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Abstract

Microresonator filters, realized by evanescent couplingi@ular cavities with two parallel bus waveg-
uides, are promising candidates for applications in dersesl@ngth division multiplexing. Tunability of
these filters is an essential feature for their successfbgiment. In this paper we present a framework for
modeling of tuning of the microresonators by changes ofrtb@vity core refractive index. Using a reci-
procity theorem, a perturbational expression for changedbleé cavity propagation constants due to slight
modifications of the cavity core refractive index is derivathis expression permits to analytically calculate
shifts in spectral response of the 2D resonators. Comperigbthe resultant shifts and spectra with direct
simulations based on coupled mode theory show satisfaatfrgement.

1 Introduction

High Q microcavity resonators are extensively investiddte a variety of applications like lasers, sensors, the
study of quantum electrodynamics, or integrated opticatrooinication devices[1]. When such cavities in the
form of circular rings or disks are coupled to single/duas bvaveguides they act as wavelength filters. Due
to high Q and compactness of these filters, they are explareddnse wavelength division multiplexing in
integrated optics]Z,13]4]. The realization and actualqrenince of the resonators are constrained by several
factors, e.g. an accurate definition of the resonance wagttie requires a high degree of control of the geomet-
rical parameters, temperature dependent changes in tiegiahgirameters detune the spectral response. Active
(e.g. electro/thermo-optical, photobleaching) tunindghef resonators greatly relaxes these constrdihfd [5, 6, 7].
This controllability is also utilized in other devices likasers, optical switches, optical modulataris [8].

In essence, an active tuning is equivalent to a controllgblgéurbation. This perturbational viewpoint is
often employed for microresonators based bio, chemo-se{8d10]. Due to the sensitivity of whispering
gallery modes (WGMSs) of the resonators towards the envieririm which they are built up, any slight change
in the environment —in the exterior or the interior of theitavresults in a shift of the resonance wavelengths,
and a change of output light intensity at a fixed wavelengtichSvavelength shifts have been analyzed using
arguments based on energy perturbatiéns([[11, 12] or rigdiinite element simulation5lL3]. Here we broaden
these studies in the context of add/drop filters.

For the application of microresonator elements as tunalleelgngth filters, suitable materials are intro-
duced that permit a slight change of the refractive indeshefdavity core by external mechanisms like electro-
or thermo-optic effects. For the modeling of such tuningthis contribution we propose and evaluate pertur-
bational expressions for phase shifts of the modes of the waweguides that constitute the cavity. Similar
expressions for the induced changes of propagation caastdmodes supported by straight waveguides are
well known [I4]. We use reciprocity techniques for the dation. When applied to given cavity modes of a



resonator configuration, these phase shift expressioms tilevaluate analytically the wavelength tuning range
for the respective resonances. These expressions restrabéefor the frequency shifts of whispering gallery
resonances of circular (uncoupled, isolated) cavitiemiobd by energy perturbation argumeiid [15].

In principle, the proposed theoretical framework is apille for both 3D and 2D settings. Subject to
availability of the cavity (bent) modes, analytic evaloatiof the shifts is also possible. Due to an easy access
to 2D analytical bent mode5[l16], in this paper numericaliltssare discussed for the 2D geometry. Further
we discuss use of the perturbational expressions in cotidemaith the semi-analytical 2D model for circular
microresonators, which is based on a spatial frequencyadoooupled mode theorZ[IL7]. Preliminary studies
can be found in Refs[ [18,119]. Within certain limits, the paashift formulas permit to predict directly how the
tuning affects the entire wavelength spectrum. Extensi@Dt resonators is outlined in the concluding remarks.

2 Tuning of microresonators

The resonators under consideration consist of ring- or-slilped dielectric cavities, evanescently coupled to
two parallel straight bus waveguides, as illustrated in [ligThe core layer of the cavities is assumed to be an
active region, e.g. heaters or electrodes are placed orf ibfootuning. We consider a 2D geometry in the fre-
quency domain setting, where a time harmonic optical signaliwt) of given real frequency, corresponding

to vacuum wavelength and wave numbek = 27/, is present everywhere. Cartesian coordinates, and
polar coordinates, ¢ are introduced for the spatially 2D description as shownignl. The entire structure and
the TE- or TM-polarized optical fields are assumed to be eansh they-direction.

Figure 1: Schematic microresonator representation: A cavity ofumi, core refractive index. and width
we IS placed between two straight waveguides with core réfi@abdexns and widthws, with gaps of widths

g andg between the cavity and the bus waveguidesis the background refractive index. Tuning is applied to
the core of the cavity.

To compute the spectral response, we apply a coupled mooigy f@&MVT) based model of the resonatdrs|[17].
In this model, the resonator is represented in terms of tvab-beaight waveguide couplers, | and Il as in [Eg. 1,
which are internally connected by cavity segments of ledgémd L (this length is measured outside the coupler
regions). The responses of the couplers | and Il are chaizsdeby their respective scattering matricesS;
whereas the fields in the cavity segments are characterizéitely mode propagation constants Due to the
leaky nature of these modes, the propagation constantermglex valued, denoted gas= 5 —ia, wheres and
« are the real valued phase propagation and attenuationacasist

Given input powers?, and/or Pa, the through poweP; and the drop powePp can be calculated in terms
of S, S, and~. The computation of the spectral response can be sped upingimpolation [1V], where instead
of the scattering matrice$, S, which are associated with the couplers defined over a largeerval, one uses
“reduced” scattering matrice¥, S’ associated with couplers of a zero length, such that theHesfghe cavity
is Leay = 27 R. We use this technique for the subsequent simulations itiddéd.
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As explained in Refs[[18,20], at resonance the condifica (2mn + ¢)/Lcav = (3 holds for the cavity
mode phase propagation constar(real part ofy), where the integei gives the order of the resonance, and
is the total phase contribution due to the coupling. Assuratthe wavelength dependence of the phase constant
B = B(A) is given. Then one can writeé(\,,) = (.., where),, is the resonance wavelength associated with the
resonant cavity mode propagation constant

In principle, the tuning affects both the coupler response the cavity mode propagation. If the coupler
length is short enough, then as a first approximation one ismagard the influence of tuning on the couplers,
and assume that a tuning mechanism, modeled by a parametféscts mainly the wave propagation along the
cavity. We verify the validity of this approximation for tlibsequent simulations in Sectldn 4, where it is used
to simplify the computations. Now besides the wavelendtl,davity mode propagation constant also depends
on the tuning parameter, i.8.= 3(p, A), with p = 0 representing the original staté(0, A,;,) = By,

As aresult of tuning, the resonance of ordeis shifted towards a new wavelength,, such thaﬁ(p, m) =
(2mm + ¢)/Lecav = B, is satisfied again, i.e. the wavelength shift compensatestinge in the cavity mode
propagation constant due to a nonzero perturbation strengh linear approximation in the tuning parameter
and in the wavelength differences leads to

= By @)

0,Am

- B
B, Am) = B0, Am) +p a—ﬁ

0,>\m a)\

Hence the shift in the resonant wavelength),,, = Am — A that is effected by the tuning can be written as

B = (65) (a@

Express the propagation constant in terms of vacuum wavieeand effective mode index ds= 27mnet/A;
if the wavelength dependence of the effective index is géajé, then
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The same approximation can also be obtained by homogemngitynants [[21] for the propagation constants;
alternatively a more accurate representation of the wagétedependence of the propagation constant in terms
of the group effective index of the cavity mode can also bévddr[18]. With the above approximation, the

wavelength shift reads

)

0,Am

86 Am

P op B

Note that the wavelength shift does not explicitly dependhenlength of the cavity.
We are interested in tuning by a slight chanye. of the cavity core refractive index. The resultant shifts in

resonance wavelengths are given by

Ay = 4

00 Am
’ ©)

one ﬁm

In order to estimate this effect, one must know the deperalefithe propagation constants on the core refractive

index. In the next section we derive a perturbational exgioesfor the change in the cavity propagation constants

due to a perturbation of the core refractive index.

A)\ — Anc

3 A perturbational expression for bend mode phase shifts

As outlined in Sectiofll2, in the CMT model of the microresongtthe cavity is segmented into pieces of bent
waveguides. EqLI5) requires an expression for the derestii.e. the first order changes, of the bend mode
propagation constants with respect to the cavity core ¢t index. Here we adhere to the 2D setting as
introduced in Fig[dL, with polar coordinatés y, ) (invariance in they-direction). For a bent waveguide with
radial refractive index distribution(r) = +/¢(r), let the full electric(E) and magneti¢ H ) field for a given

mode be - .
(5) o0 = (i) et =m0, ©
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where the~ symbol indicates the mode profile. These mode profiles anddhresponding propagation con-
stantsy of the bent waveguides are computed analytically accortirige expressions given in Ref.[16].

Suppose that the core refractive index is slightly pertdrland the perturbed refractive index distribution
is given byn,(r) = +/€y(r). Assuming that the mode profile remains unchanged for thigigation, the
corresponding perturbed modal figl,,, H,) is approximated as

(5) - (5)

whereP(#) is an unknown function of the angular coordinéte
By applying Lorentz’s reciprocity theorem_[14] in polar edmates to(E,, H,,¢,) and (E, H,¢), one
obtains
[e.e]
/ V- (E,x H* + E*x Hy) rdr
0

o0
= —iweo/ (ep —€)E, - E* rdr,
0

which upon inserting the ansafd (7) and after simplifyinduees to

dpP [
— agp- (ExH"+E*"x H)dr
aé J,
= —iweOP/ (ep —€)E - E* rdr, (8)
0

whereay is the unit vector in the angular direction. Inserting thatheaveguide field ansatl(6) and solving for
P(0) leads to

9)

(e, — )E - E'rd
P(H):Poexp<—iweo fO (e —¢) il 0),

Jo ag - (ExH+ E xH)dr

where P, is a constant, the superscriptrepresents the mode profile. Thus the perturbed modal field is

(5)-n(2)
[Pl — 0B B rar

eXp =i 7+@ ~ ~ % ~ % ~ Ro )
R [Xay- (ExH +E xH)dr

and the change in propagation const&ntue to the perturbation is given by

weg fooo(ep—e)E'-E* r dr
R foooag-(EXI:I*—i-E*Xﬁ)d?"

oy = (10)

Note that the above expression can also be written in ternmsoofal fields(E, H) instead of mode profiles
(]_77, ﬁ). Then it is evident that the denominator of the fraction om fight hand side of Eq[T10) is equal to
4Py(0), where Py(9) is the power transported by the (unperturbed) bent modeerattyular direction[[16].
Thus for a mode normalized to unit modal power, the changedpggation constant is directly proportional to
the strength o[fooo(ep — e)E - E" r dr, i.e. the shift is the largest if the permittivity perturimat is present at
radial positions, where the squared bent mode prdfig?(= E - E*) is strong. For typical well guided modes
supported by a cavity ring, a permittivity perturbation bétcore layer automatically fulfills this requirement.
In case of whispering gallery modes (WGMs) of disk-shapesbmators, the field maximum is in the vicinity
of the outer dielectric layer interface. A slight pertuibatin that region is immediately picked up by the
WGMs. Precisely this sensitivity of the modes is utilizedniicrocavity based sensors. One can see a close
formal resemblance of EQ{IL0) for the change in the cavibpagation constant to the expression for the shift
of WGMs in microspheres by protein adsorption given in RE5][

The right hand side of E{ILO) is a pure real number. Theedtuis expression, in fact, gives the change in
the real part of the propagation constant only, denotedhyn Ref. [T4] a similar expression for the change in
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the propagation constant for bulk uniform permittivity fpgbations of straight waveguides is derived by means
of a variational principle.

In the present case of bent waveguides, the use of an asyengtpansion of Hankel functions of second
kind H,(,Q) (nkr) (see Ref.[[16]) reveals that, éf, — ¢ does not vanish for large radial coordinates, the integral
fooo(ep — e)E - E" r dr is undefined for the upper limit = co (obviously the templatd6) for the perturbed
field does not constitute an acceptable approximation incdsse of a uniform alteration of the properties of the
exterior cladding). Still, for a radially bounded pertuiiba dec = éng = ng, — ng of the core refractive index,
Eqg. (I0) is well defined; in that case it simplifies to

weo on? fIiwCE-E*rdr
R [Sag - (Ex H*+ E*x H) dr

53 = (11)

where R — w, and R define the core interfaces as shown in [Elg. 1, aggland n. are the perturbed and
unperturbed core refractive index respectively. For a bpaaturbation one can approximately write

% = 2n % ~2n ﬁ
one 0ec T be,
R
E- -E*rdr
— o0 S (12)

R [Fag - (ExH*+E*x H)dr

Note that the integrals that occur in the above expressieweat behaved. Her&  H are the electric field and
magnetic field of the cavity mode associated with #hiéh order unperturbed (untuned) resonance. Using this
expression with Eq[I5), gives desired wavelength shifttduaning.

4 Simulation results

First we assess the validity of the perturbation expres@i@dih For the moderately lossy bent waveguide config-
uration considered in Fifll 2, the estimation of the changkerphase propagation constants by the perturbation
expression agrees very well with the values computed dijrbgtthe analytical bent waveguide model.

1.6’ /”’,,,
1.4f TE, /

. /

1.2 .

0 ‘ ‘ A=1.05 pm
'?.2 14 1.6n 1.8 2

[

Figure 2: Phase propagation constants estimated by the perturbbégpression, for a bent waveguide config-
uration with widthw. = 0.5 um, R = 5 um and uniform backgrounal, = 1. Dashed lines denotg/k obtained
by direct calculations [16], dots are reference poirgs= 1.5 andn. = 1.75, and the slope of the solid line
segments is given by expressiid).

As an another example, for Fig. 3 the perturbational expeggd) is evaluated for WGMs supported by a
single curved interface (meant as piece of a resonator. disk)the moderately lossy fundamental and first order
WGMs, the agreement is excellent, but for the second ordeM#&/@hich are considerably lossy (erng, = 1.5,

v/k = 1.0422 —i 5.7410-1073 (TEy), 1.0339 —i 1.21610- 102 (TM>)) there are major deviations. Apparently,
here the changes in the mode profiles and the attenuatiotactsmslue to the core refractive index perturbation
are not negligible, such that the ans&lz (7) is not appriepfoa these fields.

Having assessed the expresslag (12), now we validate thearse shifts predicted by Ef] (5) using Eql (12).
Table[l gives comparison for the shifts for the test caseefitig resonator. For the present perturbation, it is
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Figure 3: Phase propagation constants of WGMSs evaluated by the patiomal expression[{IL2), for a bent
waveguide configuration withy, = 1.0, w. = R = 5um. Interpretation of the curves is as for Hij. 2. The
subscripts 0, 1, 2 denote the order of the modes.

evident that the shifts predicted by using Hdj. (5) using #réyobational expressiol{[12) agree satisfactorily with

direct CMT simulations.

Am_pm (CMT) | Ay, pm (Eq. [B), [2) )| AAy, pm (CMT)
1.0184 0.0025 0.0025
1.0413 0.0026 0.0027
1.0654 0.0026 0.0027

Table 1: Comparison of ring resonator TE mode spectral shifts,, predicted by Eq@) (second column) with
direct calculations (third column) for a structure accogdio Fig.d withR = 5pum, we = ws = 0.3 um,
ns= 1.5, np = 1.0, g = g = 0.2 um. The cavity core refractive indexig. = 1.5 for the unperturbed setting,
andng, = 1.504 for the perturbed structure.

For the evaluation of the effect of tuning, in principle orenccompute the resonator spectra for the un-
perturbed and the perturbed configurations separately tsenCMT based interpolation method described in
Sectior®. Let's assume that for a slight change of the cawitg refractive index the coupler scattering matrices
', § do not change much, and the shifts of the resonances arelgmtire to the changes in the cavity mode
propagation constants. Then usBigS’ of the unperturbed resonator, and adding the phase propaganstant
shiftso5 to the propagation constantof the unperturbed cavity segments, one can again follovpté&adously
described interpolation method, without recalculating $hattering matrices for the perturbed resonator. In this
way, a significant amount of computational work can be aahidge will verify this approach.

Fig.[4 depicts the spectral responses for the perturbedhendriperturbed resonators. As seen in the top
plot, for the ring resonator the spectral response compwtitidthe above approximation method (solid line)
agrees quite well with the direct CMT calculation (circleg)s far as the resonance positions are concerned,
similar agreement is found also in case of the present modtahdisk resonator, as shown in the bottom plots.
This agreement confirms the previous claim that the influeheeoderate tuning can be reliably captured by a
mere effect on the cavity mode propagation, without sigaificchanges in the strength of the interaction with
the external waveguides. For the disk resonator, minoratievis are observed in the depths of the resonance
dips, in particular for the TEresonances, where apparently the change in modal attenwdie to the core
refractive index change is slightly larger than for thegTeode. The reason for these deviations is that the
present perturbation approach does not take into accotgnatbns in the cavity mode attenuation constants.
Otherwise, the agreement is quite good.

5 Conclusions
In this paper we modeled the tuning of microresonator bastedlsfiby changes of their cavity core refractive

index. Slight changes in the refractive index affect maihly propagation constants of the cavity modes; the
respective phase shifts can be calculated using a redptechnique. The formulas are applicable to uniform
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Figure 4: Spectral shift due to tuning of the cavity core refractivder, for the ring- (top plotw. = 0.3 um)
and disk-resonator configurations (bottom plat,= R = 5 um) of Tabld1. The curves of the normalized trans-
mitted power are calculated by the interpolation method efft & 4] (nodal wavelengthst.015 um, 1.05 um,
1.085 um) for the unperturbed resonator witly = 1.5 (dash-dotted line) and for the perturbed resonator with

ng = 1.504 (circles). Solid lines represent the results of the appnation based on the perturbation expres-
sions as outlined in the text.

localized perturbations of the radial permittivity profimomplications due to nonconvergent integrands do not
arise. This approach accounts only for the change in thepagalof the propagation constants. Nevertheless,
the spectral responses for 2D microresonators obtaindtithi# perturbational evaluation agree quite well with
direct simulations based on 2D coupled mode theory. Edpefoaresonances involving less lossy (fundamen-
tal) modes, the agreement for the shifts of resonance posits very satisfactory. If more lossy (higher order)
modes are involved, slight deviations in the resonant paln@s are observed. Using the scattering matrices and
the cavity propagation constants of the unperturbed strec¢h combination with the shifts in the cavity mode
propagation constants given by the perturbational exjgressne can reliably and efficiently predict the spectral
response for moderately perturbed resonators.

Even though here the simulation results are discussed fan@ibresonators, the tuning model presented
is equally applicable to 3D resonators. In the latter caseptiesent integrals over the 1D radial cross section
in Egs. [ID), [IR) will become integrals over the radialéxdross section plane of the cavity core. Bend mode
phase shifts can then be evaluated on the basis of (nedgsgasroximate) 2D mode profiles as provided e.g.
by the quasi-analytical bend mode solver of Refl [22]. Fertlising a 3D CMT model of resonatofs1[23] one
can follow similar steps as outlined here to predict the dusggectral responses. Thus extension of the present
framework to a 3D setting should be straightforward.
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