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Abstract

Microresonator filters, realized by evanescent coupling ofcircular cavities with two parallel bus waveg-
uides, are promising candidates for applications in dense wavelength division multiplexing. Tunability of
these filters is an essential feature for their successful deployment. In this paper we present a framework for
modeling of tuning of the microresonators by changes of their cavity core refractive index. Using a reci-
procity theorem, a perturbational expression for changes in the cavity propagation constants due to slight
modifications of the cavity core refractive index is derived. This expression permits to analytically calculate
shifts in spectral response of the 2D resonators. Comparisons of the resultant shifts and spectra with direct
simulations based on coupled mode theory show satisfactoryagreement.

1 Introduction

High Q microcavity resonators are extensively investigated for a variety of applications like lasers, sensors, the
study of quantum electrodynamics, or integrated optical communication devices [1]. When such cavities in the
form of circular rings or disks are coupled to single/dual bus waveguides they act as wavelength filters. Due
to high Q and compactness of these filters, they are explored for dense wavelength division multiplexing in
integrated optics [2, 3, 4]. The realization and actual performance of the resonators are constrained by several
factors, e.g. an accurate definition of the resonance wavelengths requires a high degree of control of the geomet-
rical parameters, temperature dependent changes in the material parameters detune the spectral response. Active
(e.g. electro/thermo-optical, photobleaching) tuning ofthe resonators greatly relaxes these constraints [5, 6, 7].
This controllability is also utilized in other devices likelasers, optical switches, optical modulators [8].

In essence, an active tuning is equivalent to a controllableperturbation. This perturbational viewpoint is
often employed for microresonators based bio, chemo-sensors [9, 10]. Due to the sensitivity of whispering
gallery modes (WGMs) of the resonators towards the environment in which they are built up, any slight change
in the environment –in the exterior or the interior of the cavity– results in a shift of the resonance wavelengths,
and a change of output light intensity at a fixed wavelength. Such wavelength shifts have been analyzed using
arguments based on energy perturbations [11, 12] or rigorous finite element simulations [13]. Here we broaden
these studies in the context of add/drop filters.

For the application of microresonator elements as tunable wavelength filters, suitable materials are intro-
duced that permit a slight change of the refractive index of the cavity core by external mechanisms like electro-
or thermo-optic effects. For the modeling of such tuning, inthis contribution we propose and evaluate pertur-
bational expressions for phase shifts of the modes of the bent waveguides that constitute the cavity. Similar
expressions for the induced changes of propagation constants of modes supported by straight waveguides are
well known [14]. We use reciprocity techniques for the derivation. When applied to given cavity modes of a
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resonator configuration, these phase shift expressions allow to evaluate analytically the wavelength tuning range
for the respective resonances. These expressions resemblethose for the frequency shifts of whispering gallery
resonances of circular (uncoupled, isolated) cavities, obtained by energy perturbation arguments [15].

In principle, the proposed theoretical framework is applicable for both 3D and 2D settings. Subject to
availability of the cavity (bent) modes, analytic evaluation of the shifts is also possible. Due to an easy access
to 2D analytical bent modes [16], in this paper numerical results are discussed for the 2D geometry. Further
we discuss use of the perturbational expressions in combination with the semi-analytical 2D model for circular
microresonators, which is based on a spatial frequency-domain coupled mode theory [17]. Preliminary studies
can be found in Refs. [18, 19]. Within certain limits, the phase-shift formulas permit to predict directly how the
tuning affects the entire wavelength spectrum. Extension to 3D resonators is outlined in the concluding remarks.

2 Tuning of microresonators

The resonators under consideration consist of ring- or disk-shaped dielectric cavities, evanescently coupled to
two parallel straight bus waveguides, as illustrated in Fig. 1. The core layer of the cavities is assumed to be an
active region, e.g. heaters or electrodes are placed on top of it for tuning. We consider a 2D geometry in the fre-
quency domain setting, where a time harmonic optical signalexp (iωt) of given real frequencyω, corresponding
to vacuum wavelengthλ and wave numberk = 2π/λ, is present everywhere. Cartesian coordinatesx, z, and
polar coordinatesr, θ are introduced for the spatially 2D description as shown in Fig. 1. The entire structure and
the TE- or TM-polarized optical fields are assumed to be constant in they-direction.
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Figure 1: Schematic microresonator representation: A cavity of radius R, core refractive indexnc and width
wc is placed between two straight waveguides with core refractive indexns and widthws, with gaps of widths
g andg̃ between the cavity and the bus waveguides.nb is the background refractive index. Tuning is applied to
the core of the cavity.

To compute the spectral response, we apply a coupled mode theory (CMT) based model of the resonators [17].
In this model, the resonator is represented in terms of two bent-straight waveguide couplers, I and II as in Fig. 1,
which are internally connected by cavity segments of lengthL andL̃ (this length is measured outside the coupler
regions). The responses of the couplers I and II are characterized by their respective scattering matricesS, S̃;
whereas the fields in the cavity segments are characterized by their mode propagation constantsγ. Due to the
leaky nature of these modes, the propagation constants are complex valued, denoted asγ = β− iα, whereβ and
α are the real valued phase propagation and attenuation constants.

Given input powersPI and/orPA , the through powerPT and the drop powerPD can be calculated in terms
of S, S̃, andγ. The computation of the spectral response can be sped up using interpolation [17], where instead
of the scattering matricesS, S̃, which are associated with the couplers defined over a largerz interval, one uses
“reduced” scattering matricesS′, S̃′ associated with couplers of a zero length, such that the length of the cavity
is Lcav = 2πR. We use this technique for the subsequent simulations in Section 4.

2



As explained in Refs. [18, 20], at resonance the conditionβ = (2mπ + φ)/Lcav = βm holds for the cavity
mode phase propagation constantβ (real part ofγ), where the integerm gives the order of the resonance, andφ
is the total phase contribution due to the coupling. Assume that the wavelength dependence of the phase constant
β = β(λ) is given. Then one can writeβ(λm) = βm, whereλm is the resonance wavelength associated with the
resonant cavity mode propagation constantβm.

In principle, the tuning affects both the coupler response and the cavity mode propagation. If the coupler
length is short enough, then as a first approximation one can disregard the influence of tuning on the couplers,
and assume that a tuning mechanism, modeled by a parameterp, affects mainly the wave propagation along the
cavity. We verify the validity of this approximation for thesubsequent simulations in Section 4, where it is used
to simplify the computations. Now besides the wavelength, the cavity mode propagation constant also depends
on the tuning parameter, i.e.β = β(p, λ), with p = 0 representing the original state:β(0, λm) = βm.

As a result of tuning, the resonance of orderm is shifted towards a new wavelengthλ̃m, such thatβ(p, λ̃m) =
(2mπ + φ)/Lcav = βm is satisfied again, i.e. the wavelength shift compensates the change in the cavity mode
propagation constant due to a nonzero perturbation strength p. A linear approximation in the tuning parameter
and in the wavelength differences leads to

β(p, λ̃m) ≈ β(0, λm) + p
∂β

∂p

∣

∣

∣

∣

0,λm

+ (λ̃m − λm)
∂β

∂λ

∣

∣

∣

∣

0,λm

!
= βm. (1)

Hence the shift in the resonant wavelength∆pλm = λ̃m − λm that is effected by the tuning can be written as

∆pλm = − p

(

∂β

∂p

)(

∂β

∂λ

)

−1
∣

∣

∣

∣

∣

0,λm

. (2)

Express the propagation constant in terms of vacuum wavenumber and effective mode index asβ = 2πneff/λ;
if the wavelength dependence of the effective index is negligible, then

∂β

∂λ
= −

β

λ
+ k

∂neff

∂λ
≈ −

β

λ
. (3)

The same approximation can also be obtained by homogeneity arguments [21] for the propagation constants;
alternatively a more accurate representation of the wavelength dependence of the propagation constant in terms
of the group effective index of the cavity mode can also be derived [18]. With the above approximation, the
wavelength shift reads

∆pλm = p
∂β

∂p

λm

βm

. (4)

Note that the wavelength shift does not explicitly depend onthe length of the cavity.
We are interested in tuning by a slight change∆nc of the cavity core refractive index. The resultant shifts in

resonance wavelengths are given by

∆λm = ∆nc
∂β

∂nc

λm

βm

. (5)

In order to estimate this effect, one must know the dependence of the propagation constants on the core refractive
index. In the next section we derive a perturbational expression for the change in the cavity propagation constants
due to a perturbation of the core refractive index.

3 A perturbational expression for bend mode phase shifts

As outlined in Section 2, in the CMT model of the microresonators the cavity is segmented into pieces of bent
waveguides. Eq. (5) requires an expression for the derivatives, i.e. the first order changes, of the bend mode
propagation constants with respect to the cavity core refractive index. Here we adhere to the 2D setting as
introduced in Fig. 1, with polar coordinates(r, y, θ) (invariance in they-direction). For a bent waveguide with
radial refractive index distributionn(r) =

√

ǫ(r), let the full electric(E) and magnetic(H) field for a given
mode be

(

E

H

)

(r, θ, t) =

(

(Ẽr, Ẽy, Ẽθ)

(H̃r, H̃y, H̃θ)

)

(r) ei(ωt − γRθ), (6)
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where the∼ symbol indicates the mode profile. These mode profiles and thecorresponding propagation con-
stantsγ of the bent waveguides are computed analytically accordingto the expressions given in Ref. [16].

Suppose that the core refractive index is slightly perturbed, and the perturbed refractive index distribution
is given bynp(r) =

√

ǫp(r). Assuming that the mode profile remains unchanged for this perturbation, the
corresponding perturbed modal field(Ep,Hp) is approximated as

(

Ep

Hp

)

= P (θ)

(

E

H

)

, (7)

whereP (θ) is an unknown function of the angular coordinateθ.
By applying Lorentz’s reciprocity theorem [14] in polar coordinates to(Ep,Hp, ǫp) and (E,H , ǫ), one

obtains
∫

∞

0
∇ · (Ep × H

∗ + E
∗ × Hp) r dr

= −iωǫ0

∫

∞

0
(ǫp − ǫ)Ep · E

∗ r dr,

which upon inserting the ansatz (7) and after simplifying reduces to

dP

dθ

∫

∞

0
aθ · (E × H

∗ + E
∗ × H) dr

= −iωǫ0P

∫

∞

0
(ǫp − ǫ)E · E∗ r dr, (8)

whereaθ is the unit vector in the angular direction. Inserting the bent waveguide field ansatz (6) and solving for
P (θ) leads to

P (θ)=P0 exp

(

−iωǫ0

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ
∗

rdr
∫

∞

0 aθ · (Ẽ ×H̃
∗

+ Ẽ
∗

×H̃)dr
θ

)

, (9)

whereP0 is a constant, the superscript∼ represents the mode profile. Thus the perturbed modal field is

(

Ep

Hp

)

= P0

(

Ẽ

H̃

)

×

exp

(

−i

(

γ +
ωǫ0

R

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ
∗

r dr
∫

∞

0 aθ · (Ẽ × H̃
∗

+ Ẽ
∗

× H̃) dr

)

Rθ

)

,

and the change in propagation constantδγ due to the perturbation is given by

δγ =
ωǫ0

R

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ
∗

r dr
∫

∞

0 aθ · (Ẽ × H̃
∗

+ Ẽ
∗

× H̃) dr
. (10)

Note that the above expression can also be written in terms ofmodal fields(E,H) instead of mode profiles
(Ẽ, H̃). Then it is evident that the denominator of the fraction on the right hand side of Eq. (10) is equal to
4Pθ(θ), wherePθ(θ) is the power transported by the (unperturbed) bent mode in the angular direction [16].
Thus for a mode normalized to unit modal power, the change in propagation constant is directly proportional to
the strength of

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ
∗

r dr, i.e. the shift is the largest if the permittivity perturbation is present at
radial positions, where the squared bent mode profile (|E|2 = E · E∗) is strong. For typical well guided modes
supported by a cavity ring, a permittivity perturbation of the core layer automatically fulfills this requirement.
In case of whispering gallery modes (WGMs) of disk-shaped resonators, the field maximum is in the vicinity
of the outer dielectric layer interface. A slight perturbation in that region is immediately picked up by the
WGMs. Precisely this sensitivity of the modes is utilized inmicrocavity based sensors. One can see a close
formal resemblance of Eq. (10) for the change in the cavity propagation constant to the expression for the shift
of WGMs in microspheres by protein adsorption given in Ref. [15].

The right hand side of Eq. (10) is a pure real number. Therefore this expression, in fact, gives the change in
the real part of the propagation constant only, denoted byδβ. In Ref. [14] a similar expression for the change in
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the propagation constant for bulk uniform permittivity perturbations of straight waveguides is derived by means
of a variational principle.

In the present case of bent waveguides, the use of an asymptotic expansion of Hankel functions of second
kind H(2)

ν (nkr) (see Ref. [16]) reveals that, ifǫp − ǫ does not vanish for large radial coordinates, the integral
∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ
∗

r dr is undefined for the upper limitr = ∞ (obviously the template (6) for the perturbed
field does not constitute an acceptable approximation in that case of a uniform alteration of the properties of the
exterior cladding). Still, for a radially bounded perturbation δǫc = δn2

c = n2
cp − n2

c of the core refractive index,
Eq. (10) is well defined; in that case it simplifies to

δβ =
ωǫ0

R

δn2
c

∫ R

R−wc

E · E∗ r dr
∫

∞

0 aθ · (E × H
∗ + E

∗ × H) dr
(11)

whereR − wc and R define the core interfaces as shown in Fig. 1, andncp and nc are the perturbed and
unperturbed core refractive index respectively. For a small perturbation one can approximately write

∂β

∂nc
= 2nc

∂β

∂ǫc
≈ 2nc

δβ

δǫc

= 2nc
ωǫ0

R

∫ R

R−wc

E · E∗ r dr
∫

∞

0 aθ · (E × H
∗ + E

∗ × H) dr
. (12)

Note that the integrals that occur in the above expression are well behaved. HereE,H are the electric field and
magnetic field of the cavity mode associated with them’th order unperturbed (untuned) resonance. Using this
expression with Eq. (5), gives desired wavelength shift dueto tuning.

4 Simulation results

First we assess the validity of the perturbation expression(12). For the moderately lossy bent waveguide config-
uration considered in Fig. 2, the estimation of the change inthe phase propagation constants by the perturbation
expression agrees very well with the values computed directly by the analytical bent waveguide model.
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λ=1.05 µm 

Figure 2: Phase propagation constants estimated by the perturbational expression, for a bent waveguide config-
uration with widthwc = 0.5µm,R = 5µm and uniform backgroundnb = 1. Dashed lines denoteβ/k obtained
by direct calculations [16], dots are reference pointsnc = 1.5 andnc = 1.75, and the slope of the solid line
segments is given by expression(12).

As an another example, for Fig. 3 the perturbational expression (12) is evaluated for WGMs supported by a
single curved interface (meant as piece of a resonator disk). For the moderately lossy fundamental and first order
WGMs, the agreement is excellent, but for the second order WGMs which are considerably lossy (e.g.nc = 1.5,
γ/k = 1.0422− i 5.7410 ·10−3 (TE2), 1.0339− i 1.21610 ·10−2 (TM2)) there are major deviations. Apparently,
here the changes in the mode profiles and the attenuation constants due to the core refractive index perturbation
are not negligible, such that the ansatz (7) is not appropriate for these fields.

Having assessed the expression (12), now we validate the resonance shifts predicted by Eq. (5) using Eq. (12).
Table 1 gives comparison for the shifts for the test case of the ring resonator. For the present perturbation, it is
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Figure 3: Phase propagation constants of WGMs evaluated by the perturbational expression (12), for a bent
waveguide configuration withnb = 1.0, wc = R = 5µm. Interpretation of the curves is as for Fig. 2. The
subscripts 0, 1, 2 denote the order of the modes.

evident that the shifts predicted by using Eq. (5) using the perturbational expression (12) agree satisfactorily with
direct CMT simulations.

λm µm (CMT) ∆λm µm (Eq. (5), (12) ) ∆λm µm (CMT)
1.0184 0.0025 0.0025

1.0413 0.0026 0.0027

1.0654 0.0026 0.0027

Table 1:Comparison of ring resonator TE mode spectral shifts∆λm predicted by Eq.(5) (second column) with
direct calculations (third column) for a structure according to Fig. 1 withR = 5µm, wc = ws = 0.3µm,
ns = 1.5, nb = 1.0, g = g̃ = 0.2µm. The cavity core refractive index isnc = 1.5 for the unperturbed setting,
andncp = 1.504 for the perturbed structure.

For the evaluation of the effect of tuning, in principle one can compute the resonator spectra for the un-
perturbed and the perturbed configurations separately using the CMT based interpolation method described in
Section 2. Let’s assume that for a slight change of the cavitycore refractive index the coupler scattering matrices
S′, S̃′ do not change much, and the shifts of the resonances are entirely due to the changes in the cavity mode
propagation constants. Then usingS′, S̃′ of the unperturbed resonator, and adding the phase propagation constant
shiftsδβ to the propagation constantsγ of the unperturbed cavity segments, one can again follow thepreviously
described interpolation method, without recalculating the scattering matrices for the perturbed resonator. In this
way, a significant amount of computational work can be avoided. We will verify this approach.

Fig. 4 depicts the spectral responses for the perturbed and the unperturbed resonators. As seen in the top
plot, for the ring resonator the spectral response computedwith the above approximation method (solid line)
agrees quite well with the direct CMT calculation (circles). As far as the resonance positions are concerned,
similar agreement is found also in case of the present multimodal disk resonator, as shown in the bottom plots.
This agreement confirms the previous claim that the influenceof moderate tuning can be reliably captured by a
mere effect on the cavity mode propagation, without significant changes in the strength of the interaction with
the external waveguides. For the disk resonator, minor deviations are observed in the depths of the resonance
dips, in particular for the TE1 resonances, where apparently the change in modal attenuation due to the core
refractive index change is slightly larger than for the TE0 mode. The reason for these deviations is that the
present perturbation approach does not take into account alterations in the cavity mode attenuation constants.
Otherwise, the agreement is quite good.

5 Conclusions

In this paper we modeled the tuning of microresonator based filters by changes of their cavity core refractive
index. Slight changes in the refractive index affect mainlythe propagation constants of the cavity modes; the
respective phase shifts can be calculated using a reciprocity technique. The formulas are applicable to uniform
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Figure 4:Spectral shift due to tuning of the cavity core refractive index, for the ring- (top plot,wc = 0.3µm)
and disk-resonator configurations (bottom plot,wc = R = 5µm) of Table 1. The curves of the normalized trans-
mitted power are calculated by the interpolation method of Ref. [17] (nodal wavelengths:1.015µm, 1.05µm,
1.085µm) for the unperturbed resonator withnc = 1.5 (dash-dotted line) and for the perturbed resonator with
ncp = 1.504 (circles). Solid lines represent the results of the approximation based on the perturbation expres-
sions as outlined in the text.

localized perturbations of the radial permittivity profile; complications due to nonconvergent integrands do not
arise. This approach accounts only for the change in the realpart of the propagation constants. Nevertheless,
the spectral responses for 2D microresonators obtained with this perturbational evaluation agree quite well with
direct simulations based on 2D coupled mode theory. Especially for resonances involving less lossy (fundamen-
tal) modes, the agreement for the shifts of resonance positions is very satisfactory. If more lossy (higher order)
modes are involved, slight deviations in the resonant powerdrop are observed. Using the scattering matrices and
the cavity propagation constants of the unperturbed structure in combination with the shifts in the cavity mode
propagation constants given by the perturbational expression, one can reliably and efficiently predict the spectral
response for moderately perturbed resonators.

Even though here the simulation results are discussed for 2Dmicroresonators, the tuning model presented
is equally applicable to 3D resonators. In the latter case the present integrals over the 1D radial cross section
in Eqs. (10), (12) will become integrals over the radial/axial cross section plane of the cavity core. Bend mode
phase shifts can then be evaluated on the basis of (necessarily approximate) 2D mode profiles as provided e.g.
by the quasi-analytical bend mode solver of Ref. [22]. Further, using a 3D CMT model of resonators [23] one
can follow similar steps as outlined here to predict the tuned spectral responses. Thus extension of the present
framework to a 3D setting should be straightforward.
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[22] L. Prkna, M. Hubálek, and J.̌Ctyroký. Vectorial eigenmode solver for bent waveguides based on mode
matching.IEEE Photonics Technology Letters, 16(9):2057–2059, September 2004.

[23] R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J.Čtyroký. Cylindrical integrated optical mi-
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