INDIAN INSTITUTE OF TECHNOLOGY JODHPUR Mathematics-II, Jan-May 2014 Tutorial Sheet 2 (16 Jan'14)

1. Reduce the following matrices in to row reduced echelon form by applying elementary row operations.

(a)	$\begin{pmatrix} 0 \end{pmatrix}$	0	-1	2	3	(/ 1	-2	0	2
	0	2	3	4	5	(1)	2	-3	-1	5
	0	1	3	-1	2	(0)	1	3	2	5
	0	3	2	4	1 /	(1	1	0	$_{2}$)

- 2. Find the rank of the following matrices. (i) $\begin{pmatrix} 1 & -1 & 2 & 1 \\ 3 & 2 & 0 & 1 \\ 4 & 1 & 2 & 2 \end{pmatrix}$ (ii) $\begin{pmatrix} 1 & 2 & -3 & 1 & 2 \\ 2 & 4 & -4 & 6 & 10 \\ 3 & 6 & -6 & 9 & 13 \end{pmatrix}$
- 3. Examine, whether the following matrices are row equivalent or not? $\begin{pmatrix} 1 & 0 & 2 \\ \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 2 \\ \end{pmatrix}$

(a)	$\begin{pmatrix} 1 \end{pmatrix}$	0	2 \		$\begin{pmatrix} 1 \end{pmatrix}$	0	2 \
	3	-1	1	,	0	2	10
	$\sqrt{5}$	-1	5 /		2	0	$_{4}$)
(b)	$\begin{pmatrix} 1 \end{pmatrix}$	1	1 \		$\begin{pmatrix} 0 \end{pmatrix}$	3	-1)
(u)	$\begin{pmatrix} -1 \end{pmatrix}$	2	2)	,	2	2	5 /

4. Find all values of α for which the equations

$$\begin{array}{rcl} x+y &=& \alpha\\ 3x-\alpha y &=& 2 \end{array}$$

have a solution.

5. Find all values of α for which the following equations have (i) a unique solution (ii) no solution and (iii) infinitely many solutions.

$$\begin{array}{rcl} x_1 + x_2 + x_3 &=& \alpha \\ \alpha x_1 + x_2 + 2x_3 &=& 2 \\ x_1 + \alpha x_2 + x_3 &=& 4. \end{array}$$

6. Show that the system

has no solution.

7. Consider the system of equaitons

Does this system have a solution? If so, describe explicitly all solutions.

8. Find the inverse of the matrix by Gauss-Jordan method

	$\begin{pmatrix} 1 \end{pmatrix}$	T	1)		$\begin{pmatrix} 1 \end{pmatrix}$	2	2
(i)	1	2	3	(ii)	2	1	2
	$\left(\begin{array}{c} 0 \end{array} \right)$	1	1 /		$\setminus 2$	2	1 /

9. Discuss the existence of the solution for the following system and find them.

$$2x + y + z = 1
6x + 2y + z = -1
-2x + 2y + z = 7$$

10. (H.W.) Solve the following system.

$$\begin{aligned}
x_1 + x_2 + x_3 + x_4 &= 1\\ x_1 + x_2 + 3x_3 + 3x_4 &= 3\\ x_1 + x_2 + 2x_3 + 3x_4 &= 3\\ x_1 + 3x_2 + 3x_3 + 3x_4 &= 4
\end{aligned}$$

11. Is the following system consistent? If it is, determine the solution.

$$x_1 + x_2 + 2x_3 + 2x_4 + x_5 = 1$$

$$2x_1 + 2x_2 + 4x_3 + 4x_4 + 3x_5 = 1$$

$$2x_1 + 2x_2 + 4x_3 + 4x_4 + 2x_5 = 2$$

$$3x_1 + 5x_2 + 8x_3 + 6x_4 + 5x_5 = 3$$

- 12. (H.W). Let A be and $n \times n$ real matrix and consider the system AX = b. Then prove that the following statements are equivalent.
 - (i) The matrix A is invertible.
 - (ii) The linear system AX = b has unique solution for every matrix b of order $n \times 1$.
 - (iii) The linear system AX = 0 has only trivial solution.
 - (iv) The matrix A has rank n.
 - (v) The row-reduced echelon form of A is I_n
 - (vi) The matrix A is a product of elementary matrices.