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INTRODUCTION:

• In this Project, we focus on the synchronizing properties of the Lorentz system, the implementation of the 

Lorentz system as an analog circuit, and the potential for utilizing the circuit for various communication 

applications.

• It Should be noted that the applications indicated are very preliminary and presented to suggest and 

illustrate possible directions.

WHAT IS SELF SYNCHRONIZING PROPERTY ?

• A chaotic system is said to be self synchronizing if it can be decomposed into subsystems: a drive system and 

a stable response subsystem that synchronize when coupled with a common drive signal.

• The Lorenz system is decomposable into two separate response subsystems that will each synchronize to the 

drive system when started out from any initial condition



Lorenz equation is given by:

Where 𝜎, r and b are parameters.

It is decomposable into 2 stable subsystems:

First stable response system (x1,z1)                                Second stable response system (y2,z2)

• Now the equation (1) can be interpreted as the drive system since its dynamics are independent of the response 

subsystem

• Equation (2) and Equation (3) represents the dynamical response systems which are driven by the drive signal y(t) 

and x(t) respectively.
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PROOF OF THE STABILITY OF THE RESPONSE SUBSYSTEMS:

• The eigenvalues of the Jacobian matrix for the (x1,z1) subsystem are both negative and thus lx1 - xl

and lz1 - z l 0 as t .

• Also, it can be shown numerically that the lyapunov exponents of the (y2,z2) subsystem are both negative and 

thus ly2 - yl and lz2 – zl  0 as t .

• The lorenz system decomposable into two separate response subsystems that will each synchronize to the 

drive system when started out from any initial condition.



IMPLEMENTATION IN ELECTRONICS CIRCUITS:

• A direct implementation  of Eq. (1) with an electronic circuit presents several difficulties.  For example, the 

state variables in  Eq. (1) occupy a wide dynamic range with values that exceed reasonable power supply 

limits.

• However, this difficulty can be eliminated by a simple transformation of variables. Specifically, we define 

new variables by u = x/10, v = y/l0, and w = z/20. With this scaling, the Lorenz equations are transformed 

to :

• This system, which we refer to as the transmitter, can be more easily  implemented  with  an  electronic  circuit  

because the state variables all have similar dynamic range and circuit voltages remain well within the range 

of typical power supply limits.
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ANALOG CIRCUIT IMPLEMENTATION OF THE CIRCUIT EQ. (4):

• The operational amplifiers (1—8) and associated  

circuitry perform  the operations of addition, 

subtraction, and integration.  Analog multipliers im-

plement the nonlinear terms in the circuit equation.

• The coefficients 𝜎, r, and b can be independently varied 

by adjusting the corresponding resistors R5, R11,and 

R18. In addition, the circuit time scale can be easily 

adjusted by changing the values of the three capacitors, 

C1, C2, and C3, by a common factor. We have chosen 

component values [Resistors (in KΩ): R1 ,R2, R3, R4,R 

6,R7, R13,R14,R16,R17,R19= 100; R5,R10=49.9; R8 

=200; R9, R12=10; R11=63.4; R15=40.2; R18=66.5; 

R20=158; 

• Capacitors  (pF):   C1,C2,C3 = 500;  Op-Amps  (1-8):  

LF353 ; Multipliers: AD632AD] which result in the 

coefficients 𝜎=16, r = 45.6, and b = 4



A set of state equations which govern the dynamical behavior of the circuit is given by :
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AVERAGE POWER SPECTRUM:

• Figure shows the averaged power spectrum of the circuit wave form u(t). The power spectrum is broadband 

which is typical of a chaotic signal. 

• As we see, the performance of the circuit and the simulation are consistent.



(b) CHAOTIC ATTRACTOR PROJECTED ONTO THE UV PLANE; (c) CHAOTIC ATTRACTOR PROJECTED ONTO 

THE UW PLANE.:

• A full-dimensional response system which will synchronize to the chaotic signals at the transmitter 

(4) is given by:
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• We refer to this system as the receiver in light of some potential communications applications. We 

denote the transmitter state variables collectively by the vector d = (𝑢, 𝑣, 𝑤) and the receiver 

variables by the vector r= (𝑢𝑟,𝑣𝑟,𝑤𝑟) when convenient.

• By defining the dynamical errors by e = d - r, it is straightforward to show that synchronization in  

the Lorenz system is a result of stable error dynamics between the transmitter and receiver. 

Assuming that the transmitter and receiver coefficients are identical, a set of equations which 

govern the error dynamics are given by:

• The error dynamics are globally asymptotically stable at the origin provided that 𝜎,b > 0



USING CHAOS IN COMMUNICATION:

(I) CHAOTIC COMMUNICATION SYSTEM-

1. As one illustration of the potential use of synchronized chaotic systems in communications, we describe a system to 

transmit and recover binary-valued bit streams. 

2. The basic idea is to modulate a transmitter coefficient with the information-bearing wave form and to transmit 

chaotic drive signal.

3. At the receiver, the coefficient modulation will produce a 

synchronization error between the received drive signal and the 

receiver’s regenerated drive signal with an error signal amplitude 

that depends on the modulation. Using the synchronization error 

the modulation can be detected. 

4. The modulation/detection process is illustrated in the figure. In 

the figure coefficient b of the transmitter equations (4) is 

modulated by the information-bearing wave form, m(t). For the 

purpose of demonstrating the technique, we use a square wave 

for m(t) as illustrated in Fig. 4(a). 



5.  Figure 4(b) shows the synchronization error power,         

, at the output of the receiver circuit, the coefficient 

modulation produces significant synchronization error 

during a “1” transmission and very little error during a 

“0” transmission.

6.  Figure 4(c) illustrates that the square-wave 

modulation can be reliably recovered by low pass 

filtering the synchronization error power wave form and 

applying a threshold test. 



(II) CHAOTIC SIGNAL MASKING SYSTEM-

• Another potential approach to communication applications is based on signal masking and recovery. In signal masking, a noise like 

masking signal is added at the transmitter to the information-bearing signal m(t) and at the receiver the masking is removed . 

• In our system, the basic idea is to use the received signal to regenerate the masking signal at the receiver and subtract it form the 

received signal to recover m(t). 

• This can be done with the synchronizing receiver circuit since the ability to synchronize is robust, i.e., is not highly sensitive to 

perturbations in the drive signal.  



• It is assumed that for masking , power level of m(t) is significantly lower than u(t).

• The Dynamical System implemented at the receiver is

• If the receiver has synchronized with s(t) as the drive, then 

𝑢𝑟(t) ≅ 𝑢(𝑡) and consequently m(t) is recovered as 𝑚 (𝑡) = 

s(t) - 𝑢𝑟(t). Figure 5 illustrates the  approach.

• Using the transmitter and receiver circuits, we demonstrate 

the performance of this system in fig. 6 with a segment of 

speech from the sentence “He has the bluest eyes”. Figures 

6(a) and 6(b) show the original speech, m(t), and the 

recovered speech signal, 𝑚 (𝑡), respectively. Clearly the 

speech signal has been recovered.
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