the feature vector of a superpixel i.e. a node of GG, while pairwise feature
embedding represents a feature vector for two adjacent superpixels i.e. an edge
of G. In the rest of the paper, node and unary features, and edge and pairwise
features are interchangeably used. Given these, for the example shown in Fig.
4(a)l, we define a structured data X which consists of:

(a) Adjacency list A of G,
(b) Pairwise feature embedding for the edges ey, ea, e3, €4, €5 and,
(¢) Unary feature embedding for the nodes x1, s, 3, x4.

This X is essentially the input to Structural Support Vector Machine (SSVM)
for the identification of gap/non-gap regions in I. But before discussing SSVM,
we define the unary and pairwise feature embedding for nodes and edges using
GCN and a Siamese network respectively.

In our proposal, GCN or Siamese network learn the labels of the nodes (gap



175

180

185

190

195

200

being labelled as 1, and non-gap as 0) of G (as described at the beginning
of Section |3]) for all the shelf images in the train set. We extract the feature
embedding for nodes and edges of G from learnt GCN and Siamese network
respectively. However, in order to learn GCN or Siamese network, an SG and
the labels of superpixels are required. We have already explained the procedure
of constructing SG. Next, the procedure for assigning labels to the superpixels is

described.

Labelling of Superpixels. The training set includes ground truth images i.e.
pixel-level binary masks where each pixel is labelled as either gap or non-gap.
Given this, we now demonstrate the procedure of labelling superpixels using
the example given in Fig. For the shelf image I in Fig. Fig. is
the ground truth image (or the pixel-level binary mask I,) with each pixel
marked either as white (i.e. label 1) or black (i.e. label 0) representing gap or
non-gap region respectively. Fig. is the superpixel graph of I. Fig.
shows that superpixel x1 has more white pixels than black pixels. Therefore,
the label of superpixel x; is assigned as white as shown in Fig. Similarly,
based on majority voting of white or black pixels, superpixels x5, x3 and x4 are
labelled as black, white and black, respectively as shown in Fig. Fig.
shows the labels of the nodes of the superpixel graph in Fig. This way
the superpixel-level binary mask B of the shelf image I is determined. Next, we

extract features for the nodes of G.

3.3. Feature Representation of the Nodes in SG

The unary feature embedding in the structured data X of G is essentially
the feature representation for the nodes (i.e. superpixels) of G. Since we look for
a novel feature representation for each superpixel of I considering not only the
superpixel itself but also its neighbouring superpixels, we design a GCN [I3] that
principally accumulates the local neighbourhood information of each superpixel
utilizing graph convolution. So naturally, the SG G is input to the GCN.

The block diagram of the proposed GCN model is presented in Fig. || The

architecture of the proposed three-layered GCN is detailed in our implementation
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details in Section [4, However, a GCN usually takes the adjacency matrix of
the graph G and an initial feature vector for each node of G. In this work, the
initial feature vectors for the nodes or superpixels are determined using a CNN
based feature extractor (referred to as initial linear feature extractor or ILFE)
designed on top of the pre-trained VGG-19 [30] (see Fig. [5). The architectural
details of this ILFE are also provided in the implementation details. Assume,
ILFE returns d;-dimensional feature vector fg) for each i*" node in G. In our
implementation, d; = 128.

Then G along with the initial linear feature vectors for all its nodes f;j),i =

1,2,..., N, are sent to GCN and layer-wise propagated in GCN [I3] as follows:
D) — U(f)*%jﬁ*%]{(l)w(l)) (1)

where A = A+ Iy is the adjacency matrix of G considering self loops, A is the
adjacency matrix of G, and I is the identity matrix of size N. Here ﬁu‘ = ng
J

and l~)ij =0, Vi # j. H® is the input to the I*" layer of GCN and hence H® is
essentially the input to GCN i.e. H(© is a vector of length N, where the elements
are g),i =1,2,---,N. WO is the trainable weight matrix for layer [ and o(-)

is the activation function. Finally, GCN returns a do-dimensional feature vector

Segmented Superpixel ) Output
Shelf Image graph, G @ M) Ty
G o
0:+0: 0 5
3 > S > fg) g
‘_é‘ > -+ e e = %
Graph 3)) ©
Convolutional fe %
@ Network @) B
), o) Z

CNN-based
Feature Extractor J

Figure 5: Flow chart of the proposed node feature extraction scheme. For the segmented
image in Fig. EL superpixels x1, 2, r3, and x4 are sent to CNN-based feature extractor for

determining respective initial linear feature vectors fél), féz), ég), and f£4). These initial

feature vectors and the SG are passed through the graph convolutional network for obtaining
(1) £(2) (3
G

the features fr,”, f&, , and fgL) of the nodes z1, z2, 3, and x4 respectively.

10
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fg) for each i*" node in G aggregating the local neighborhood information of
a superpixel. The aggregation of local information is ensured by the inclusion
of A in . g) is essentially the output of penultimate layer of GCN. In our
implementation, do = 16. In other words, the unary feature embedding for each
it" node x; of G can be defined as u(z;) = fg). Next we present our method for

finding out features of edges of G.

8.4. Feature Representation of the Edges in SG

As mentioned earlier, there exists an edge between two nodes x; and x; in
G, if the superpixels x; and z; in I are adjacent. In this work, we aim to define
a feature representation for the edge (z;,z;) that encodes the similarity (or
dissimilarity) between the two neighboring superpixels z; and «; in I. Similar
superpixels mean either both are gap regions or both are non-gap regions.
In other words, we look for a unique representation for the edges between
superpixels that are similarly (or dis-similarly) labelled. Therefore, we can pose
this as a two-class (similar and dissimilar) classification problem that takes two
superpixels (or sub-images) as input. In order to solve this, we build a Siamese
network architecture (SNA) [I4] from which the features for the edges in G are
extracted. The features for the nodes extracted from GCN, although consider
the neighbourhood superpixel information, do not take the class similarity of the
superpixels into account. On the other hand, SMA learns a similarity measure
that tends to bring feature vectors of similar class labels nearer than those of
dissimilar class labels in the feature space.

Each pair of adjacent superpixels (z;,2;) in I is the input to our SNA for
finding out the feature for the edge (z;,z;) in G. The schematic of our SNA is
provided in Fig. [f] and its architecture is detailed in our implementation details
in Section 4] For any pair of adjacent superpixels (x;,x;), the superpixel x; is
first fed to the first convolutional block, conv-block-1 while z; is sent to the
second convolutional block, conv-block-2. A convolutional block essentially refers
to a stack of a number of convolutional layers. According to the principle of

Siamese network, the learnable weights/parameters of the blocks conv-block-1

11
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Figure 6: Schematic of the proposed Siamese network architecture for extraction of edge
feature. For the example segmented image in Fig. EL we illustrate the extraction of pairwise

feature p(z2,z4) for the edge (x2,z4) of SG.

and conv-block-2 are shared (see Fig. @ The shared weights result in similar
transformation of both the inputs to their respective convolutional maps. The
outputs (i.e. convolutional (conv) maps) of both the blocks are then concatenated
and fitted to the third block conv-block-3 of our SNA. The output of conv-block-3
is finally passed through a fc-block comprising of three consecutive fully connected
(fc) layers. Last fc layer defines the classification score of similarity and dis-
similarity between two input superpixels z; and x;. Here, we practically look
for a feature representation for the edge between x; and x; which is essentially
determined by the output of penultimate fc layer of SNA. The SNA provides
ds-dimensional pairwise feature vector/embedding p(z;, z;) for each edge (z;, z;)
in G. In our implementation, d3 = 16. Next we present the SSVM for the

identification of gaps/non-gaps in the shelf images.

3.5. SSVM for the Identification of Gap Regions

SSVM [I7] is a classifier that predicts the labels for the nodes of G minimizing
the loss between the predicted and true labels. In our problem, we utilize SSVM
to learn the labels of the nodes (i.e. 0 or 1) of the G (as described in Section
for all the shelf images in the train-set. Once the SSVM is learnt, we obtain
the labels of the nodes which we assign to the corresponding superpixels of a
shelf image. In this way, the entire image is segmented into the gap and non-gap
regions (gap being labelled as 1, and non-gap as 0). Next, we formulate the

SSVM with the structured data X and the labels of superpixels (see Section [3.2).

12
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8.5.1. Formulation of SSVM

Assume, we have M number of shelf images I*), k = 1,2,..., M in the
train-set. Corresponding to each training image I*), we obtain the structured
data X*) and the true labels Y*) for the superpixels. Given these, the gap
identification problem can be posed as follows.

Each of the superpixels of any shelf image I can be interpreted as a discrete
random variable taking values from the set 2 = {O, 1}, where 1 signifies gap
and 0 denotes non-gap. Let us assume that Y = {y1,¥y2,...,yn} € Y = QF
be a feasible label vector for the N number of nodes in G. In that case, there
exists 2V possible label vectors (or feasible labeling) for the G with N number
of nodes i.e. |Y| = 2V. Thus, the set of 2V feasible label vectors must include
the true label (Boolean) vector (for the SG). Now the gap identification problem
boils down to finding out the true label vector from 2V possible label vectors for
the G. For example, the possible label vectors for the graph shown in Fig.
is Y = (y1,¥2,Ys,ys), where y;,i = 1,2,3,4 can be 0 or 1. Then the number of
possible label vectors for this graph is 2% out of which we aim to find out the
true label vector (1,0,1,0) as shown in Fig.

In order to obtain the true label vector Y*) for any input X(*), we define
a potential function E(X,Y’) which will be maximized when Y = Y *) for the
given X = X% ie,

YR = arg max E(X® y), (2)

and the potential function E(X,Y) is formulated as:
E(X,Y) = w' ¢(X,Y), (3)

where w is the weight vector and ¢ is the joint feature vector for an input X
and its any label vector Y. Our target is to learn this weight vector w with
the train-set such that the potential function E is maximized for the true label
vectors.

The potential function E(X,Y") can be defined as the sum of the potential

functions Ey(x;, y;) and Ep(z;, 25, ¥:, y;) contributed by the unary and pairwise

13
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features as:
N
arg;naxaxm:arggax(ZEum,ym ) Ep(xi,xj,yi,yn)- (4)
i=1 (ziz;)€EE

Again E, can be written as:

Eu(®i,y;) = W3¢u($i, Yi)s (5)

where ¢y, which is the joint feature vector (for associating features with labels)

of the node z; and its label y; for the unary features, is defined as:

du(Ti, yi) = (]I(yz = 0)u(z;), ly; = 1)“(%‘))» (6)

where I(-) is the indicator function that checks the condition and returns 1 if the
condition holds and 0 otherwise. Again the potential function Ey contributed by

pairwise features can be written as:
Ep(xiaxjayiayj) :Wgébp(fﬂmffj»yi;yj)a (7)

where ¢p, which is the joint feature vector of the nodes z;, z; and their labels

Yi, y; for pairwise features, is defined as:

¢p(l‘ial‘j7yi7yj) = (H/(yl = anj = 0)p(xl7xj)a
U'(y; = 1,y; = 0)p(xi, z;),

Iy = Ly; = Dp(wi, ;) ®)

where I'(-, ) is an indicator function that returns 1 if both the conditions (in
its arguments) are true and return 0 otherwise. As given in , ¢u, which is
a function of a node x; and its corresponding label y; in SG, returns a vector
of length 2d, (as u(w;) is a do-dimensional vector, see Section [3.3)). Similarly
from , we can see that ¢p is a function of a pair of adjacent nodes z;, ; and
their corresponding labels y;, y; in G returning a vector of length 4ds (as p(z;)
is ds-dimensional vector, see Section . Thus, the joint feature vector ¢ in

can be derived as:

N
S(XY) = (D dulwiy). D ol ey i),
i=1 (zi,z;)€E

14
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Given these, we aim to learn w in (3)) with the SSVM [I5]. However, before
we train the SSVM for determining w, we have to define the loss between the
true and predicted label vectors for any input X by the SSVM model. In order
to do that, we calculate the Hamming loss between true and predicted label

vectors as:

A(Y®y ZH " £ ), (9)

where Y and Y*) are (any) feasible and true label vectors of an input X (*)
respectively. In (3)), E(X,Y’) eventually is the function which maps each label
vector Y of the SG in X to a scalar value (or score). Hence, SSVM is learnt in
such a way such that (a) the true label vector has the highest score and (b) the
score is lower when the Hamming loss defined in @ is higher. Keeping all these

in mind, we define an SSVM with the formulation of one slack SVM [31] as:

M
1
min Allwl® + 32 3z, (10)
k=1

such that,

M

M
> (A ®,Y®) —wT(XD, ¥ ®) 4 wT(x 0, ¥0)) <3 e,
k=1 k=1

VYW y@ vy ey xyx..xy, (11)
where ¢ are the slack variables, A is a positive regularization constant, ) is the
set of all possible label vectors Y*) for X*) This ( is a convex quadratic
optimization problem with |J|™ number of constraints, where represents
all the constraints. Finally, we obtain the weight vector w which is learnt using
the structured input of the images of shelves from the train-set following the
approach in [31].

For any test shelf image I, we predict the gap/non-gap regions by creating
the structured data X as explained in Section [3.2 and using the trained SSVM

as:

Y = F(X) = argmaxw’ ¢(X,Y). (12)
Yey

15
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We solve using AD? algorithm [32]. Hence Y = F(X) is the predicted
label vector for the nodes of SG in X i.e. the labels of the superpixels in the shelf
image I. Thus Y produces the predicted binary mask B for any shelf image as
follows. Subsequently, the predicted label in B for each superpixel x; is assigned
to all the pixels contained within the superpixel z; and thus finally the predicted
binary mask is obtained with all pixels labelled either 0 (for non-gap) or 1 (for

gap). Next we present the experiments, results and analysis.

4. Experiments

We first discuss implementation details of our method followed by the training
protocol for various components of the proposed solution, the competing methods,
and the performance metrics using which the methods are evaluated. Finally,

we present our results and analysis.

Implementation Details. First of all, any shelf image is resized into a fixed-
size 700 x 460 image. Next SLIC segmentation method [29] is run for getting
N = 1000 number of superpixels. The experimental detail for choosing N is
provided in The compactness [29] of SLIC method is experimentally
set to 50 in this work.

The superpixels being of irregular shape cannot be sent to a CNN based
model (ILFE and Siamese network architecture in our scheme) directly as input.
So in our implementation, a patch of shape 32 x 32 is cropped out for each
superpixel centred at the centroid of the superpixel. First, all these patches of
superpixels are fed to ILFE for extracting linear feature vectors to fit into GCN.

The architecture of ILFE is composed of a convolutional (conv) block (com-
prising of a number conv and pooling layers) and two fc layers, fc-1 and fc-2
on top of convolutional block. The architecture of the conv block is identical
to the entire conv block of VGG-19 [30]. fc-1 and fc-2 layers have 128 and 2
nodes respectively. fc-2 classifies each superpixel patch to either gap or non-gap.
Further, we perform ReLU and dropout (with dropout probability 0.5) operations

just after fc-1 and before fc-2. However, the learnable weights of the conv block
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of ILFE is initialized with the pre-trained weights of pytorch [33] implementation
of VGG-19 while the weights of fc-1 and fc-2 layers are randomly initialized with
the values in [—1, 1] drawn following normal distribution. In our implementation,
the input to fc-2 defines the 128-dimensional feature vectors for each of the
superpixels.

The adjacency matrix of the SG and the 128-dimensional feature vectors
of each superpixel are the input to our GCN. The proposed GCN is composed
of 3 graph convolutional (gc) layers, namely gc-1, ge-2 and ge-3 as shown in
Fig. ol gc-1, ge-2 and ge-3 layers include 64, 16 and 2 nodes respectively. After
each of the ge-1 and ge-2 layers, we execute ReLU and dropout (with dropout
probability 0.5) operations. The weights of all these gc layers are randomly
initialized with the values in [—1,1] drawn following a normal distribution. gc-3
layer eventually classifies each node of SG i.e. each superpixel to gap or non-gap
aggregating the features of adjacent superpixels in gc layers. In this work, the
output from ge-2 is the (unary) feature vector for any node of SG.

The feature vector for two adjacent pixels or an edge of the SG is determined
by sending their patches to our SNA. As shown in Fig. [6] SNA consists of 3 conv
blocks: conv-block-1, conv-block-2, conv-block-3 and 1 fc block: fe-block. Since,
conv-block-1 and conv-block-2 share their weights, they are essentially treated
as one block whose architecture is identical to the conv block of VGG-16. The
outputs from conv-block-1 (which takes one superpixel as input) and conv-block-2
(which receives another superpixel as its input) are concatenated and fed to
conv-block-3. The structure of conv-block-3 is identical to the chunk of 10-th
to 16-th conv layers (including intermediate maxpool layer) of VGG-19. The
weights of these blocks are initialized with weights of respective blocks of the
VGG pre-trained models. The fe-block (consisting of 3 fc layers having 64, 16
and 2 nodes respectively) takes the output of conv-block-3 and classifies the
adjacent superpixels to be identically labeled or not. fc-block also performs
ReLU and dropout (with dropout probability 0.5) operations after each of first
two fc layers. Weights of all these fc layers are randomly initialized with the

values in [—1,1] drawn following normal distribution. In our model, the output
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from penultimate layer of fc-block is eventually the (pairwise) feature vector for
the edge between the adjacent superpixels in SG. The SG along with these unary
and pairwise feature vectors are sent to SSVM for the identification of gaps and
non-gaps in shelf images.

All above discussed deep learning based models ILFE, GCN and SNA are
implemented with pytorch library [33] while SSVM is designed with pystruct
library [34] of python. Next, we explain the training strategies of the above-

discussed models.

Training of Various Networks. During training of the deep learning based
models ILFE, GCN, and SNA of our proposed approach, approximately 80%
images of the train-set are used for training while the rest 20% images of the
train-set are utilized for validation of the network. All the networks are trained
by applying the softmax function on output (referred to as softmax output) and
then calculating the cross-entropy loss [35] between the softmax output and one
hot label vector. Adam optimizer at learning rate of 0.0001, weight decay of 5e-4,
and mini-batch (of shelf images) of 1 used to learn the networks. ILFE and SNA
are optimized up to 150 epochs while GCN is trained for at most 400 epochs.
On the other hand, for the training of SSVM, the chosen tunable parameters are
a maximum iteration of 100, a regularization parameter of 0.1 and a convergence

tolerance of 0.1. Next, we present the competing methods.

Competing Methods. We compare our proposal with the competing methods:
U-Net [16], DeepLabV3 [17], LinkNet [I8], FPN [19], PSPNet [20], DeepLabV3+
[21], PAN [22], MA-Net [23]. We have run pytorch implementation of all these
methods with default setup available in GitHub [36]. All these networks are

trained for 100 epochs. The performance metric is defined next.

Performance Measure. The methods are evaluated using the metric, intersection-
over-union (IoU) [37,[38] used in evaluating the performances of the methods for
semantic segmentation. The ToU essentially determines the similarity between

the predicted binary mask B and pixel-level binary mask I, (i.e. the ground
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truth) of an image of a shelf. Subsequently, the gap identification performance
for the M;s; number of test images in a dataset is defined by the mean IoU

(mIoU) as :

mIOU:L M . (13)
Mg \ |I,: U B|

Next, we present the results and analysis.

4.1. Results and Analysis

The experiments are carried out on three publicly available datasets Grocery
Products (GrocProd) [25], WebMarket (WebMkt) [26], and GroZi [27] from
which we select 305, 98, and 50 number of shelf images and create ground truth
specifying gap/non-gap regions as explained in Section [2| For each dataset, we
randomly choose approximately 60% of these shelf images as the train-set and
the rest 40% as the test-set. The train-set includes 184, 59, and 30 shelf images
in GrocProd, WebMkt, and GroZi respectively while the test-set contains 121, 39,
and 20 images in the respective datasets. These train-set and test-set containing
images and their ground truths (or pixel-level binary masks) are made public in

GitHub [24].

Quantitative Results: Table [I]| presents the gap identification accuracy in
terms of mIoU (%) of the proposed approach including the competing ones. The
proposed scheme outperforms deep learning based state-of-the-art methods in
all the evaluations by at least ~1%. The maximum performance improvement
from the nearest competitor is ~3% (see rightmost column for GroZi in Table
which is indeed remarkable. In fact, our method achieves higher accuracy for
the GroZi dataset. Our method performs equally well for the datasets having a
larger or a smaller number of training images (for Grocery Products there are
184 training images while for GroZi there are only 30 training images). On the
contrary, the performance of solely deep learning based methods deteriorates
with the decreasing size of the train-set, which is why the margin of mloU
for our method w.r.t. others becomes higher when the train-set is smaller as

witnessed for GroZi. However, the results for all the methods are inferior on the
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Table 1: Gap identification results of various methods on benchmark datasets. DLV3 and
DLV3+ represents DeepLabV3 and DeepLabV3+ respectively.

mloU (%) on Benchmark Datasets

Methods
GrocProd [25] WebMkt [26] GroZi [27]

U-Net [16] 69.36 66.83 81.76
DLV3 [17] 67.82 64.89 78.47
LinkNet [I8] 68.73 66.28 79.25
FPN [19] 67.36 66.19 77.60
PSPNet [20] 66.19 64.55 72.30
DLV3+ [21] 68.98 64.75 75.70
PAN [22] 68.95 64.93 77.31
MA-Net [23] 69.64 63.60 81.66
Proposed 70.62 69.20 84.58

GrocProd and WebMkt datasets compared to GroZi due to the large variation
in the texture of the gaps and in the packaging of products.

Statistical Significance Test: We perform an in-depth comparison of the
proposed approach with two of its closest competitors (identified from Table
U-Net [16] and MA-Net [23]. We have performed 10-fold cross-validation
on all three datasets. The mean (p) and standard deviation (o) of the mIoU
accuracy obtained for 10 folds of each dataset are tabulated in Table [2 In order
to highlight the efficacy of the proposed approach against its closest competitors,
we have carried out a Wilcoxon Rank-Sum (WRS) test [39]. Table [2] provides the
outcome of the WRS test which we express in the form of p-values of rejecting
the null hypothesis.

The null hypothesis for each test is Hy: the performances of the control
method (i.e. the proposed one) and the competing method are identical over the
10-fold cross-validation, versus Hi: the performances of the control method and

the competitor are different over the 10-fold cross-validation. In our experiment,
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Table 2: Performance comparison: the results of the 10-fold cross-validation and corresponding
Wilcoxon Rank-Sum (WRS) test. For each dataset, u 4 o of the 10-fold cross-validation results
(mIoU in %) are shown, where 1 and o denote the mean and standard deviation respectively.
Subsequently, the p-values obtained from the WRS and the corresponding selected hypothesis

are presented for each of the competitors on each of the datasets.

Proposed

U-Net [I6] MA-Net [23]
(Control Method)

nto 71.64+3.77 T71.21+4.73 72.36 +4.38
GrocProd  p-values 0.064 0.045 -
Hypothesis Ho Ha -
uto 64.34 £ 8.66 63.96 +8.73 65.76 £ 7.97
WebMkt  p-values 0.045 0.021 -
Hypothesis Hi Hq _
nto 83.92 £4.64 83.62+4.47 85.13 £5.18
GroZi p-values 0.038 0.025 -
Hypothesis Hi Hi -

NOTES:

Ho: The performances of the control method (i.e. the proposed one) and the
competing method are statistically comparable over the 10-fold cross-validation.

Hi: The performances of the control method and the competitor are significantly
different over the 10-fold cross-validation.

Threshold for p: 0.05

we consider the 5% significance level, i.e. Hy is rejected if p < 0.05. On any
dataset, for any competitor, assume the hypothesis H; is selected. Then our
algorithm performs significantly better than its competitor, if the mean (u)
performance of the proposed method is greater than that of the competitor. Our
solution performs significantly worse, if the mean performance of our method
is lower than the mean performance of the competitor. In case the hypothesis
Ho is selected, both the methods are statistically comparable. From Table 2,

we can clearly conclude that the proposed method is significantly better than
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its competitors except in one case (see U-Net on GrocProd dataset), where our

method and the competitor are significantly comparable.

Qualitative Results: A few example qualitative results of our method are
provided in Fig[7} The efficiency of our method is established in the six example
results shown in the top six rows of Fig. [7] where the predicted binary masks
are almost similar to the true pixel-level binary masks. The bottom two rows of
Fig. [7]illustrate two notable failure cases. Our analysis finds that the non-gap is
misidentified as gap in both the images due to darkness in the packaging of the

product. Next, we perform the ablation study.

4.1.1. Ablation Study

The ablation study is carried out on all benchmark datasets for investigating
the contributions of different components of the proposed scheme. Our proposal
has three primary components such as: node feature extractor (NFE) i.e. ILFE
+ GCN, edge feature extractor (EFE) i.e. GCN, and SSVM i.e. our classifier.
In the proposed scheme, NFE is the basic component without which SSVM can
not be executed. Therefore, next, we provide the efficacy of the remaining two
components EFE and SSVM of our proposal to identify the gaps or non-gaps in
the shelf images.

Contribution of EFE: SSVM can be modelled using the SG and its node
features NFE, without explicitly extracting edge features of SG. In that case,

Table 3: Performances of our method removing or adding different components of it on the

test-set of our benchmark datasets

mlIoU (%)

Components in our scheme
GrocProd [25] WebMkt [26] GroZi [27]

(i) NFE 65.98 60.06 79.11
(ii) NFE + SSVM 66.75 63.76 79.89
(iii) Proposal: NFE + EFE + SSVM 70.62 69.20 84.58
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Figure 7: A few qualitative results from the test-set of various datasets. The top six rows show
the efficacy of the proposed scheme while the last two rows present the failure cases of our

solution when the products with darker packaging appear like a gap.
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SSVM considers the adjacency value (1 or 0) in the adjacency matrix of SG as
an edge feature. This setup, which can be denoted as NFE + SSVM, examines
the necessity of EFE i.e. SNA in our proposal. If we remove the EFE module
from our proposal, the performance drops at least ~5% (compare rows (ii) and
(iil) of Table[3]) that clearly shows the importance of EFE. This happens because
the Siamese network considers each pair of adjacent superpixels and efficiently

captures the discriminatory characteristics between them as the edge feature.

Contribution of SSVM: We can use only NFE for obtaining the gap identifi-
cation results. The results of this model essentially illustrate the contribution
of SSVM. If we look at the performances of our proposal (row (iii)) and NFE
(row (i)) in Table 3] the difference is at least ~5% and at most ~10%. Thus the
necessity of SSVM can be clearly noticed.

Therefore, in Table (3] the three possible cases are studied to perform super-
pixel classification for identifying the gaps. NFE can do the task alone; NFE
and SSVM together can also perform the task; finally, the proposed scheme i.e.
NFE, EFE, and SSVM put together, is capable of completing the task. We can
see that the improvement of NFE + SSVM over NFE is marginal. When we
add EFE with the NFE 4+ SSVM, we can see a significant performance jump.
But, in the proposed solution, EFE without SSVM cannot exist. EFE is utilized
to extract the edge weights to be used in the SSVM to classify the superpixels.
And we have witnessed the effectiveness of EFE (our novel contribution in this
work) in Table |3| Therefore, we can see that EFE embedded in SSVM provides
improved performance.

However, our ablation study suggests that all three components of our
proposal are significant in accurately identifying gaps and non-gaps in shelf
images. To be specific, this study infers that EFE in SSVM contributes most
in achieving higher gap identification performance with respect to competing
approaches. Next we analyze the inference time (i.e. test time) of the proposed

method.
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Figure 8: The pie-chart representing the distribution of the execution time consumed by the

different building blocks of the proposed approach for identifying the gaps in a shelf image

4.1.2. Notes on Inference Time

The proposed algorithm is implemented in python and tested in a computing
system with the following specifications: 96GB RAM, Intel Core i9-9820X CPU
3.30GHzx20 and 24GB TITAN RTX GPU. The modules of the proposed ap-
proach involved during inference are: (a) Superpixel Segmentation (Section ,
(b) Superpixel Graph Construction (Section [3.2), (c) Node Feature Extraction
(Section B.3), (d) Edge Feature Extraction (Section [3.4) and (e) SSVM Inference
(Section [3.5)). For identifying the gaps in a (test) shelf image, the time consumed
by each of these modules of our scheme is presented using a pie-chart in Fig.

The total time taken by the un-optimized code per rack of the proposed
approach is ~0.93 seconds. Among all the modules, as expected, Node Feature
Extraction consumes higher time due to the Graph Convolution process explained
in Section [3.3] Further, the CPU implementations of graph manipulation
(Superpixel Segmentation and Superpixel Graph Construction) and the SSVM
inference process have increased the overall execution time. However, the (deep
learning based) competing methods take ~0.45 seconds for identifying the gaps
in a (test) shelf image. All the competing methods are end-to-end deep learning
based methods, which are entirely implemented in GPU. On the contrary, our

current implementation of the proposed approach involves CPU along with GPU
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implementation. This essentially increases the test time. Our analysis finds that
the test time of our scheme should be close to that of the competitors if we
implement graph manipulation and SSVM inference in the GPU. However, with
this fraction of second increase of test time w.r.t. the competing approaches, the
proposed scheme yields significantly better performances in almost all the cases.

Next, we discuss the importance of our method in context of retail stores.

4.1.3. Suitability of the proposal for retail store environment

The deep learning based approaches usually require enormous training data.
Limited training images result in over-fitting of the model during training and
hence poor generalized performance. Due to the availability of limited training
data for the application under consideration, we have used the structured
support vector machine that learns a much lesser number of parameters (2 x
number of node features + 4 x number of edge features) compared to any deep
learning based methods.

The deep learning models, that we have utilized in this work, are GCN to
extract the features of the superpixels and a Siamese network to extract the
features of a pair of superpixels. In order to train these networks, a minimal set
of labelled data (i.e. annotated shelf images) is good enough.

Assume there are 30 shelf images in the training set, each of which has 1000
superpixels as decided through experiments. In that case, the training data,
which is used for training the node feature extractor (GCN), contain 30 x 1000
samples. For training the edge feature extractor (Siamese network), we have
30 x number of edges in each SG (obviously more than 1000) training samples.

Such a training scheme is large enough to train the proposed GCN or Siamese
network. On the contrary, all other deep learning based segmentation methods
considered in our comparative study (see Table , require to train their millions
of parameters. As a result, the proposed scheme outperforms all these methods
as evident in Table [I Hence, in the context of a retail store with a limited
number of training images, given that the product display plan in supermarkets

changes quickly, the proposed scheme is expected to be a better choice for an

26



530

535

540

545

550

application like identification of gaps. Next, we conclude the paper.

5. Conclusions

The method presented in this paper uses graph convolutional network (GCN)
for feature extraction of the superpixels independently while Siamese network
architecture (SNA) captures the similarity of the neighbouring superpixels in
a feature embedding framework. Finally, the features extracted from GCN
and SNA are fed to SSVM for the classification of the superpixels. Utilizing
GCN and SNA to obtain the node and edge features of a superpixel graph for
training SSVM has never been attempted. We have shown their importance in
the classification of gaps on the rack with SSVM. We consider this to be the
key contribution of our proposal. We believe that the release of datasets for the
gap detection problem is an important opportunity for the application-driven
computer vision research community. We further plan to add more annotated
data. In future, we aim to formulate an end-to-end strategy for training the
learners (ILFE, SNA and SSVM) jointly, to extract node & edge features of

superpixel graphs and to classify the superpixels.
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Appendix A. Choice of Number of Superpixels (V)

An example shelf image I, segmented into four superpixels is shown in Fig.
The pixel-level binary mask of I is I, as shown in Fig. In order to
train the SSVM, we label each superpixel by majority voting of white or black

pixels to create the superpixel-level binary mask B as explained in Section [3.2]

and as shown in Fig.
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Figure 9: Peak signal-to-noise ratio (PSNR) (in dB) values between I4; and B for different

numbers of superpixels N generated by SLIC superpixel segmentation algorithm

The choice of number of superpixels (N) should be such that the (pixel-
wise) difference between the pixel-level binary mask i.e. ground truth I élt() and
superpixel-level binary mask B®) is minimum for the training image 1. That
is, Fig. and Fig. become almost identical. In order to ensure that,
we choose N in a way such that the peak signal-to-noise ratio (PSNR) [40] (in
db) between I ;1;) and B® is maximum. Thus, we compute the mean PSNR
for the images in the training set of the WM dataset varying N from 200 to
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1400 in intervals of 200. The mean PSNR for various N is plotted in Fig. [0} It
can be seen that till about N = 1000, the PSNR increases. This means that

more the granularity in segmentation, more (pixel-wise) similar are I, g(lff) and B®,

However, for N > 1000, PSNR starts to fall due to the inconsistent superpixel

boundaries determined by the SLIC algorithm. Therefore, we set N = 1000 in

our implementation.
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