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Abstract: Whispering gallery modes supported by open circular digtecavities are embedded
into a non-parametric 2-D frequency domain hybrid coupledientheory framework. Regular
aggregates of these cavities, including straight accemsneiis, are investigated. The model en-
ables convenient studies of the guided-wave scatteringessy the response of the circuit to
guided wave excitation. Transmission resonances can lvaathdazed directly in terms of reso-
nance frequency and linewidth by computing supermodeseoétiiire composite circuits, com-
prising both cavities and bus waveguides. Examples of sirigh- and disk-filters, a coupled-
resonator optical waveguide, and a three-cavity photordtzoule in a reflector configuration
allow the approach to be assessed.
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1 Introduction

Circuits made of photonic micro-resonatdrs[[l, 2, 3] haveady for more than a decade been intensely inves-
tigated, typically with a view to applications in e.g. optidelecommunication or optical sensing. Our focus
is on coupled circular dielectric ring- or disk-cavities. hdéh it comes to modelling and design, but also to
understanding, techniques relying on coupled mode th&2¥§T() offer frequently a more practical alternative
to usually computationally quite expensive rigorous nuaamethods. As the present work continues our
preceding study |4], we refer to that article and the citaitherein for a brief overview of techniques that are
relevant in the present context.

Circular micro-resonators are traditionally describedeirms of a parametric modell[5, 6]. Bend modes sup-
ported by curved waveguides or curved dielectric inteddd® represent the optical field in the cavity. For
givenreal excitation frequency these modes are characterizedcbynplexangular propagation constant. Cou-
pling regions are defined where the cavity(-ies) and bus guades are close. The mode amplitudes tions

are expected to change while traversing these regionse whikide the fields are assumed to propagate inde-
pendently. Resonances appear as extrema in the tranam&dsoacteristics when scanning over excitation
frequency, i.e. must be attributed to the entire compogitace.

There is, however, a dual, equally justified viewpoint [8Rhttfirst considers the separate optical cavities, here
the separate dielectric rings or disks. Their “native” resmes, known as Whispering Gallery Modes (WGMSs),
are characterized by@mplexeigenfrequency animtegerangular wavenumber [9] (for lack of a better term,
we apply the name WGM also to cavities with more than one Eraaterface). If the cavities are brought
together and / or close to a bus waveguide, one expects the MG Mteract, where “interaction” now means
adjustment of their individuatoefficients Building on the preliminary results of [10], it is our aimreeto
realize this second viewpoint by introducing WGMs into ariework of hybrid analytical / numerical coupled
mode theory (HCMT,[[11]). The previous bend-mode view hanbexplored, in an HCMT context, in Ref.
[4]. We shall see below that both approaches lead to closétseat least for the present set of parameters.

For a configuration without excitation, looking for nontal/solutions establishes an eigenvalue problem for the
“supermodes” of the circuit. On the one hand, when appligdte.a cluster of cavities (“atoms”) that constitute
a photonic “molecule”, this permits one to investigate tifteof degeneracies of the atoms’ eigenfrequencies
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due to the presence of the neighboring atoms. On the othel, lla@ supermode reasoning can be applied
to composite circuits that comprise cavities and bus chHanméth the fields in the waveguides restricted
to outgoing waves. Frequencies and linewidths of (trarsionig resonances are thus computed directly, i.e.
without having to carry out frequency scans. Here one migkeove similarities to the treatment of resonant
1-D multilayer structures in terms of quasi-normal modesI, [12,[13]). We do not, however, attempt
any rigorous expansion into a complex frequency basis otdmeposite problem. Rather we will reason, at
least qualitatively, along the procedure outlined inl [18,/16], where resonances of the transmission problem
are approximated by combining (supermode) resonancesdividoal and composite cavities with suitable
expressions for the incoming waves.

In particular, the WGM-HCMT supermode approach permitstormonveniently investigate coupling induced
shifts of resonance frequenciés|[17] and related effedts.idsue attracted further recent interest; examples are
the parametric frequency- and time-domain models of R&B;/19], also combined with numerical analysis
[20] and experimental observations [21]. Contrary to retipe statements in Ref. [17], these coupling-induced
phase shifts can well be predicted by CMT, at least by(#éfieinitio) variant discussed here.

The properties of WGMs, for the parameters that we consid#ris paper, are briefly discussed in Secfibn 2.
SectiorB outlines the present coupled mode framework, rdnabiuces the notions on supermode and pertur-
bation analysis. The examples in Secfibn 4 provide bendksnand illustrate different aspects of the previous
theoretical approach.

2 Whispering gallery modes of micro-rings and -disks

WGNMs of circular cavities serve here as prototypes of thereigpdes of open dielectric cavities. Adhering to
the analytical 2-D model of [9], using an ansatz of separfiblds in polar coordinates, the relevant scalar 2-D
Helmholtz equation transforms into an eigenvalue probléBessel type for the radial function, with piecewise
constant coefficients. Piecewise solutions are soughtrimstef Bessel and Hankel functions. The choice of the
Hankel function of second kind in the external region, foneetdependence exp(iw®t) for eigenfrequencies
w® with positive real and imaginary parts, realizes the boundandition of purely outgoing waves. Analytical
solutions are found by tracking roots through a complexmseteethod. Our implementation relies on routines
for complex Bessel and Hankel functions from|[22] 23]. Toeagete initial root estimates, the related bend
mode problems are translated to equivalent straight wagtegu24], followed by feeding restricted staircase
approximations of the resulting effective refractive indwofiles to the 1-D multilayer slab mode solver of
[25]. Figurell summarizes the properties of some of the WGdswill play a role in Sectiohl4.
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Figure 1: Resonance wavelengthsand quality factors) of WGMs supported by 2-D dielectric rings (a) and disks (b)
with varying radiiR in a wavelength region arourids5 :m; parameters as given for Figlile 2. (c): profile of the ring-
WGM indicated by the marker in (a), fdt = 7.5 um; absolute value (top) and time snapshot (bottom) of thecjpal
electric componenk,. See Figurél6(a, d) for the profiles of the disk-WGMs marke@jn
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We adopt a notation WGNI(m) for the characterization of the WGMs in terms of two “quantaumbers”,
the number of radial minimain the principal electric field component of the mode profdad the angular
wavenumbern. Adhering to common notions, the eigenfrequenci€sare specified in terms of the related



resonance wavelength = 2wc/Rew®, the Q-factor) = Rew®/(2Im w®) associated with the resonance, and
by the ratioAX = A\;/Q, which corresponds to the linewidth (full-width at half ni@xm) of the outgoing ra-
diation [26]. A time animation of the physical waves showsfileld rotating clockwise as one compound, with
outwards escaping radiation, slowly decaying in time. Adidas are twofold degenerate; fields WGM{m)
corresponding to anticlockwise rotation and respectiwsgaping radiation constitute valid solutions of the
WGM-eigenvalue problem as well.

3 Hybrid analytical / numerical coupled mode theory

The HCMT approach will be outlined for the single ring filteantiguration as introduced in Figuré 2, adapted
from Ref. [4]. The parameters apply correspondingly alsalltother configurations in this paper. Our primary

interest is in the scattering problem, i.e. in determinimgrelative guided wave transmissidrand power drop

D for given excitation, here in the upper left port. Unidiieogl propagation, as indicated by the arrows in
Figure[2, will be considered first. Extension towards furttigannels or cavities, towards multimode elements,
or towards bidirectional wave propagation should be stthigward [11].

Figure 2: Filter device consisting of a cavity ring betwewn straight bus wave-
guides, a 2-D configuration described in Cartesian cootéiéa > or polar coor-
dinatesr, 0. Parameters: refractive indiceg = 1.5 (guiding regions)pp = 1.0
(background), cavity radiuR = 7.5 um, core widthd = 0.75 um, bus wave-
guides, core widthv = 0.6 um, gapsy = 0.3 um. All simulations are restricted
to 2-D, uniform for TE polarization, where the single pripal electric field com-
ponentE,, is perpendicular to the-z-plane of interest. We consider a spectral
region around the target vacuum wavelengts 1.55 um.

3.1 HCMT procedure

We aim at approximate solutions, in 2-D, of the homogenemguiEncy-domain Maxwell equations
V x H —iwegeE =0, -V xE —iwpgH =0, (1)

for the optical electric and magnetic fields H. The stationary fields oscillate exp(iwt) in time with the
(real) excitation frequency = 2wc/\, specified by the excitation wavelengthfor vacuum speed of light c.
The HCMT model relies on a plausible “template”, an ansatztie overall electromagnetic field, which, in
case of the filter of Figurle] 2, reads

(7 Jo:2) = £ W02 () 000, + 3 50, 6), @
J

implying the relationsr(z,z), 6(x,z) between polar and Cartesian coordinates. Hefe(z,z) =
(E, H)""(z) exp(FifBz) are the forward/backward modes guided by the upper/lowsrdhannels at fre-
guencyw, with profiles(E, ﬁ)f' b propagation constants3, andz-dependent amplitudesandb. A number
(index j) of WGMs $(r,0) = (E, H)S(r) exp(—im;6) with mode profiles(E, H)¢ and integer angular
wavenumbersn; enter with coefficients;. By discretizing the functiong, b in terms of 1-D, here linear finite
elements (FEs) [11], the templaté (2) can be given the attgtram

(1 )21 = S (7 ) ©

of a sum over “modal elements’E, H) which, in case of the bus channels, combine the mode profiles
with the exponential dependences on the propagation ¢wiati and the familiar FE triangle functions. For
the cavity, the WGM profiles appear as modal elements, withather factors. The set of coefficienig <
{f;,b;,c;} includes correspondingly the discretized functignandb as well as the WGM amplitudes. Of
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these, the coefficients that relate to the incoming wave enughper left port and to the zero excitation in the
lower right port are given; all others need to be determined.

To do so, the relevant Maxwell equatios$ (1) are multipligdrial fields F', G and integrated over a suitable
(2-D) computational domain_[11]. One arrives at a weak forniEgs. [1), which, for reasons that become
apparent in Sectidn 3.2, is here written as

//.A(F,G;E,H)dxdz—w//B(F,G;E,H)dxdz:0 forall F, G, 4)

where
AF,G;EH)=F"- (VxH)-G"-(VxE), B(F,G;E,H)=i¢eF*-E+inG" -H. (5)

Upon inserting the generalized templdié (3) #or H, and restricting EqL{4) to the set of modal elements
(F,G) € {(Ex, Hy)}, this Galerkin procedure leads to a system of linear equsitid the form

Z (A, — wBy,) ap, =0, foralll (6)
k

with “overlaps” of modal elements
A, Z//A(Equ;Ek,Hk)dde, Bug, ://B(El7Hl;Ek7Hk)d$d2- (7

One now groups the coefficients= (u, g) such thatu represents the actual unknowns, whjleorresponds
to the given excitation, and arranges the system (6) acuglydi

Auu Aug) (Buu Bug)] <u>
—w =0, 8
K Agu Agg Bgu Bgg g (®)

or Kyu=—Kgg with K,= (Agu_ngu , Kg= Agg—wByg )" 9)

This last overdetermined systemm (9) can be handled in aggasires sense. One obtains, for given inpubhe
responsey at a prescribed excitation frequeneyas the solution of

KiKuu = —K]Kgg . (10)

Here the symbof denotes the adjoint. Further details, as well as an aligenaériational motivation of the
procedure, can be found in [11].

Note that so far we've been interested in approximate swiatiof the homogeneous systedm (1), subject to
boundary conditions that accommodate the prescribed imgpfguided) waves, together with arbitrary outgo-

ing waves (cf. e.g. Refs. [27, 28] or the appendix/ofi [11] farenformal statements). While these boundary
conditions did not show up anywhere explicitly, they arelthunio the template[(2) through the appropriate

selection of contributing fields.

3.2 Supermode analysis: eigenfrequencies of composite &as

As a means to directly predict resonances of the composstersyg, without carrying out frequency scans, we
now look for — prospectively complex — values$ where the system

V x H—iw’¢eE =0, -V xE —iwugH =0, (12)

subject to boundary conditions of outgoing waves only, gErmonzero solution€, H. As before, approx-
imate solutions are sought in the form of the template (2)y mathout any incoming waves (the respective
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coefficientsg are zeroed). With the frequency parameter being replacetticoynknown valueu®, one pro-
ceeds along the previous steps up to EL. (8), of which onlypiper left quadrant remains relevant:

Auu'u/ — wsBuuu. (12)

Eqg. (12) constitutes a generalized eigenvalue problenuti®ok are pairs of eigenvectousand eigenfrequen-
ciesws. To distinguish the related fields from the original WGMs, shall use the term “supermodes” for
these resonances. One thus obtains a set of supermodegssachated with a complex eigenfrequencgy
Q-factor@ = Rew®/(2lmw?®), resonance wavelengthy = 27c/Rew?, linewidth A\ = \;/Q, and a mode
profile, obtained by substituting the respective eigemveiato Eq. (2).

Depending on the specified field template the supermodesncarde the power outlets provided by the bus
waveguides; the Q-factors and linewithds then relate tepigetral properties of the waves that the composite
open cavity sends out through the access channels.

Note that the terms “resonance” is being used in this papatrlgast three different contexts: First there are the
WGMs of the separate cavities (Sectidn 2), given here agtcallsolutions. Second, transmission resonances
are observed as peaks and dips in the spectral scans of tieriagaproblems, determined by HCMT or
an alternative method. Third, the supermodes of the corgegstems are characterized by their complex
eigenfrequencies, determined by HCMT-eigenvalue aralygh purely outgoing wave templates.

Figured 4[ 8, andl9 show an excellent agreement betweenstieaiece wavelengths and linewidths associated
with the supermodes, and the peaks and dips in the speamnahtission curves. Note that, beyond observing
that agreement, we do not establish any formal relation éetvthe scans of the transmission problem, and the
supermode analysis. A means to do that could be to emplogtiaral procedures again, then with a template
that combines the given incoming wave with an entire supdemnor a series of supermodes, of the composite
system, in line with what has been carried out for 1-D prolsiémRefs.[[14] 15, 16] (not done here). At least
the field plots of e.g. Figurd 5 provide some intuition on hbvs might work.

3.3 Perturbations of whispering gallery resonances

When applied to a template with only a single unknown, Eq) (i&mits one to derive an expression for
the perturbation of the respective basis element by a smédthrn change of permittivity. Assume that we
investigate a cavity with permittivity functiog, which supports a resonance with fidity, H , at frequencyu,.
This cavity is being perturbed slightly; the permittivity= ¢,+Ae characterizes the new configuration. We then
look for the supermode of that configuration, using a teneplath merely the one given resonance. Eql (12)
can be evaluated explicitly for the supermode eigenfrequemNeglecting termsv Aw Ae, the respective
change in eigenfrequencyw can be given the form

—Wo€p / Aée|E,|? dz dz

W = .
// (€o€0| EBof* + pto| Hol?) da dz

A (13)

The approach requires that the original fields represeisoredble approximations of the actual fields of the
perturbed structure. As exemplified by Figlte 3, this appabe valid in case of small uniform perturbations
[24], here a small change of the core refractive index of thatg ring. However, one needs to be careful with
shifts of dielectric interfaces, if discontinuous basisdseare involved([22, 30].
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Figure 3: WGM resonance wavelengthsvs. core refractive indewg, for
rings with the parameters of Figlre 1(a) with= 7.5 um. The dashed lines
indicate the slopes as predicted by £ql (13), evaluatedtivititiields of the
reference structure forg = 1.5 (markers).




4 Examples

Our C++-implementation of the HCMT model relies on the roatiibraries([25, 23] for 2-D straight and bent
slab waveguides. Commercial software for finite-diffeeetime-domain (FDTD/[31]) and frequency-domain
finite-element (FD-FEM/[32]) simulations serves for bemelnking. The interpolation procedure as outlined
in [4] has been applied for the fast evaluation of spectrahsaén Figure§l4,]8, ard 9.

Among the computational parameters, for the templates maitiating elements, the most notable influence
must be expected from the extension of the computationadavin For the present parameter set, however, this
appears not to be critical. As an example, we could obsemgiyhany visible change of the transmission curves
in a plot like Figuré#(a), if the window is enlarged from théginal setting of(20 um)? to (45 um)2. Accurate
evaluation of the modal element overlajgs (7) is requiredl iceaes. The integrals are computed numerically by
Gaussian quadraturie [33], applied piecewise in case obnwowoth fields at dielectric interfaces, with stepsizes
such that the overall results appear to be converged (ctiextkeast occasionally).

4.1 Single-ring or -disk filters

Figurel4 summarizes the spectral properties of filter cordiipns with a single ring- or disk-cavity. Beyond the
data from the present approach, the figure includes resaitsd series of alternative methods. The bend-mode
based HCMT simulations view the cavity as a bent waveguidestipports eigenmodes witkal frequency and
complexangular wavenumber [4]. The “conventional” CMT modell[38lits the resonator into two coupler
regions, each comprising adjacent segments of a bend argighstwaveguide. The guided wave interaction
within these is modeled separately by standard codiresitiooupled mode theory, with the coupler scattering
matrices then embedded in an analytic resonator deseripfi@uite satisfying nice overall agreement can be
observed with the benchmark data from two numerical metf@2|$31].

As to be expected, slightly larger deviations appear forrdsnances related to the first order WGMs of
the micro-disk, where the larger radial extension of the W@dfiles leads to a stronger field overlap in the
coupler regions (albeit not to a more efficient interactio@bviously here the assumptions inherent in the
HCMT template are less adequate.

R

0.8

0.6

0.4

0.2

0.8

I

0.6

o — WGM-HCMT — WGM-HCMT
0.4 -—=--s.conv.CMT s L e L T .
/ ! —tem - BM-HCMT —tem -
02| L 0000 FDTD - Y, 0000 FDTD |
0 Seececcecessasee™” SosccecoRaase
154 1.56 158 1.60 . 1.58 1.60
A [um] (@ A [um] (b)

Figure 4: Transmission properties of micro-ring (a) andromvgisk resonators (b); directly transmitted poWeftop) and
dropped optical poweb (bottom) as a function of the excitation wavelengthParameters are as given for Figlite 2.
Results of different methods are compared, as explaingaduin the text: WGM-HCMT (continuous, the approach of
this paper), conv-CMT (dashed, conventional CMTI [34]), BM:MT (dash-dotted, (a) only, bend-mode-based HCMT
[4]), FEM (dash-dotted, (b) only, finite element solver, eoercial [32]), and FDTD (markers, finite-difference-time-
domain, commercial [31]). Resonances are classified bydh@réant contributing WGM. The marker lines in the central
part are positioned at the respective resonance wavelersgharate WGMs (light gray, continuous), WGMs perturbed b
the bus waveguide permittivities (light gray, dashed), H@MT supermodes (black, lower bars indicate the linewidths

Figure[4(a) shows WGM-HCMT results that are computed withnalicectional template which includes
WGMs(0, 37-41) of the ring. We also carried out WGM-HCMT seavith different field templates. If one



uses WGM(0, 39) only, then merely the respective dip/peglears in the transmission/drop curves, positioned
precisely (on the scale of Figuré 4(a)) at the same spot, aniththerwise flat response. A bidirectional field
template, with forward and backward waves in both bus charemed WGMs(0,+£37-+41) leads to hardly
any changes concerning the peak positions and widths, ligtdly lower power drop, i.e. to slightly higher
losses. The levels of reflected power (upper left port in Fé@) and forward-dropped guided power (lower
right port) remain belowt0~* over the spectral range considered here.

When compared to the ring, the micro-disk supports WGMs igh8y higher quality, which leads to the
narrower linewidths of the transmission resonances. Theewidths, however, are here obviously being
dominated by the interaction between bus waveguides and ¥/@M first order WGMs, originally of lower
quality, appear with narrower transmission resonancestti@WGMs of fundamental radial order, that interact
more effectively with the waves in the bus cores.

The central vertical lines in Figutd 4 indicate the resoeawavelengths and linewidths associated with the
(super-) modes of the device. While each individual WGM &ady associated with one of the transmission
extrema, there is still a noticeable difference betweemgbkenance wavelengths of the separate WGMs and the
positions of the transmission peaks. If one considers tlsechannels as a mere permittivity perturbation, in
line with the reasoning of Sectigén 8.3 (minus sign in Eq] Y1®)is leads to a further red-shift of the resonance
positions; here the simple perturbational viewpoint isdieinadequate. A supermode computation as outlined
in Sectiorl 3.2, however, with a template that covers the W@Mise cavity and the waves in the channel wave-
guides, permits one to predict the blue-shifted transmisstsonances and their linewidths quite accurately.
Table[1 collects some of the actual values that characténese resonances; Figuigés 5 ahd 6 provide some
impressions of the related field profiles.

M(037-+41)

0 0 0 0 0
2 jim] @) 2 jum] (b) 2 [um] © 2 [am] () 2 jim] 0] 2 ] ®

Figure 5: Field pattern related to the WGM(0, 39) resonarfaering filter in Figurd 4(a). Panels (a-c) correspond
to the transmission problem (tr), where a guided wave ebaitds present in the upper left channel. Bend-mode-based
HCMT results|[4] (a) serve as reference. The WGM-HCMT sirtiafes for (b) and (c) differ with respect to the HCMT
template: Plots (b) are based on a template that includebrediional fields for both bus waveguides and merely the
one WGM(0, 39) for the cavity. Simulations (c) take also WGB)s37-41) into account. Panels (d-f) show the results of
supermode calculations (sm), based on either a unidiredtldCMT-template (d) or on a template where bidirectional
variants of all fields are supplied (e, f).

Panels (a—c) of Figurlel 5 relate to the transmission resenahthe ring for WGM(0, 39). The bend-mode
HCMT result (a), here the reference, shows noticeably mdiffelocal intensities in the left and right half of the
cavity. This could be attributed to waves that enter thetgdtirough the top coupler, propagate along half the
ring, and leave the device through the bottom coupler, witltontributing in the resonance effect. The single
WGM(0, 39) used in the template for panel (b) with its rotaibsymmetry can obviously not represent that
feature. The template of (c) with a series of WGMs, howeeartls to a field plot very similar to (a). One might
thus just as well attribute the difference in local inteysit the interference of neighboring WGMs. In a plot of
the coefficients:; from Eq. [2) versus excitation wavelength (not shown), oeeéd observes a small nonzero
amplitude for the respective WGMs of nearby angular order.

Supermode fields for the ring are illustrated in panels (d¢ffigure[5, all with resonance wavelengths very
close to (coinciding with) the WGM(0, 39)-transmission éef. Table[1). Contrary to the unidirectional field
(d) with its traveling waves in all cores (this also applieqa—c)), the time animation of (e, f) shows purely
standing waves in the cavity, with outgoing waves in all foutlets. Applying the reasoning of [14,]15,16]



Ring At/ pm o Q AN/ pm  Fig. | Disk At/ pm Q@ AN/ pm  Fig.
WGM(0, 39) 1.56373 1.1-10° 1.4-10° [(c) | WGM(0, 40) 1.56514 8.2-10° 1.9-10° [B(a)
pert. 1.56516 pert. 1.56579
(tNewm 1.5621x Ba)| (tr) 1.5645x B(b)
(tNwemE,39)  1.5622z Bb) | (sm)g. 1.56454 6.7-10% 2.3-10~% [6(c)
(twem(, 37-41) 1.5622z Blc) | WGM(1, 35) 1.57444 1.7-10° 9.3-10~* [B(d)
(sm)yg. 1.56219 4.3-10%> 3.7-1073 [B(d)| pert. 1.57904
(SMhd., even 1.56223 4.5-10%2 3.5-107% [B(e)| (tr) 1.5730x B(e)
(SMd.. odd 1.56215 4.0-10% 3.9-107% [5(f) (sm)u. 1.57320 1.1-10° 1.4-107% [B(f)

Table 1: Resonance wavelengths or peak locations, respectively, in case of the transorispioblems (tr), quality
factorsQ) and spectral linewidthA )\ associated with selected resonances of Fiqufés [ 4, 5vés Rert” give the shifts
of resonance wavelengths caused by the bus waveguide dohese are considered merely as permittivity perturbreio
(tr) refers to extrema in the spectral transmission, coegbby bend-mode HCMT (BM), or by the present WGM-HCMT
with different templates. Rows (sm) contain the resultheftiCMT-supermode analysis, with uni- (ud.) or bidirecéibn
field templates (bd.).

one can imagine the field of the transmission resonance (ejging as the superposition of the unidirectional

supermode (d) with a guided wave in the upper excitation mblarsuch that the fields in the upper right port

interfere destructively, cancelling the direct transioiss The unidirectional supermode (d) in turn can be
viewed as a superposition of the nearly degenerate bidiredtmodes (e, f), such that the waves cancel in the
upper left and lower right outlets.
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Figure 6: Field pattern related to central resonances dditiefilter in Figurd ¥(b). Panels (b, c) correspond to theéaiad
fundamental mode WGM(0, 40) (a), panels (e, f) show patterthe first order WGM(1, 35) (d). HCMT results for the
resonant transmission (b), (e) are compared with the sugmgrfields of fundamental (c) and first order (f). All HCMT
fields rely on a template that includes the WGMs(0, 38-42)\at@Ms(1, 34-37).

Figure[® collects a series of field examples for the micré-desonator. Features very similar to the ring
are observed in panels (a—c) that concern the radially fuedsal WGM(0, 40). Fields (d—f) related to the
WGM(1, 35) of first radial order exhibit the radial nodal linad pronounced losses. As for the ring, for both
sets one can imagine, at least approximately, the tranemisssonance (tr) to be a superposition of the nearest
supermodes (sm) and a guide wave in the upper channel, withsalcomplete (b) or partial (e) destructive
interference in the upper right port. Contributions of btith supermodes (c) and (f) would explain the weak
angular beating pattern [B4] (most notable in (e)) of thagnaission resonances.

With the recipes of Sectidn 3.2, there are the means at hackiaiacterize directly the resonance properties
of the composite filter devices, without carrying out fregeye scans. The curves in Figure 7 shall serve as an
example. The HCMT templates include the fields of the bus gaides together with the WGMs(@,37-+41)

of the cavity ring; results with uni- and bidirectional telaies are compared. For the present parameter set, one
observes hardly any difference between the uni- and biitwresd models, in line with the findings of Ref. [35].
The degeneracy of supermodes with opposite symmetry igéied slightly for pronounced field overlaps

at nearly vanishing gaps (only just visible in part (a) forading). In accordance with [17], depending on the
bus core width (b), the cavity-bus-interaction causesghli red- or blue-shifted resonance of the composite
system (both signs are possible).
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4.2 Coupled resonator optical waveguide

Linear series of coupled cavities received much attentiothé recent past [36, 37], mainly for their optical
delay properties, both theoretically and experimentddigre we look at only one specific configuration adapted
from [4], a series of nine of the former cavities. Figlie 8 suanizes the results.

lc|, Rec,Imc [a.u.]

WGM(0,39)

,} —- - - WGM(0,37-41)
1.560 1.564 ;
A [um] (@) cavity # (b)

Figure 8: A coupled resonator optical waveguide (CROW) res®f cavities as introduced in Figlide 2. (a): Spectrum of
the device, relative transmissi@hand power dro@® as as function of the excitation wavelengttunidirectional HCMT
simulations based on templates with one WGM per cavity (bialeks) and with five WGMs per cavity (thin dashed
curves). The central lines give the positions of the reso@avavelength of one separate ring (single bold line, gray),
of the resonances for the series of rings without bus wadeguidashed), and of the resonances of the complete system
(continuous, here also the respective linewidths are shawall cases computed using templates with one WGM(0, 39)
per ring. (b): Supermode patterns for the system with busegmaides (bold), and for the ring series only (thinner,
mostly shadowed). Real parts (dashed), imaginary pargh¢datted), and absolute values (continuous) of the anggg
attributed to the WGMs of neighboring cavities are conmteclarify the systematics.

We focus on the spectral region around the WGM(O, 39)-resumaf the individual rings. As for the filter
of Sectior 411, one must expect that neighboring WGMs playi@ The transmission curves in Figlide 8(a),
obtained with templates that include the WGM(0, 39) and W@MN387-41) for each ring, agree qualitatively,
with only small shifts (on a scale of the free spectral ranigth®@rings,~ 36 nm, c.f. Figuré ¥4(a)) in the actual
peak positions. We therefore restrict things to the modareteach cavity is represented by a single WGM.

Supermode analysis for the chain of nine cavities, first uiththe bus channels, predicts that the original
WGM splits into a series of nine supermodes, positionededosbut not quite at, the transmission resonances.
If the access waveguides are taken into account as well, @dHsupermodes reflect accurately the peak
positions and the linewiths of the transmission spectruimgurie[8(b) compares the related “mode profiles”,
here the complex amplitudes assigned to the WGMs in theycagiies. One observes a systematic pattern
of “harmonics” with a growing number of “nodes”, where thenflamental resonance appears at the longest



wavelength, i.e. at the lowest energy level. Only minoradifhces between the patterns for the systems without
and with waveguides are visible.

Due to the semi-numerical nature of the HCMT approach ther@a principal restrictions on distances, posi-
tioning, or (guided wave) excitation conditions. Smalldbor global changes in refractive index can be taken
into account as perturbations, for supermode calculatospectral scans. The present model should thus be a
convenient means to to carry al-initio studies of further less-standard CROW-based circuits,dilg. bends

in CROW-based photonic moleculés [38], defect-assiste@WR [39], or tunable CROW based optical filters
[4Q], always including the access waveguides.

4.3 Three-ring photonic molecule

As a last example we consider three identical rings, pogtioat the corners of an equilateral triangle, and
their excitation through a single access waveguide (Fig(a®). Structures of this type have attracted interest
for some time already. The parametric scattering-matrixiehof Refs. [[41| 42] predicts that the configura-
tion can function as a resonant mirror / reflector. Withowt tlis channel, one might view the structure as a
photonic “molecule”, constituted by the three rings as phit “atoms”. A rigorous integral equation analy-
sis of isolated molecules with emphasis on their Q-factars ke found in Ref[[43]. Further recent studies
include theab-initio HCMT model [4], based on the bend mode viewpoint, a parampathway analysis for
purposes of application as a sensar [44], and an approxiamatiytical WGM-based description [45] that led
to experimental observatioris [46]. Results of the preseBMAHCMT model are summarized in Figure 9.

1 T T
T
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0.6 1
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0.2 b
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0 1 ol 1
1.556 1.558 1.56 1.562 1.564 1.566 1.568 1.57 1572

A [um]

3

&
A, = 1.56946pm “FHF

Figure 9: (a): Three-ring photonic molecule, excited by raight bus waveguide. (b): Relative guided transmitted
(T') and reflected optical poweR(, as a function of excitation wavelenghy bidirectional HCMT simulations with
the WGMs(0,4:39) included for each ring. The vertical markers indicate tbgonance WGM(0, 39) of an individual
ring (single bold gray line), the HCMT supermodes computedtie three-ring molecule only, without the bus channel
(dashed), and the supermodes for the entire compound stiogsbf molecule and waveguide (continuous, here also the
respective linewidths are shown). (c): Supermode profiteslipted for the three-ring molecule, time-snapshots ef th
standing wave pattern (large panels) and absolute valoeslgs insets) of the principal electric field component.

As before we look at the spectral region close to the WGM{(®9) resonance of the single rings. Bidirectional
wave propagation is essential in this case; the cavitiethaserepresented in the HCMT template by six WGMs.
Figure[9(b) shows the spectral guided wave transmissioneftattion. As for the previous examples, one can
only expect approximate results from the simple templatemg@arison with the bend-mode HCMT in Ref.
[4], however, shows that the spectral features are addguatetured by the WGM-HCMT model. The curves
deviate slightly with respect to the precise peak positiansl with respect to the predicted maximum levels of
reflection, for the three right-most reflection peaks. Nbg these features cover a total wavelength range of
about10 nm, roughly a quarter of the free spectral range of the iddii rings.
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At the same time our present model can, at least to some degygain the formation of the resonances. Con-
sidering only the molecule without bus channels, the HCMalysis predicts the six supermodes of Fidure 9(c).
One observes purely standing waves in all cavities, wittiostary nodal lines. This concerns a structure that
is mirror-symmetric with respect to the three axes anglext#s, hinted at by the thin dashed lines in the field
plots. One can thus expect modes with even (e) or odd paityi{b respect to each of these axes. The panels
in Figure[9(c) and the related resonance wavelengths inréoglassified accordingly. The “fundamental” su-
permode (eee) with the longest resonance wavelength /i@mesgy exhibits the least “strained” profile, i.e.
a field that is symmetric across all three lines. Likewiseghpermode (0o0) with the most “strained” field
appears with the shortest wavelength, or at highest enrgyectively. The four remaining supermodes come
in two degenerate pairs. Of these, one is symmetric witheasp the horizontal axis, the other antisymmet-
rid]. Suitable superpositions of these two degenerate modegehalize configurations where in turn each of
the three cavities is “switched off”, i.e. configurationsthvieven or odd symmetry with respect to each of the
three axes in turn, as exemplified by the third an fifth fieldgharow.

Once a bus channel is placed as indicated in Figlire 9(a),ntwming wave interacts only with those su-
permodes of the molecule that show non-negligible fieldngtte in the vicinity of the bus core. Hence one
observes merely four peaks, not six, in the transmissionrafieiction spectrum. The respective fields (not
shown) resemble, in the region of the cavities, the firstpsécfourth, and sixth profiles of Figuké 9(c). With
respect to the specific excitation through the waveguidestipermodes in the third and fith panels behave as
nonradiative “dark” states. In the present idealized mtuy} are degenerate with the radiating “bright” states,
the second and fourth profiles. Some small perturbation hiigls lead to the excitation of sharp resonances
of Fano-typel([4¥7], here in a comparably large dielectriegmated optic system.

As for the examples in Sections ¥.1 dnd] 4.2, the verticaklimeFigure[®(b) show that the positions and
linewidths of the peaks in the transmission spectrum canrately be predicted by HCMT supermode analysis,
if the bidirectional modes guided by the bus channel arentaki® account. The respective supermodes are
symmetric or antisymmetric with respect to the horizontdas.a Similar to the reasoning in Sectibn 4.1, the
transmission resonances, here the states with vanishiilegtren, can be thought of as a superposition of one
of these supermodes with the upward traveling guided modieeobus channel, such that the waves interfere
destructively in the upper outlet.

5 Concluding remarks

The HCMT scheme can be used successfully with templatesirthalive known modes of open dielectric
cavities. At least for the present configurations with higjltavities and thus moderately low losses, problems
related to the outwards growing basis fields did not occur. @uinitio calculations are based on analytically
computed WGMs of circular cavities. One obtains approxiomst for the full optical electromagnetic field. A
series of examples show the versatility of the method. Wepezifically looked at coupling-induced frequency
shifts, which can conveniently be predicted by HCMT supatenanalysis.

The scheme is inherently numerical in the sense that notalgxpressions for the amplitudes of the coupled

modes emerge. Still, by extracting the respective numleradaes, the coupled mode amplitudes can be made
available for inspection and physical interpretation.effiatively the method can be viewed as an approximate
numerical (finite element) scheme, but one with very spedfiacture-dependent nonlocal element functions.

One operates at the intersection between “numerics” andiétimg”; convergence can be expected only up to

what is built into the field template.

The extension to 3-D is still pending. While the formalismgagen in this paper is directly applicable to 3-
D configurations, the present analytical WGMs would havegaadplaced by numerical approximations, i.e.
by basis fields computed through corresponding cavity empele solvers [32]. For comparable circuits, the
number of unknowns, i.e. the dimensions of the systemis (1@Y&2), would remain the same as in the 2-D
case. However, apart from the bookkeeping, the efficienuatian of the basis element overlaps$ (7) would
constitute the major computational/numerical challenge.

Due to the numerics (rectangular computational windovegration procedures) the horizontal axis is not strictlyiesent to the
other two.
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