INDIAN INSTITUTE OF TECHNOLOGY JODHPUR Mathematics-II (12001) Tutorial Sheet 1

1. Show that for any $m \times n$ matrix $A=\left\{a_{i j}\right\}, A=0$ if and only if $\operatorname{Tr}\left(A^{t} A\right)=0\left(o r A^{t} A=0\right)$. $\operatorname{Tr}(A)$ is the sum of diagonal elements of A, called as trace of A.
2. For any $m \times n$ matrix A and $n \times p$ matrices B and C, show that $A B=A C$ if and only if $A^{t} A B=A^{t} A C$.
3. An $n \times n$ matrix $P=\left\{p_{i j}\right\}$ is called a stochastic matrix if each of its rows is a probability vector. i.e., If each entry of P is nonnegative and the sum of the entries of each row is 1 .
Let A and B two stochastic matrices of order $n \times n$. Then the product matrix $A B$ is also a stochastic matrix?
4. A matrix P of order $n \times n$ is called projection matrix if and only if $P^{t}=P$ and $P^{2}=P$.
(i) Suppose P_{1} and P_{2} are projection matrices. Then $P_{1}+P_{2}$ and $P_{1} P_{2}$ are projection matrices?
(ii) Let P be a projection matrix and I_{n} be a identity matrix of order n. Is $I_{n}-P$ a projection matrix? Calculate $P\left(I_{n}-P\right)$.
(iii) Suppose $X \in \mathbb{R}^{n}$ be a non zero column vector. Define $A=\frac{X X^{t}}{X^{t} X}$. Then prove that A is projection matrix.
5. Let A, X, Y be an $n \times n$ matrices. Assume that $X A=I_{n}$ and $A Y=I_{n}$. Prove that $X=Y$.
6. Calculate A^{n} for the given $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Find the real numbers a, b such that $A^{2}+a A+$ $b I_{3}=0$. Show that there are real numbers $c_{0}, c_{1}, c_{2}, \cdots, c_{n}$ such that

$$
A^{-n}=c_{0} I+c_{1} A^{2} c_{2} A^{3}+\cdots+c_{n} A^{n} .
$$

7. If $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$ and $B=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$, show that the matrix $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfies the equation $A X=X B$ if and only if X is a scalar multiple of $\left(\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right)$.
8. A non-zero matrix A is said to be nilpotent of order k where $k \in \mathbb{N}$, if $A^{k}=0$ and $A^{n} \neq 0$, for all $n<k$. In this case, verify that $I-A$ has the inverse $I+A+A^{2}+\cdots+A^{k-1}$.

Show that the matrix $A=\left(\begin{array}{rrr}-1 & -5 & 4 \\ 0 & -2 & -1 \\ 1 & 3 & 3\end{array}\right)$ is nilpotent of order 3 , and hence find the inverse of the matrix $\left(\begin{array}{rrr}2 & 5 & 4 \\ 0 & 3 & 1 \\ -1 & -3 & -2\end{array}\right)$.
9. Let A, B, C, D be $n \times n$ matrices over \mathbb{R}. Assume that $A B^{t}$ and $C D^{t}$ are symmetric and $A D^{t}-B C^{t}=I_{n}$. Show that $A^{t} D-C^{t} B=I_{n}$.
10. Let A and B be $n \times n$ matrices over \mathbb{R}. Assume that $A \neq B, A^{3}=B^{3}$ and $A^{2} B=B^{2} A$. Is $A^{2}+B^{2}$ invertible?
11. Prove that for each $n \times n$ matrix $A, A^{t} . A$ is symmetric.
12. Prove that if matrix A is skew-symmetric, then $A . A$ is symmetric.

