In [1]:
%matplotlib inline

Transfer Learning tutorial

Author: Sasank Chilamkurthy <https://chsasank.github.io>_

In this tutorial, you will learn how to train your network using transfer learning. You can read more about the transfer learning at cs231n notes <http://cs231n.github.io/transfer-learning/>__

Quoting these notes,

In practice, very few people train an entire Convolutional Network
from scratch (with random initialization), because it is relatively
rare to have a dataset of sufficient size. Instead, it is common to
pretrain a ConvNet on a very large dataset (e.g. ImageNet, which
contains 1.2 million images with 1000 categories), and then use the
ConvNet either as an initialization or a fixed feature extractor for
the task of interest.

These two major transfer learning scenarios look as follows:

  • Finetuning the convnet: Instead of random initializaion, we initialize the network with a pretrained network, like the one that is trained on imagenet 1000 dataset. Rest of the training looks as usual.
  • ConvNet as fixed feature extractor: Here, we will freeze the weights for all of the network except that of the final fully connected layer. This last fully connected layer is replaced with a new one with random weights and only this layer is trained.
In [2]:
# License: BSD
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mode

Load Data

We will use torchvision and torch.utils.data packages for loading the data.

The problem we're going to solve today is to train a model to classify ants and bees. We have about 120 training images each for ants and bees. There are 75 validation images for each class. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well.

This dataset is a very small subset of imagenet.

.. Note :: Download the data from here <https://download.pytorch.org/tutorial/hymenoptera_data.zip>_ and extract it to the current directory.

In [3]:
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Visualize a few images ^^^^^^^^^^^^^^^^^^^^^^ Let's visualize a few training images so as to understand the data augmentations.

In [4]:
def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

Training the model

Now, let's write a general function to train a model. Here, we will illustrate:

  • Scheduling the learning rate
  • Saving the best model

In the following, parameter scheduler is an LR scheduler object from torch.optim.lr_scheduler.

In [5]:
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.cuda()
                labels = labels.cuda()

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

Visualizing the model predictions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Generic function to display predictions for a few images

In [6]:
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.cuda()
            labels = labels.cuda()

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

Finetuning the convnet

Load a pretrained model and reset final fully connected layer.

In [7]:
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)

# model_ft = model_ft.to(device)
model_ft = model_ft.cuda()
criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

Train and evaluate ^^^^^^^^^^^^^^^^^^

It should take around 15-25 min on CPU. On GPU though, it takes less than a minute.

In [8]:
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)
Epoch 0/24
----------
train Loss: 0.7062 Acc: 0.6926
val Loss: 0.3575 Acc: 0.8693

Epoch 1/24
----------
train Loss: 0.5433 Acc: 0.7787
val Loss: 0.2656 Acc: 0.9281

Epoch 2/24
----------
train Loss: 0.5653 Acc: 0.7746
val Loss: 0.3573 Acc: 0.8497

Epoch 3/24
----------
train Loss: 0.5366 Acc: 0.7705
val Loss: 0.5658 Acc: 0.8366

Epoch 4/24
----------
train Loss: 0.5478 Acc: 0.8074
val Loss: 0.3828 Acc: 0.8562

Epoch 5/24
----------
train Loss: 0.3375 Acc: 0.8689
val Loss: 0.3512 Acc: 0.8758

Epoch 6/24
----------
train Loss: 0.4323 Acc: 0.8361
val Loss: 0.3091 Acc: 0.8954

Epoch 7/24
----------
train Loss: 0.3660 Acc: 0.8443
val Loss: 0.2981 Acc: 0.8954

Epoch 8/24
----------
train Loss: 0.2857 Acc: 0.8607
val Loss: 0.2735 Acc: 0.9085

Epoch 9/24
----------
train Loss: 0.4059 Acc: 0.8607
val Loss: 0.2927 Acc: 0.9020

Epoch 10/24
----------
train Loss: 0.3164 Acc: 0.8566
val Loss: 0.2509 Acc: 0.8954

Epoch 11/24
----------
train Loss: 0.2752 Acc: 0.8770
val Loss: 0.2292 Acc: 0.9085

Epoch 12/24
----------
train Loss: 0.3841 Acc: 0.8320
val Loss: 0.2168 Acc: 0.9020

Epoch 13/24
----------
train Loss: 0.3205 Acc: 0.8689
val Loss: 0.2432 Acc: 0.9085

Epoch 14/24
----------
train Loss: 0.4016 Acc: 0.8402
val Loss: 0.3227 Acc: 0.8758

Epoch 15/24
----------
train Loss: 0.2816 Acc: 0.8730
val Loss: 0.2348 Acc: 0.8954

Epoch 16/24
----------
train Loss: 0.3088 Acc: 0.8525
val Loss: 0.2255 Acc: 0.9020

Epoch 17/24
----------
train Loss: 0.3730 Acc: 0.8156
val Loss: 0.2673 Acc: 0.9150

Epoch 18/24
----------
train Loss: 0.1895 Acc: 0.9057
val Loss: 0.2238 Acc: 0.9020

Epoch 19/24
----------
train Loss: 0.3148 Acc: 0.8689
val Loss: 0.2402 Acc: 0.9020

Epoch 20/24
----------
train Loss: 0.2814 Acc: 0.8852
val Loss: 0.2248 Acc: 0.9085

Epoch 21/24
----------
train Loss: 0.2800 Acc: 0.8689
val Loss: 0.2201 Acc: 0.9020

Epoch 22/24
----------
train Loss: 0.2981 Acc: 0.8648
val Loss: 0.2251 Acc: 0.9020

Epoch 23/24
----------
train Loss: 0.2916 Acc: 0.8852
val Loss: 0.2380 Acc: 0.9085

Epoch 24/24
----------
train Loss: 0.2789 Acc: 0.8689
val Loss: 0.2112 Acc: 0.9020

Training complete in 1m 20s
Best val Acc: 0.928105
In [9]:
visualize_model(model_ft)

ConvNet as fixed feature extractor

Here, we need to freeze all the network except the final layer. We need to set requires_grad == False to freeze the parameters so that the gradients are not computed in backward().

You can read more about this in the documentation here <http://pytorch.org/docs/notes/autograd.html#excluding-subgraphs-from-backward>__.

In [10]:
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-10-d875bc928aab> in <module>()
      7 model_conv.fc = nn.Linear(num_ftrs, 2)
      8 
----> 9 model_conv = model_conv.to(device)
     10 
     11 criterion = nn.CrossEntropyLoss()

/home/dnn/developersSourceCodes/pytorch/torch/nn/modules/module.py in __getattr__(self, name)
    410                 return modules[name]
    411         raise AttributeError("'{}' object has no attribute '{}'".format(
--> 412             type(self).__name__, name))
    413 
    414     def __setattr__(self, name, value):

AttributeError: 'ResNet' object has no attribute 'to'

Train and evaluate ^^^^^^^^^^^^^^^^^^

On CPU this will take about half the time compared to previous scenario. This is expected as gradients don't need to be computed for most of the network. However, forward does need to be computed.

In [ ]:
model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)
In [ ]:
visualize_model(model_conv)

plt.ioff()
plt.show()