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Abstract—As the plasmonic scatterers get much smaller than
the wavelength of the incident light, local material models like
the Drude model and the Lorentz model become inadequate to
describe accurately the light-matter interactions. To overcome
this, a sophisticated nonlocal hydrodynamic Drude model is inves-
tigated. In practice, it is further simplified and simulated with the
curl-free approximation, which generates spurious resonances.
In this work we discuss a weak formulation based rigorous
numerical investigations of the nonlocal hydrodynamic Drude
model. This approach does not use the curl-free approximation,
and thus avoids spurious resonances. The simulated results agree
good with Mie results, and the method is capable of handling
arbitrarily shaped scatterers.

I. I NTRODUCTION

The dispersive material properties of plasmonic structures
are usually described by the Drude model and the Lorentz
model. These material models take into account spatially
purely local interactions between electrons and the light.
Recent investigations have shown that these local models are
inadequate as the size of the plasmonic scatterers become
much smaller than the wavelength of the incident light [1],
[2]. To overcome this, a sophisticatednonlocalmaterial model
is required, such as the hydrodynamic model of the electron
gas [3].

The hydrodynamic model is formulated by coupling macro-
scopic Maxwell’s equations with the equations of motion of
the electron gas. This gives rise to a hydrodynamic polariza-
tion current. Considering only the kinetic energy of the free
electrons, it yields the nonlocal hydrodynamic Drude model,
which is given in frequency domain by a coupled system of
equations

∇×µ−1
0 (∇×~E)−ω2ε0εloc~E = iω~JHD, (1)

β2∇(∇ · ~JHD)+ω(ω+ iγ)~JHD = iωω2
pε0~E, (2)

where~E is the electric field,~JHD is the hydrodynamic current,
εloc is the relative permittivity due to the local-response,β2

is a term proportional to the Fermi velocity,γ is the damping
constant, andω2

p =
e2n0
ε0me

is the plasma frequency of the free
electron gas.

II. CURL-FREE APPROXIMATION: SPURIOUS RESONANCES

Recently the nonlocal hydrodynamic Drude model has been
simulated with the finite difference time domain (FDTD)
method, but with the curl-free approximation∇×~JHD = 0 [4].
As a consequence of this approximation, the tensorial grad-
div operator (∇(∇ ·~JHD)) appearing in the governing equation
for the hydrodynamic current simplifies to vectorial linear
Laplacian operator (∇2~JHD). This was needed to render the
system into a form suitable for the standard FDTD framework.
However the comparison with the analytical Mie theory [1]
showed that this approach produces spurious plasmonic reso-
nances below the plasma frequency (ω/ωp < 1) [5].

III. W EAK FORMULATION

Here we outline a weak formulation based rigorous numer-
ical approach for simulation of the nonlocal hydrodynamic
Drude model. Details can be found in [6]. We start with (1) for
the electric field. An appropriate ansatz space for the electric
field is the Sobolev spaceH(curl,Ω) = {~E ∈ (L2(Ω))3 |∇×
~E ∈ (L2(Ω))3}, which contains fields with weakly defined
curl-operator defined on the domainΩ [7, Sec. 3.5].

Multiply (1) with a trial function ϕ ∈ H(curl,Ω), and
integrate overΩ. Then partial integration yields∫

Ω

(

(∇×ϕ) · (µ−1
0 ∇×~E)−ω2ϕ · εloc~E

)

dV +
∫

∂Ω
ϕ · (~n× (µ−1

0 ∇×~E))dA= iω
∫

Ω
ϕ · ~JHD dV, (3)

with the outer normal~n. Here we need to define boundary
conditions of the electric field on∂Ω, which is formulated
by the Dirichlet to Neumann (DtN) operator. Using total-
field/scattered-field formulation, one gets∫

Ω
((∇×ϕ) · (µ−1

0 ∇×~E)−ω2ϕ · εloc~E− iωϕ · ~JHD)dV+
∫

∂Ω
ϕ ·DtN(~E)dA=−

∫
∂Ω

ϕ · (~n× (µ−1
0 ∇×~Einc))dA+

∫
∂Ω

ϕ ·DtN(~Einc)dA, ∀ ϕ ∈ H(curl,Ω), (4)

where~Einc is the exciting field.
For (2) an appropriate ansatz space is the Sobolev space

H0(div,Ωs) = {~JHD ∈ (L2(Ωs))
3 |∇ ·~JHD ∈ (L2(Ωs))

3, ~n·~JHD =



0 on ∂Ωs}. This restricts the hydrodynamic current to the
plasmonic scatterer, and imposes zero normal component on
the boundary of the scatterer.

Then the variational form of (2) reads as

−
∫

Ωs

β2(∇ ·ψ)(∇ · ~JHD)dV+ω(ω+ iγ)
∫

Ωs

ψ · ~JHD dV

−iωω2
p

∫
Ωs

ψ · ε0~E dV= 0,∀ ψ ∈ H0(div,Ωs). (5)

After the problem is formulated in the Sobolev space
H(curl,Ω)×H0(div,Ωs) for (~E, ~JHD), one can use Ńed́elec
finite element spaces, which lead to a consistent discretization
of the problem, fulfilling the required boundary and material
interface conditions [7, Ch. 5]. We solving the resultant
discrete coupled system of with a sparse LU decomposition.

IV. N UMERICAL EXAMPLES

A. Cylindrical plasmonic nanowires

We validate the present approach by simulating a test case of
cylindrical nanowire in [1], for which analytical solutionbased
on Mie theory is available. When this setting was simulated
with the curl-free hydrodynamic current approximation as
in [4], spurious (model induced) resonances were produced,
which has been discussed in detail in [5].
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Fig. 1. Simulation results for the normalized scattering cross sectionσext of
the cylindrical nanowire in [1]. The curves show comparison of the finite
element numerical solutions for the nonlocal and the local hydrodynamic
model with the corresponding analytical solutions based on the Mie theory.

Consistent with the observations in [1], peaks due to non-
local interactions are presentonly beyond the bulk plasma
frequency. The positions of the surface plasmon resonance and
the nonlocal hydrodynamic Drude resonances agree very good
with the analytical Mie results.

B. V groove channel plasmon-polariton waveguides

To demonstrate capability of the method to handle an
arbitrary shaped geometry, we simulate a channel plasmon-
polariton (CPP) waveguide with a V groove.

We consider a V groove configuration as shown in clip of
Fig. 2. First we simulated it for the local Drude model. As
seen from the dashed curve in Fig. 2, several resonance modes
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Fig. 2. Effect of the nonlocal material response on the resonance modes of V
groove CPP waveguide. The waveguide parameters are as:l1 = 7 nm,w1 = 1
nm, a groove of lengthl2 = 0.7 nm, widthw2 = 0.7 nm is placed in the center.
The material and the hydrodynamic parameters are taken as in thecase of
cylindrical nanowires in [1]. The sharp corners of the waveguide are rounded
with corner radius of 0.1 nm. Resonances are excited by a unit amplitude,
x-polarized plane wave propagating in the direction of minusy-axis.

are excited. When this setting is simulated for the nonlocal
Drude model, the mode spectrum changes significantly (the
solid-line curve). Some of the local Drude model modes
such as atω/ωp = 0.306332 andω/ωp = 0.80262 experience
small shifts towards high frequency, whereas the others like at
ω/ωp = 0.466485 andω/ωp = 0.605087 undergo noticeable
shifts towards high frequency. As in the case of the cylindrical
nanowires, also for the V groove waveguide a completely
new set of resonances appear at the frequencies beyond the
plasma frequency. For the present simulation setting, some
of these hydrodynamic resonance modes are more prominent
than the higher order waveguide resonance modes. It gives
the indication with the inclusion of nonlocal effect, the modal
properties of the CPP waveguides change significantly.
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