INDIAN INSTITUTE OF TECHNOLOGY JODHPUR Mathematics-II, Jan-May 2014
 Tutorial Sheet 2 (16 Jan'14)

1. Reduce the following matrices in to row reduced echelon form by applying elementary row operations.
(a) $\left(\begin{array}{rrrrr}0 & 0 & -1 & 2 & 3 \\ 0 & 2 & 3 & 4 & 5 \\ 0 & 1 & 3 & -1 & 2 \\ 0 & 3 & 2 & 4 & 1\end{array}\right)$
(b) $\left(\begin{array}{rrrr}1 & -2 & 0 & 2 \\ 2 & -3 & -1 & 5 \\ 1 & 3 & 2 & 5 \\ 1 & 1 & 0 & 2\end{array}\right)$
2. Find the rank of the following matrices.
(i) $\left(\begin{array}{rrrr}1 & -1 & 2 & 1 \\ 3 & 2 & 0 & 1 \\ 4 & 1 & 2 & 2\end{array}\right)$
(ii) $\left(\begin{array}{rrrrr}1 & 2 & -3 & 1 & 2 \\ 2 & 4 & -4 & 6 & 10 \\ 3 & 6 & -6 & 9 & 13\end{array}\right)$
3. Examine, whether the following matrices are row equivalent or not?
(a) $\left(\begin{array}{rrr}1 & 0 & 2 \\ 3 & -1 & 1 \\ 5 & -1 & 5\end{array}\right)$, $\quad\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 2 & 10 \\ 2 & 0 & 4\end{array}\right)$
(b) $\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & 2 & 2\end{array}\right), \quad\left(\begin{array}{rrr}0 & 3 & -1 \\ 2 & 2 & 5\end{array}\right)$
4. Find all values of α for which the equations

$$
\begin{aligned}
x+y & =\alpha \\
3 x-\alpha y & =2
\end{aligned}
$$

have a solution.
5. Find all values of α for which the following equations have (i) a unique solution (ii) no solution and (iii) infinitely many solutions.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =\alpha \\
\alpha x_{1}+x_{2}+2 x_{3} & =2 \\
x_{1}+\alpha x_{2}+x_{3} & =4 .
\end{aligned}
$$

6. Show that the system

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}+2 x_{4}=1 \\
x_{1}+x_{2}-x_{3}+x_{4}=2 \\
x_{1}+7 x_{2}-5 x_{3}-x_{4}=3
\end{array}
$$

has no solution.
7. Consider the system of equaitons

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =1 \\
2 x_{1}+2 x_{3} & =1 \\
x_{1}-3 x_{2}+4 x_{3} & =2 .
\end{aligned}
$$

Does this system have a solution? If so, describe explicitly all solutions.
8. Find the inverse of the matrix by Gauss-Jordan method
(i) $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 1\end{array}\right)$
(ii) $\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$
9. Discuss the existence of the solution for the following system and find them.

$$
\begin{aligned}
2 x+y+z & =1 \\
6 x+2 y+z & =-1 \\
-2 x+2 y+z & =7
\end{aligned}
$$

10. (H.W.) Solve the following system.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
x_{1}+x_{2}+3 x_{3}+3 x_{4} & =3 \\
x_{1}+x_{2}+2 x_{3}+3 x_{4} & =3 \\
x_{1}+3 x_{2}+3 x_{3}+3 x_{4} & =4
\end{aligned}
$$

11. Is the following system consistent? If it is, determine the solution.

$$
\begin{array}{r}
x_{1}+x_{2}+2 x_{3}+2 x_{4}+x_{5}=1 \\
2 x_{1}+2 x_{2}+4 x_{3}+4 x_{4}+3 x_{5}=1 \\
2 x_{1}+2 x_{2}+4 x_{3}+4 x_{4}+2 x_{5}=2 \\
3 x_{1}+5 x_{2}+8 x_{3}+6 x_{4}+5 x_{5}=3
\end{array}
$$

12. (H.W). Let A be and $n \times n$ real matrix and consider the system $A X=b$. Then prove that the following statements are equivalent.
(i) The matrix A is invertible.
(ii) The linear system $A X=b$ has unique solution for every matrix b of order $n \times 1$.
(iii) The linear system $A X=0$ has only trivial solution.
(iv) The matrix A has rank n.
(v) The row-reduced echelon form of A is I_{n}
(vi) The matrix A is a product of elementary matrices.
