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INTRODUCTION: 
• What are lasers? 

A laser is a device that emits light through a process of optical amplification based 

on the stimulated emission of electromagnetic radiation. The term "laser" originated  

as an acronym for Light Amplification by Stimulated Emission of Radiation. 

• How can they be chaotic? 

Chaos in lasers is related to deterministic chaos in single mode lasers. The onset of deterministic chaos in a dynamical system requires at 
least a 3-dimensional phase space. We recall that a 3D dynamical system is characterized by 3 coupled first order differential equations 
as 

                                                                         x⃗ ˙=f⃗ (x⃗ ) ,  

with x⃗ =(x1,x2,x3) . 

If the system is dissipative, it has attractors, and the sum of the Lyapunov exponents λi of an attractor is negative. This can be satisfied by 
the following sets of λi signs: (-,-,-); (-,-,0); (-,0,0); (-,0,+). The first set has contraction in all 3 directions, thus yielding a stable equilibrium 
point attractor. The second set yields a stable limit cycle. The third one corresponds to a torus (quasiperiodic motion with 2 
incommensurate basic frequencies). Eventually the fourth one (with the obvious constraint that the positive exponent be smaller than the 
absolute value of the negative one, in order to satisfy the dissipativity condition) is a "strange" attractor. A positive Liapunov exponent 
means that an arbitrarily small initial difference between two points on the attractor grows exponentially to a sizable value. This sensitive 
dependence on the initial conditions has been called "deterministic chaos".  



INTRODUCTION.. 

•How does emission take place in laser? 

In order for the laser to emit light population inversion must be present 

in the system.  

Population inversion means that there are more electrons available to 

make a “down” transition and amplify the light than are available to 

make an up transition and absorb light. This process occurs as a 

consequence of pumping in the optical cavity. 

Optical cavity is a region composed of two approximately parallel 

mirrors separated by a defined distance. The semiconducting material 

used in the laser forms the optical cavity in the case of the  

semiconductor laser, which is used to produce positive feedback.  



• Gain is a measurement that is determined by the length of the optical cavity 

and the number of reflected passes though the semiconductive material. For 

each pass through the optical cavity a loss occurs due to the mirrors that is 

proportional to the gain. When pumping is applied to the semiconductive 

material, the gain increases for each pass through the optical cavity. 

Population inversion occurs when the gain reaches a value higher than the loss 

from reflection.  



LASER RATE EQUATIONS: 

Component  Description   

E            Electric field envelope (Complex amplitude)   

N            Carrier density   

-αi*E    Loss   

-iαN    Change to refractive index (dependent on carrier density)   

J            Pumping (current)   

-γN      Loss of carriers from spontaneous recombination   

k [(N-1)]E   Gain from stimulated emission   

-2k(N-1)abs(E)2  Consumption of carriers from stimulated emission   



STABILITY AND FIXED POINTS  

• Stability of the Intensity System  

To begin, we shall analyze the stability of what is to be called, the Intensity 

System.  

The laser system will be modeled as a system coupled differential equations, as 

previously studied by [1], which relates the complex amplitude (E) and carrier 

density (N) as functions of time by:  

  



Upon solving the solution takes the form: 

 

 

 

The former solution suggests that the laser is off, which is not of particular interest. 

Therefore, to retrieve the corresponding "on" fixed point for the intensity (I) the latter is 

chosen and used in the zero solution. 

In summary, the (on) fixed point of interest is:  

 

 

 

 

 



• In order to test the stability of this fixed point a linearization is performed 

with perturbations variables c and h on Io and No, respectively. Under these 

stipulations we have that:  

 

 

• On performing the linearization it yields :  

 

     which can be written as  

 



• Upon further calculation and analysis the eigenvalues come as: 

 

 

• Analyzing the above equation shows that the critical points occur at I0
 = 0 and N0

 = 1. 

Relating these conditions to previous equations yield that the Intensity System will be 

stable so long as the current (J) is less than               and that       greater than zero. 

 

 

• The results of the analysis were plotted using matlab. 

 

  







SEMICONDUCTOR LASER SUBJECTED TO A DELAYED 
OPTICAL FEEDBACK 

• Semiconductor lasers with a long external cavity are very sensitive to external signals. The light 

traveling back and forth in the external cavity takes a long time relative to the internal time scale 

of the laser, and produces a delayed interaction with a large delay. Because of the large delay, a 

small amount of optical feedback is enough to produce a variety of instabilities. When the laser is 

pumped just above threshold, intensity dropouts occur irregularly. This phenomenon, called low-

frequency fluctuations.  

   In these equations, time t is measured in units of the photon lifetime p (p =1ps). T and  are the 

carrier lifetime and the external round-trip time, respectively, normalized by p (T1000, p 1000). 

0 is the dimensionless frequency of the solitary laser, k is the feedback strength (0≤k<<1), P is the 

pump current above threshold (|P|<1), and a is the linewidth enhancement factor. 

 

The LK equations are delay differential equations(DDEs), because the right-hand side of Equation on 

next slide does not only depend on E(t) and N(t) at the present time, but also on E(t-  ). 



LANG KOBAYASHI MODEL 
 

• A minimal description of a single-mode semiconductor laser exposed to weak 

optical feedback was proposed by Lang and Kobayashi. In dimensionless 

form, the LK equations consist of two rate equations for the complex electrical 

field E(t) and the excess carrier number N(t). They are given by, 

  



• Hohl and Gavrielides investigated both experimentally and numerically how LFF 

appears as the result of cascading bifurcations from external cavity modes (ECMs). 

The ECMs are periodic solutions of Eq. exhibiting a constant intensity, and they 

sequentially appear as the feedback strength k is increased. In the presence of a 

small number of ECMs, they observed a series of bifurcations between the 

destabilization of one ECM and the appearance of the next stable one, which 

eventually leads to irregular behavior with a broad spectrum and chaotic time 

traces. They showed how this irregular behavior gradually evolves into LFF for larger 

values of k and thus more destabilized ECMs. 

 

A detailed numerical bifurcation analysis of the LK equations, using DDE-BIFTOOL. This 

MATLAB software package calculates steady state and periodic solutions for equations 

with a finite number of fixed discrete delays. Stability analysis of steady state solutions 

is achieved through approximating and correcting the rightmost characteristic roots. 

 



In order to study external cavity modes, which are singlefrequency periodic 

solutions of Eq., and their bifurcations, we transform the original autonomous 

equations using the substitution:  

    E(t)=A(t)exp(ibt)  …………..2 

We get, 

 

 

We now have two equations one complex and one real. In the complex variable 

A(t) and the real variable N(t), together with the unknown real parameter b. This 

form has the advantage that the ECMs, which are periodic solutions of Eq. 



• Now using the DDE BIFTOOL we plotted two branches of the 1D unstable 

manifold showing bistability between a fixed point and a chaotic attractor in 

the COF laser. 

 



CONCLUSIONS 

• During this project we studied the Lang-Kobayashi equations for semiconductor 

lasers subject to optical feedback. Our study is based on the application of 

the numerical techniques implemented in the package DDE-BIFTOOL for 

stability and bifurcation analyses of delay differential equations. 

• This analysis reveals that increasing the linewidth enhancement factor 

progressively changes the stability of the bridge, but  must be high enough 

(=6) for rupture. 
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