Dirichlet problem for bounded region

Consider the BVP
$\displaystyle u_{xx}- u_{yy}$ $\displaystyle =$ $\displaystyle 0~~0< x<L,$ (3.73)
$\displaystyle u(0,y) =u(a,y)=u(x,b)$ $\displaystyle =$ $\displaystyle 0,$ (3.74)
$\displaystyle u(x,0)$ $\displaystyle =$ $\displaystyle f(x)$ (3.75)

Solution Assume that the solution can be expressed in separation form as
Figure:
\includegraphics[width=14cm, height=7.0cm]{imagerufx.pdf}
u(x,t)=X(x)T(t)
$\frac{X''}{X} = \frac{Y''}{Y} = \lambda$
  1. If $\lambda >0 $

    $\displaystyle X''=\lambda X$ (3.76)
    $\displaystyle X(x)=\alpha exp( \sqrt{\lambda}x )+\beta exp(-\sqrt{\lambda}x)$ (3.77)
    $\displaystyle X(x)=\alpha cosh( \sqrt{\lambda}x )+\beta sinh(\sqrt{\lambda}x)$ (3.78)

    using B.C's
    $\displaystyle X(0)$ $\displaystyle =$ $\displaystyle 0,~X(a)=0,$ (3.79)

    which implies that $\alpha=0$ and $\beta=0$ and we get a trivial solution. Thus we can not have positive eigenvalues which means $\lambda \not>0.$

  2. If $\lambda=0,$

    $\displaystyle X''=0\implies X'= \alpha $

    $\displaystyle X=\alpha x+\beta$

    $\displaystyle X(0)=0\implies \beta=0$

    and

    $\displaystyle X(a)=0\implies \alpha=0$

    $\displaystyle \implies X=\beta,\beta \neq 0.$

    For this case we also get trivial solution.

  3. If $\lambda < 0,$

    Replace $\lambda$ by $-\lambda$ in Eq. ([*])

    $\displaystyle X''+\lambda X$ $\displaystyle =$ 0 (3.80)
    $\displaystyle X$ $\displaystyle =$ $\displaystyle \alpha \cos(\sqrt{\lambda}x)+\beta \sin(\sqrt{\lambda}x)$ (3.81)

    $\displaystyle X(0)=0\implies \alpha =0$

    and

    $\displaystyle X(a)=0\implies \sin(\sqrt{\lambda}a)=0~(\beta\neq 0)$

    $\displaystyle \implies\sqrt{\lambda}a=n \pi,~~n=1,2,3,...$

    $\displaystyle \lambda_n=\frac{n^2 \pi^2}{a^2}$

    are the eigenvalues and corresponding eigen-functions are

    $\displaystyle X_n(x)=\alpha_n \cos(\frac{n\pi}{a}x)$

    we can combine both the case as

    $\displaystyle X_n(x)=\alpha_n \cos(\frac{n\pi}{a}x)~~n=0,1,2,...$

Solving for $Y$:

$\displaystyle \frac{Y''}{Y}=\lambda$

$\displaystyle {y_n}^''-\frac{n^2\pi^2}{a^2}y_n=0$

$\displaystyle Y_n(y)=\alpha_n\cosh(\frac{n\pi}{a}y)+\beta_n\sinh(\frac{n\pi}{a}y),$ (3.82)

$y_n(b)=0$ gives

$\displaystyle \beta_n=-\alpha_n\frac{\cosh(\frac{n\pi}{a}b)}{\sinh(\frac{n\pi}{a}b)}$

$\displaystyle Y_n(y)=\alpha_n\frac{1}{\sinh(\frac{n\pi}{a}b)}\bigg[\sinh(\frac{...
...}{a}b)\cosh(\frac{n\pi}{a}y)-\cosh(\frac{n\pi}{a}b)\sinh(\frac{n\pi}{a}y)\bigg]$

Let

$\displaystyle \alpha_n\frac{1}{\sinh(\frac{n\pi}{a}b)}=\xi_n$

$\displaystyle y_n(y)=\xi_n\sinh(\frac{n\pi}{a}(b-y)).$

By the principle of superposition of solutions,we get the general solution
$\displaystyle u(x,t)$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}u_n(x,t)$ (3.83)
  $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}\xi_n \sin(\frac{n\pi}{a}x)\sinh(\frac{n\pi}{a}(b-y))$ (3.84)

The unknown coefficients ${\xi_n}$ are found by using the remaining boundary condition $u(x,0)=f(x)$

$\displaystyle u(x,0)=f(x)=\sum_{n=1}^{\infty}\xi_n \sin(\frac{n\pi}{a}x)\sinh(\frac{n\pi}{a}b).$ (3.85)

Multiply both sides by $\sin(\frac{m\pi}{a})x$ and integrate both sides $[0,a]$ and using orthogonality, one gets

$\displaystyle \xi_n=\frac{1}{\sin(\frac{n\pi}{a}b)}\frac{2}{a}\int_{0}^{a}f(x)\sin\sin(\frac{n\pi}{a}x)$ (3.86)

which all combine given the required solution.