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1 Abstract

Medical practitioners often have to work with images which come from various
modalities, ranging from X-ray based Computed Tomographies (CT) to radio
wave based Magnetic Resonance Imaging (MRI). Each image modality carries
different information with them. Multi-modal image fusion is the process of
merging images of different modalities to obtain a single image that carries al-
most all the complementary as well as the redundant details to form an image
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composed of much higher information. This process in which a single image,
carrying information of different modalities is rather useful for medical practi-
tioners and researchers for analyzing a patient’s body to detect lesions (if any)
and to make a correct diagnosis. Feature extraction plays the key role when
it comes to image fusion for multimodal image data, and with that in mind,
convolutional neural networks have been extensively used in the literature of
image fusion for some time now. However, not many of the deep learning based
models have been specifically designed for medical images. With that moti-
vation the chapter is divided into two parts. The former will be all about a
comprehensive review to some of the works that have been done recently in the
field of multimodal image fusion. And inspired by few of the methods discussed,
in later, an unsupervised deep learning based medical image fusion architecture
incorporating multi-scale feature extraction will be proposed. The extensive
experiments on various multi-modal medical images are finally implemented to
analyze performance, stability and superiority of the proposed technique.

2 Introduction

Medical imaging refers to the process of image acquisition using some special
imaging devices that are multimodal in nature, and which lets the viewer know
about the internal parts of a human body. With an increasing advancement in
the field of radiography and in particular medical imaging, health care industry
has been adept at exploiting the various uses of those imaging devices for an ef-
fective treatment strategy. The human body is considered to contain structural
and functional information [1], where structural information or more commonly
known as anatomical information, consists of: bones, soft tissues, cartilage, ten-
dons etc. Generally, these anatomical features are acquired through X-ray based
Computed Tomographies, and radio wave based Magnetic Resonance Imaging.
CT scans are used to view information having dense structures, i.e. bones, car-
tilage, tumors, etc. While the radio wave based MRI-scans are used to view
lower density features, for example soft tissues, or fluidic components inside the
body. Functional information refers to the physiological and metabolic changes
within the body, and this information is gathered by the means of Positron
Emmision Tomographies (PET), and Single Photon Emission Computed Tomo-
graphies (SPECT). Both PET and SPECT uses radiotracers to appraise organ
and tissue functions. PET and SPECT are different in the sense that both
of them uses different kinds of radiotracers, namely: positron and gamma-ray
based, respectively.

With such diverse set of modalities, the information brought forth by these
images are quiet complementary, and hence multimodal image fusion has been
identified as a decisive solution which aims to integrate information from these
images to obtain a single and more complete image, which can facilitate medical
practioners to indentify the presence of lesions or any kind of anomaly within the
patients body with ease. More formally image fusion is the process of merging
or integrating complementary information of several source images such that



the resultant image provides more detail and quality over any of the individual
source images.

2.1 Fusion levels

On the basis of levels of abstraction, image fusion algorithms are categorized
into three distinct fusion levels (Fig. 1), namely: (a)Pixel level, (b)Feature level,
and (c)Decision level. Each level comes with its benefits and drawbacks when
dealing with the complications put forward by multi-modal information from
each source images. Several factors can aid for the comparison of each fusion
level, which are based on information loss, computational complexity, senstivity
to noise, and classification accuracy.

Pixel-level: Also known as low-level image fusion, algorithms in this category
works directly with the pixels of the input source images, and therefore amounts
to maximum information gain according to human perception. In terms of
image processing jargons, fusion results produced by pixel level algorithms have
maximum energy. Based on the fusion rule, algorithms in this category are
further splitted into two parts: (a)spatial domain, and (b)transform domain
methods.

Fusion rules in spatial domain methods are developed by smartly manip-
ulating the input image pixels, methods such as weighted pixel avergaing [3],
min-max [3], and focus measure detection [4] comes in this category. Spatial
domain techniques are quiet effective when it comes to single sensor source im-
ages, however medical images comes from multiple sensors, hence spatial domain
algorithms fail to capture relevant details, therefore we transform the source im-
ages to some other domain where the relevant information from them can be
easily captured, fusion rules defined in this case comes under transform domain
methods. It must be noted that upon applying the fusion rule, inverse trans-
formation should also be applied to come back to the spatial domain in order
to view the fused image. Pyramid based [5] and [6], and wavelet based algo-
rithms [7], [8] and [9] comes in this category. Because of the effectiveness and
ease of implementation, majority of the image fusion literature is filled with
pixel-level algorithms. Though intuitive to understand and easily implemented,
the algorithms in this category are prone to errors such as presence of artifacts,
shift-invariance, and blurriness [10].

Feature-level: Also known as middle or intermediate level algorithms, hap-
pen to be a bit more complicated than pixel-level. In hindsight, feature level
algorithms are divided into two parts- the first part consists of feature extrac-
tion from the input source images, and the second part consists of defining a
fusion mapping which utilizes those extracted features to give a high quality
fused image. Feature level algorithms aims at capturing the detailed parts of
the source images, for example lines, edges, texture, corner, etc. Algorithms in
this category are further divided into three classes, each of which has a different
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Figure 1: Image Fusion Levels: (a)Pixel Level (b)Feature Level (c)Decision
Level

feature extraction procedure, namely: (a)Region-based, (b)Machine-learning
based, and (c) Similarity matching based algorithms.

Region-based algorithms begins with region partition and semantic segmen-
tation based approaches to detect salient features from the input images, and
then a fusion rule is devised in such a way that the salient features can be
merged appropriately. Majority of the region-based algorithms have incorpo-
rated multiscale decompositions such as Discrete Wavelet Transforms [7], Con-
tourlet Transforms [8], Shearlet transforms [9], and many more, most of which
will be discussed in section 2.

Machine learning and region-based algorithms are not too different, the only
difference is that, the fusion rule in the former is defined using a machine learning
classifier, additionally, saliency detection and classification can be further im-
proved using machine learning techniques, fusion using genetic algorithms [11],
Support Vector Machines [12], and Particle Swarm Optimization [13] comes in
this category.

Similarity matching algorithms accounts for human visual system into the
fusion rule, that is, it utilizes the visual features such as lines, texture, shape
and other structural details of the input source images to design the fusion



algorithm. Authors in [14], [15], and [16] have worked on similarity matching
algorithms for multimodal and medical image fusion tasks.

Decision-level: These are high level information fusion algorithms, which are
less explored in the literature. Feature-level fusion acts as a prerequisite for this
level, which is followed by feature classification and building decision maps or
indices for final fusion operation. The fusion operation is carried out based on
the best decision, or the decision which has the highest probability of giving
better classification in the end. Hence, algorithms in this level are the most
accurate of all, however, the downside of these algorithms is it does not go well
with the human visual system, that is, information loss is bound to happen.
Decision-level fusion algorithms include voting, Bayes’ inference [17,18], fuzzy
integrals [19], and many other methods. Tab.1 below inspired from [2] gives a
brief summary over the performances for each level discussed above.

Table 1: Attribute performance summary

Attributes Pixel-level Feature-level Decision-level
Information loss Minimum Medium Maximum
Information content Highest Medium Lowest
Method complexity Easiest Moderate Hardest
Classification performance Worst Moderate Best
Noise sensitivity Highest Medium Lowest

2.2 Preprocessing pipeline

Medical images are acquired from multiple sensors, and it is possible that images
obtained from any of the sensor have some kind of glitch or artifact in them,
those glitches can be comfortably detected by a medical expert, however once the
images with each of the modality is fused, those glitches (if undetected) would
also get fused, and that will be rather undesirable. Hence, this stage is the most
crucial step for any kind of image fusion task, therefore, source images must be
preprocessed for noise and other kinds of artifacts such as spatial blurring and
non-uniform illumination. For illumination related issues, image enhancement
can also be carried out as a preprocessing step. A detailed survey on methods
for noise reduction and image enhancement techniques is given in [20,21].
Another prerequisite for any kind of image fusion is image registration, in
which source images are geometrically aligned with respect to size, orientation
and location of the reference source image. Figure 2 given below illustrates
image registration technique as a preprocessing step for image fusion. A dense
amount of theory and methods are available in the image processing and com-
puter vision literature which deals with image registration, and is a separate
field of research in its own right. A compresensive survey for traditional as well



as modern day deep learning based image registration techniques can be seen
in [22,23].
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Figure 2: Image registration as a preprocessing step for CT-MRI fusion using
pixel averaging criteria

3 Literature survey and state-of-the-art

Image fusion algorithms have been in the literature for quiet some time now,
hence it is imperative to first review the traditional state of the art approaches
for the same, and then talk about the recent deep learning based advances in
the field. Hence, this section is divided into two parts, the former is all about
non-deep learning based technqiues, and latter will be on Deep Learning based
advances for medical images.

3.1 Traditional techniques

When it comes to traditional state of the art techniques for medical image fusion,
majority of the techniques come from: multi-scale decomposition (MSD) meth-
ods, morphological methods, and fuzzy logic based methods. Multi-Scale decom-
position techniques are based on transforms such as pyramids [24], wavelets [25],



contourlets [26], curvelets [27] and framelets [28]. In pyramid-based techniques
for image fusion, the decomposition process involves creating a set of band-pass
and low-pass versions of the original image by sequentially filtering and down
sampling it, resulting in a pyramid-like structure.

Authors in [24] have incorporated Laplacian filter for decomposition which
used discrete cosine transform for data compression, and through averaging fu-
sion rule, the authors were able to fuse CT and MRI images. Authors in [5]
used gradient pyramids incorporating Gaussian filters. Similarly by varying the
filters for decomposition, different pyramid based fusion techniques can be de-
veloped, for example morphological pyramids [6], ratio pyramids [29], steerable
pyramids [30] and many more. In [6], a non-linear morphological approach is
considered for decomposition, which shows promise when compared with lin-
ear approaches. The main issue with most of the pyramid based schemes is
that it suffers from blocking effects, and edge distortion, and to overcome these
problems variants of wavelet based techniques were introduced. Authors in [25]
introduced gradient based discrete wavelet transform to fuse MRI-T1, T2, and
FLAIR images by incorporating two separate fusion rules which involves a max
and an averaging operation respectively. Authors in [31] proposed a sparse
representation based method for medical image fusion in the tetrolum domain
which is a new adaptive version of the Haar wavelet. The proposed scheme was
able to preserve the color and contrast information, but had also introduced
artifacts such as black dots. Authors in [32] proposed a medical image fusion
method which incorporated principal component analysis, and had also used
Intensity Hue Saturation color model to retain the color information in order
to fuse MRI and PET images. The proposed method was able to retain more
spatial characteristics with no color and spatial distortion, however the method
was not robust enough to be tried on other types of modalities. Authors in [33]
introduced a new method where the fusion coefficients were obtained using the
standard deviation and density function of the shift invariant Shearlet trans-
form (SIST). Modalities such as MRI, PET, SPECT and CT were used for the
fusion process. The proposed method was able to capture both functional and
spatial information quiet well. Nonsubsampled Contourlet Transform (NSCT)
domain is another quiet popular domain transform technique in the medical
image fusion literature, authors in [34] proposed a method in the NSCT domain
where the low frequency sub band coefficient is obtained by taking the square of
the maximum entropy of the coefficients within a local window. The maximum
weighted sum modified laplacian is used to obtain the high frequency sub band
coefficient. According to quantitative evaluations, this algorithm performs bet-
ter than several existing methods and produces good contrast. Authors in [26]
introduced a fusion rule for CT and MRI brain images by exploiting the major
properties of the NSCT by using maximum and average masking fusion rules
that were devised for the approximate and directional coefficients respectively.
Authors in [35] proposed a fusion method for medical images using the curvelet
transform. The method begins by converting each source image into curvelet
coefficients. These coefficients are then fused using a PCA fusion rule. Finally,
the inverse curvelet transform is applied to produce the final fused image.
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Authors in [36] introduced a fuzzy transform based method. The process be-
gins by dividing the images into equal-sized blocks, which are then transformed
into sub-blocks of varying sizes using the fuzzy transform. The maximum-
entropy fusion rule is then applied to the sub-blocks, followed by the inverse
fuzzy transform on the fused sub-blocks. The method’s performance was eval-
uated through both subjective and objective means. Tab.2 briefly summarises
the traditional non deep learning based methods discussed above.

Table 3: Different Deep Learning architectures
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3.2 Deep learning based techniques

As the Tab.2 illustrates, traditional medical image fusion algorithms have major
weaknesses, including a lack of robustness and the generation of artifacts. This
raises questions about the effectiveness of the feature extraction and feature
fusion processes. To address these issues, researchers have turned to deep learn-
ing (DL) based image fusion techniques. DL based techniques for image fusion
are classified into four categories: autoencoder (AE)-based, convolutional neu-
ral network (CNN)-based, generative adversarial networks (GAN)-based, and
transformers based architectures. Tab.3 gives a brief overview towards the im-
age fusion process using the first three architectures mentioned.

The AE method usually pre-trains an autoencoder on a different dataset in
order to learn the most precise feature extraction and reconstruction process in
order to generate a fused representation in a supervised or unsupervised setting,
however, AE based methods faces issues with edge distortion because it happens
to loose important information while learning for latent representations of the
source images. CNN based architectures are quiet flexible, as seen in Tab.3,
CNN based methods can be applied in two ways, one way is to utilize just the
convolutional layers to extract the useful features, and then train another set
of conv layers for the fusion process. Whereas a different approach suggests
to use CNNs with a transform domain technique which can inturn bring in
more complexity towards the architecture and hence can extract even deeper
features without having to go deep, and then use another set of conv layers for
the reconstruction process, this technique is also called a hybrid method. GAN
based methods incorporate an adversarial game based approach, where the game
is played between a generator and a discriminator. Generator network attempts
to fool the discriminator by producing fake fused images using the source images
as an input, whereas the discriminator, having to know about the distribution
of the real fused images attempts to put penalty on the generator whenever
caught. With this generator-discriminator game, a GAN based architecture
comes up with a trained network for the generator to produce realistic looking
fused images. Up until recently, vision transformers have been in use for a variety
of applications in computer vision, through the self-attention mechanism these
models are able to solve the issues of long range dependencies and the need
for augmentation put forth by CNN based models. Transformer models lets
the network to learn local as well as global features of the input source images,
and hence becomes very powerful for the image fusion process, no matter the
modality of the source images.

In [37], the authors attempted to discontinue the manual designing of com-
plicated fusion rules using complicated activity level measurements by the use of
CNNs. They used a siamese network to propose a new framework that combines
activity level measurement and weight assignment through network learning.
Additionally, the authors incorporated Laplacian and Gaussian pyramid based
decomposition techniques to design their fusion rule, making their scheme into
a hybrid method. This approach yielded superior results when compared to
several traditional state-of-the-art fusion techniques for CT, MRI and SPECT
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images, however, due to its simplistic fusion rule, the fused image suffered from
broken edges. Authors in [38], proposed a novel encoder-decoder network for
visual-infrared (VI-IR) image fusion technique (DenseFuse), their encoder mod-
ule incorporated a dense network having three convolutional layers with skip
connections, which made the feature learning process quicker and more precise.
The decoder module used four convolutional layers with relu activation for each
of them. By incorporating structural similarity based cost function, the au-
thors were able to achieve comparable results with state-of-the art image fusion
techniques. However in order to produce superior results for medical images,
the same authors came up with multiscale encoder network in [39] (MSDNet),
in this, they improved the encoding process by incorporating three convolu-
tional layers of different sizes simultaneously in order to learn more complex
features. With this change the authors were able to design a fusion scheme for
medical, visual-infrared and multi-focus images. However, the results were just
slightly improved in comparison to their previous method, hence the impact
was not significant. The authors in [40] presented a novel end-to-end image
fusion framework (IFCNN) that utilized the power of ResNet101 [41] pretrained
over multi-focus image datasets available online. The proposed framework is a
general-purpose method that can handle different types of images. The authors
demonstrated its ability to elegantly fuse multi-focus, multi-modal and multi-
exposure images, and had overshadowed majority of the CNN, AE and GAN
based methods, however, inspight of its overwhelming performance when it came
to multi-modal medical images (CT-MRI), the fused results were rather dull and
were not able fully capture the important details of the source images. On the
same grounds as [40], authors in [42] proposed a unified unsupervised end-to-end
fusion technique for multi-focus, multi-modal and multi-exposure images. The
proposed technique utilised the power of the VGG16 [43] architecture for its
feature extraction process. Overall, the method produced decent results when
compared with traditional fusion schemes but had issues majorly with intensity
and contrast in the fused output. In [44], the authors proposed EMFusion, an
enhanced unsupervised image fusion framework designed specifically for med-
ical images. The architecture of this framework ensures the enhancement by
adding constraints to both the surface and deeper levels, thereby preserving
relevant features of the source images. Another encoder-decoder based fusion
framework (MSENet) was proposed by authors in [45] for medical images, which
had used multi-scale feature extraction process using CNNs, results obtained us-
ing this technique outperformed traditional state-of-the-art techniques, however
an extensive experiment with DL based techniques was not provided. Using
U-Net [46] as the backbone of the feature extraction process, authors in [47]
proposed a self-supervised image fusion scheme for visible and infrared images.
Their proposed architecture was able to capture relevant feature information
uniformly from infrared and visible images, with that said, the proposed tech-
nique has yet to outperform the state-of-the-art GAN based techniques which
are already overshadoweded by encoder-decoder based architectures.
FusionGAN [48] was one of the first GAN based image fusion framework
designed to fuse multi-modal images. Inspired from the DCGAN [49] architec-
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ture, its generator uses CNNs which takes infrared and visible images as its input
and produces a fused result having the descriminator to penalise the fused out-
put if its distribution is different from the true distribution. Similarly authors
in [50] and [51] came with their own taste of GAN based architectures for multi-
modality images and had produced state-of-the-art results. However, authors
in [52] came up with a dual stream attention based generator-descriminator ar-
chitecture (DSAGAN) which outperformed most of the other generative models
for medical image fusion. DSAGAN used three CNN based attention modules
for its generator network in order to produce a high quality fused result, having
said that, a six layer deep CNN based descriminator is used to penalise the im-
age if found fake. DSAGAN was able to outperform most of the traditional and
GAN based fusion schemes in terms of entropy and blind image quality metrics.

Though not extensively explored in the literature, transformer based image
fusion architectures are rising after their overwhelming performance in terms
of image classification and object detection [53]. Authors in [54] proposed a
bimodal transformer based visual-infrared image fusion framework, having a
complex three level architecture, where in the first level it uses multiscale feature
extraction process using dense networks, in the second level it brings in two
separate transformers which takes in the dense features from visual and infrared
inputs respectively and prepares them for the fusion stage (level three). Level
three utilizes CNNs and fast fourier transforms for the fusion to take place.
With such a complicated archicture, the framework was able to outperform
many traditional and deep learning based state-of-the-art techniques. Having
to know this, transformer based architectures ( [55], [56], [57]) are quiet heavy
in terms of parameters and data required for training. Tab. 4 provides a brief
summary of some of the methods discussed above.

Having to know about all the strengths and weaknesses of each of the deep
learning based framworks for medical image fusion. The proposed architecture
in this chapter aims to unify the strengths of most of the algorithms discussed so
far, and also aims to mitigate the weaknesses put forth by each of the method.
Notable weaknesses shown by most of the methods are the following:

e Encoder-Decoder based architectures: Most of the results suffered from
broken edges or were unable to capture the true intensity and contrast
information from the source images.

e Purely convolutional neural network based architectures: Having to train
the network over databases different from medical images makes the net-
work learn features which are not useful, and hence results in a fused out-
come which is sometimes different from the original source images cand
lead to ambiguity.

e Generative adversarial network based architectures: These networks are
sensitive to change in hyperparameters. They also require data in abun-
dance for training, which becomes a challenge when just medical data is
concerned.
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e Transformer based architectures: Though not explored in detail, the archi-
tectures of these frameworks are rather complex and the results obtained
so far are comparable with encoder-decoder and/or CNN based architec-

tures.

Table 4: Image Fusion survey for Deep learning algorithms

Strengths

Shortcomings

Results comparable
to state of the art
techniques

Poor performance
for medical images

Improvement upon
DenseFuse

Results not compared
with enough DL based
methods.

Was able to capture
textural features well.

Unable to capture
contrast details.

Unsupervised multi-
-scale feature extra-
-ction.

Extensive experiments
not provided. Poor
contrast.

Outperforms most of
CNN and traditional
based methods.

Sensitive to hyper-
-parameters, cannot
generalize well.

Architectures/  Modalities
methods
DenseFuse [38] VI, IR
MSDNet [39] VI, IR,
CT, MRI,
SPECT
IFCNN [40] VI, IR,
CT, MRI,
SPECT
EMFusion [44] CT, MRI,
MSENet [45]  PET, SPECT
FusionGAN [48] VI, IR,
DDcGAN [50] CT, MRI,
DSAGAN [52]  PET, SPECT
TransFuse [56] CT, MRI
THFuse [57] VI, IR

Maintains long range
dependencies and can
capture local and
global features well.

Requires a lot of
training data. Time
inefficient.

4 Proposed framework

Upon knowing about the strengths and weaknesses of traditional and deep learn-
ing based image fusion techniques. It is noteworthy to understand the signif-
icance of activity level measurement. In traditional image fusion techniques,
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activity level measurements are taken by first transforming the source images
into a different domain and then coming up with a mathematical formulation
for relevant feature extraction, and then measuring for levels of activity for each
pixel in the source images using a quantifier. These activity levels helps in ob-
taining the best possible fused image. In deep learning based techniques the
activity level measurement can be made using features extracted automatically
with the help of convolutional neural networks. And from the techniques dis-
cussed in the previous section, it can be concluded that using multiscale feature
extraction process turns out to be the most optimal method for extracting rel-
evant features without having to go deep.

The proposed architecture is an unsupervised deep learning model for multi-
modality medical image fusion which contains the following key components:

e Siamese multi-scale feature extraction module which is able to learn more
accurate features even if the training data is significantly less.

e Uses long and short skip connections for smooth training and long range
dependencies.

e Uses partial reference image quality metric as the training loss function in
order to capture textural and contrast information well.

The network contains eight trainable layers which are divided into three mod-

ules: (a)Siamese multiscale feature extraction, (b)Feature fusion and (¢)Reconstruction.
In order to solve the issues put forth by various deep learning based techniques,

it is worth mentioning that the architecture aims to incorporate the following
things:

e Long range dependencies without having a complicated architecture
e Little dependence on hyperparameters.
e Generalizes well.

e Have the ability to learn significant features with fewer layers.

4.1 Feature extraction process

The feature extraction module of the proposed architecture in Fig.3 is inspired
by the multi-scale decomposition process used in the traditional medical image
fusion algorithms. The module is comprised of a Siamese CNN architecture
having two identical subnetworks with shared weights that takes as an input
two multimodality images. Instead of relying on a deeper architecture with nu-
merous convolutional layers, the module relies heavily on learning multi-scale
feature representations which in turn helps in capturing low and high level fea-
tures simultaneously [58]. To capture these features, kernels of size 5 x 5 and
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7 x 7 are used respectively. All convolutional layers are followed by batch nor-
malization having rectified linear unit activation in the end. In order to initialize
and re-map the feature extraction process, the multi-scale layers are preceded
and followed by mono scale convolutions having kernels of size 3 x 3. The
module also supports short skip connections which provides an uninterrupted
gradient flow throughout the network. The mono scale convolutions alongside
batch normalization and ReLLU can be expressed as:

Ait1 = max{0, BN (W, x A;)}

Where W; and BN represents the convolutional kernel and Batch normalization
respectively. A;y; is the output feature map of the i + 1*" convolutional layer,
and the symbol ’#’ represents the convolution operation. Likewise, for the multi-
scale feature extraction, each mappings from 5 x 5 and 7 x 7 are extracted
simultaneously, which can be expressed as:

ajyq = maz{0, BN (W} = A;)}
az,q = max{0, BN (W72 * A;)}

Where al is the output mapping at the I*" scale of i*" convolutional layer,
and W} is the ' scale convolutional kernel. Subsequently, the mappings are
concatenated for further processing, which is expressed as follows:

ko 1 2
Aj = Concat(a; 1,03, 1)

Where A "1 represents the concatenated representation of the k" multi-scale
convolutional layer. For the purpose of illustration Fig. 4 represents the multi-
scale block of the feature extraction process. Note that, during the feature
extraction process pooling operation is not considered, as experiments suggests
that it is actually removing the essential information from the source images
whereby unabling to reconstruct the fused image. Also, padding of appropriate
size is considered in order to keep the sizes of the feature maps same as that
of the source images. Unit strides are taken in each of the convolutions for the
whole architecture.

4.2 Feature fusion and Reconstruction

The feature fusion process is fairly straight forward, similar to the concatenation
step during multi-scale extraction, the Concat(F,, Fp) operation completes the
feature fusion process, where I, and F}, are the final feature representations of
the multi-scale extraction process as illustrated in Fig.3.

The Reconstruction phase of the proposed architecture comprises of a set of
convolution operations having short and long skip connections in order to output
the final fused image. It must be noted that deconvolutions or transposed
convolutions was not used for this step since appropriate amount of padding
was performed in each step of the feature extraction phase, and hence applying
transposed convolutions was actually inhibiting the model to reconstruct a well
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Figure 4: Proposed multi-scale fusion block.

defined fused image. The ”ConvBlock” in the architecture consists of a sequence
of two back to back convolution operations of size 3 x 3 each, which are preceded
and followed by 3 x 3 kernels, having short and long skip connections in between
to smoothen the reconstruction process. The long skip connections are the key
to making the proposed model robust, as it takes care of the essential features
brought forth by each of the imaging modality.

4.3 Implementation Details

The multi-scale structural similarity index (MS-SSIM) is a modified version of
the structural similarity index (SSIM) [59] that takes into account the struc-
tural information of an image at multiple scales. SSIM is a widely used image
similarity metric that measures the similarity between two images by comparing
their luminance, contrast, and structural information. While SSIM is effective
at measuring the similarity between two images at a single scale, it can be sen-
sitive to small changes in the images that may not be perceptually significant.
MS-SSIM was developed to address this limitation by considering the structural
information of the images at multiple scales, which allows it to better capture
the perceived similarity between the images. In a patch P, SSIM for the center
pixel p can be expressed as:

(2papty + ¢1)(202y + ¢2)

SSIM(p) =
®) = 42+ 12 4 )02 + 02er)

= U(p).cs(p)

Where ¢; and ¢y are small constants that are used to stabilize the division and
prevent the denominators from becoming too small, z, y are sliding windows in
the reference image and source images respectively, with mean as pu,, variance
as 02, and the covariance of z and y is denoted as o,,.

Given a dyadic pyramid of K levels MS-SSIM can be defined as:

K
MS-SSIM(5) = 1 (p). H es’ (p)
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In this chapter, the researchers explore the use of MS-SSIM as a loss function
for the task of multimodal medical image fusion. Loss functions are an essential
component of machine learning models, as they define the measure of how well
the model is able to learn from the training data. The choice of loss function
can have a significant impact on the performance and convergence of the model.
For patch P its center pixel p, the MS-SSIM loss is evaluated as:

LMSSSIM(py — 1 _ MS-SSIM(p)

Further details regarding MS-SSIM can be furnished from [60]. To evaluate the
performance of the model, the researchers used MS-SSIM as the primary loss
function, along with mean squared error loss, which can be termed as pixel loss,
given by:

n
Lpixat(F) =Y MSE(I;, F)

i=1
Where I; are the input source images and F' is the fused image respectively.
The researchers found that using MS-SSIM as the primary loss function resulted
in better fusion results. In comparison, using the pixel loss alone as the loss
function resulted in intensity distortions and had introduced artifacts as well.
The final loss function is the sum of both of these losses.

L = Ays-ssim (F) + Lpixel (F)

where the value of A is chosen to be 500 for faster convergence. Overall, the find-
ings suggest that MS-SSIM is a promising loss function for multimodal medical
image fusion and warrants further investigation.

The major limitation for multimodal medical image fusion is the lack of
training data and ground truth availability. The proposed architecture is there-
fore designed in such a way that even if it is trained on fewer images, the model
is able to capture relevant features to perform a high quality fusion task, which
was possible due to the multi-scale feature extraction and the long-short residual
connections [61]. Data used for training and testing is openly available on Har-
vard Brain Atlas [62]. The model was trained on 180 image pairs of CT and MRI
brain scans. Each image is resized to 200 x 200 for training. One-cycle learning
rate schedular [63] is incorporated with a maximum learning rate of 0.01. The
model was trained using adam optimizer [64] for 100 epochs with a batch size
of 40. Implementation was done over Google colaboratory environment and the
model is built using the pytorch framework [65].

5 Experimental results and discussions

5.1 Evaluation setup

Performance of image fusion techniques is evaluated using various criteria such
as entropy, mutual information, and fusion symmetry. The choice of criteria

18



depends on the fusion task and the type of fused image. Based on the men-
tioned criterias, dicussed below are few image quality metrics that are used for
comparative analysis.

(a)

(©)

(d)

Normalized Mutual Information (Qnp): Mutual information (MI) is a sta-
tistical measure that quantifies the dependence between two variables. It
is often used to measure the amount of information shared by two images.
The mathematical definition of MI for two discrete random variables X
and Y is as follows:

MI(X,Y) =Y > plz,y)log, pp(xi’y)

zEX yeEY (7)p(y)

Note that, p(z,y) is the joint probability distribution of X and Y, with
p(z) and p(y) being the marginal distributions of X and Y respectively.
Suppose the source images are given by I; and Is, with the fused image
as F, then the normalized mutual information [66] is given by:

MI(Iy, F) MI(I5, F)
{E(Il) +E(F) " E(L)+ E(F)}

Omr =2

where F(.) is the entropy. Range of Oy lies from 0 to 1, 0 indicating
poor fusion quality while 1 meaning perfectly fused image.

Feature mutual Information (Qpy): Feature mutual information is a met-
ric used to measure the similarity between fused image and reference im-
age. It is used to evaluate the quality of image fusion and ensures that
important features of the original images are preserved in the fused im-
age. Mathematical details regarding the metric can be seen from [67].
Note that Qpwmr € [0, 1], and higher score indicates better fusion results.

Edge based measure (Qap,/r): It measures the total information transfer-
ence of the source images to the fused image using edge information. It is

defined as: My N N
F, BF
QAB/F _ 2im1 2= QM wE; + Q% wl ]
M N
Zi:1 Zj:l[wim,j + w?,j]

where A, B and F being the source and fused images respectively. Notice,
QAF and QBF are edge preserving values which are weighted by w® and
wY. Range of @45/ lies in [0, 1], where values closer to 0 indicates less in-
formation is transferred and values close to 1 indicates higher information
gain. Additional details about the metric can be obtained from [68]

Structural similarity based metric (Qg): An alternative method for using
SSIM in image fusion evaluation is presented in [69], which is based on
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the traditional definition of SSIM and is defined as:

A(w)SSIM(A,Fw) + (1 — A(w))SSIM(B,F|w),
if SSIM(A,B|w) > 0.75
Qs =
max[SSIM(A,F|w), SSIM(B,F|w)],
if SSIM(A,F—w) < 0.75

where w is a window of odd size that scans from top left to bottom right
with unit steps and A(w) is weight obtained from the local image features.
A, B are the source images and F is the fused image. Similar to other
metrics, Qg € [0, 1], 0 indicating poor fusion quality, while 1 indicating
perfectly fused image.

The indices/metrics mentioned above uses the input and fused images in order
to evaluate the performance of the fusion algorithm, and hence these metrics
can be termed as partial reference image quality metrics because the ground
truth is unavailable. Moreover, the literature is further extended to no-reference
image quality metrics as well. These metrics incorporates the knowledge of
human visual systems, and uses statistical methods to mathematically quantify
the perceptual quality of the image. One such metric used for the analysis
is Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [70]. The
goal of employing blind image quality metrics is to predict the naturalness of
the fused images without using input or ground-truth images as reference. The
metric is designed to produce a positive numerical result, with a smaller score
indicating better visual quality. This allows for the comparison of the proposed
result with other techniques.

Table 5: Experimental Dataset: CT(left)-MRI(right) image pairs used for com-
parison

Dataset-1 Dataset-2

Dataset-3 Dataset-4
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5.2 Results and Discussions

To reveal the strengths of the proposed medical image fusion framework, a va-
riety of experiments were conducted using the evaluation metrics mentioned
above, and the results obtained were compared to five state-of-the-art image
fusion techniques, three of which are non deep learning based which uses Sta-
tionary Wavelet Transform [71], Laplacian Pyramids [72] and Non-Subsampled
Contourlet Transform [73], the remaining two are deep learning based tech-
niques one of which relies heavily on the VGG19 [74] architecture and the other
is the IFCNN [40] method. The superiority of the results obtained is discussed
both subjectively and objectively in the following sections. For the purpose of
evaluation, brain scans of CT and MRI modalities are chosen, the image pairs
are registered beforehand, and are freely available online [62]. Table 5 represents
the set of image pairs used for objective experimentation.

5.2.1 Qualitative Evaluation

Evaluating the fused results through a qualitative approach is of paramount im-
portance, as it ensures that the images not only meet the technical requirements
but also the standards of the human visual system. The proposed architecture
resulted in visually pleasing fused images upon training. As shown in Table 6
and 7, the fused images not only retained texture details but also maintained
contrast information from the input source images, which makes sure that if
there exists an anomaly(tumor/lesion) in any of the source images, then it will
be captured in the fused image as well. On the contrary results produced by
LRD and NSCT based approaches are overexposed, while SWT and IFCNN
have rather dull appearence. Results given by the VGG19 based methods are
also visually appealing and appears to have captured most of the relevant in-
formation.

5.2.2 Quantitative Evaluation

As can be seen from Table 8, the results obtained from the proposed architecture
have shown dominance in terms of the blind image quality metric (QprisqQur)
and information transference (Q*B/¥), which further clarifies the claims of gen-
eralizability and long range dependency. Additionally, it must also be noted that
NSCT and VGG19 based method have dominated in terms of mutual informa-
tion (Qmr, Qrwmr) and structural similarity (Qg), however, after VGG19 based
model, the proposed results have the overall best performance as compared with
the other four methods. Given that IFCNN had already outperformed several
of the GAN and CNN based models, its results are far inferior when compared
with the proposed architecture.
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Table 6: Fusion Results of the proposed framework

MRI Fused Images
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Table 7: Subjective Quality evaluation

VGG19 [64]  NSCT [63] LRD [62] SWT [61] Proposed

IFCNN [39]

Dataset-1

Dataset-2

Dataset-3

Dataset-4
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Table 8: Objective quality evaluation

QM1 Qrmi Qapyr Qs OBRISQUE

_, | Proposed  0.8118 0.8367 0.7190 0.9957 34.5174
*qls SWT 0.8157  0.8453  0.6780  0.9961 40.6390
E LRD 0.7860  0.8521 0.5880  0.9930 35.5579
8 NSCT 0.8375 0.8639 0.6670  0.9936 38.8441
VGG19 0.8773 0.8546 0.7040 0.9962 41.2680
IFCNN 0.6385  0.7715  0.5519  0.9925 42.5134

o | Proposed  0.9428 0.8909 0.8149 0.9963 47.1250
*;') SWT 0.9669  0.8933  0.8000 0.9970 50.7880
E LRD 0.9336  0.8952  0.7101 0.9933 48.6970
5 NSCT 0.9725 0.8971 0.7552  0.9935 49.4562
VGG19 0.9990 0.8960  0.8089  0.9970 49.5364
IFCNN 0.7159  0.8238  0.6211 0.9924 50.9619

o | Proposed  0.8730  0.8601 0.7601  0.9947 43.4630
JG'JJ SWT 0.8710 0.8738 0.7265 0.9955 46.6320
E LRD 0.8840  0.8756  0.6398  0.9901 44.4210
5 NSCT 0.9094 0.8850 0.6776 0.9908 44.5331
VGG19 0.9109 0.8775  0.7378  0.9956 46.3750
IFCNN 0.8999  0.8688  0.7668  0.9953 47.5811

— | Proposed  0.8424  0.8781 0.7131  0.9970 36.7379
= SWT 0.8658  0.8820  0.7064  0.9973 42.4839
E LRD 0.8203 0.8852  0.6313  0.9955 41.7659
5 NSCT 0.8644 0.8953 0.6903 0.9960 41.8448
VGG19 0.9245 0.8882 0.7061 0.9974 43.0376
IFCNN 0.6101 0.7889 0.5586 0.9921 43.8322

6 Conclusion

Image fusion is a technique that combines multiple images with similar content
but different information to create a single high-quality image. In this chap-
ter, the authors provide an extensive review of various traditional and recent
deep learning-based state-of-the-art techniques for multimodality image fusion.
Upon reviewing, it was pointed out, that deep learning based techniques have
outgrown majority of the traditional image fusion methods. It was also pointed
out that when it came to medical image fusion deep learning based techniques
suffered from issues such as long range dependency, senstivity to hyperparam-
eters, poor generalizability and learning insignificant features. All these issues
were addressed by proposing a novel unsupervised multi-scale siamese archi-
tecture utilizing the power of convolutional neural networks for medical image
fusion. Upon comparing the proposed architecture with traditional and mod-
ern image fusion methods, it was concluded that the proposed scheme excels in
terms of contrast, texture and information preservation. Although there is still
room for improvement, it is believed that the proposed model can be extended
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to a robust general-purpose fusion framework for images of other modalities as

well.
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