Migrating to Cortex-M3 Microcontrollers:
an RTOS Perspective

Microcontroller devices based on the ARM® Cortex™-M3 processor specifically
target real-time applications that run several tasks in parallel. The Keil™ RTX
Real-Time Kernel has been optimised for Cortex-M3 processor-based
microcontrollers and as a result it runs on them twice as fast as on comparable
ARM7TDMI® processor-based microcontrollers. This article discusses the new
benefits of Cortex-M3 processor-based microcontrollers, the modifications done
to RTX and the results achieved.

Requirements of Real-Time Systems

Most microcontroller-based embedded systems are real-time systems that have to
respond within predefined time limits to external events. This is a key constraint in
the design of both the hardware and software of these systems.

Thanks to the performance and functionality of 32-bit microcontrollers, real-time
embedded systems often have a single microcontroller device. This enables low unit
cost, but creates challenges for software developers, as a single application must
respond timely to a larger number of increasingly complex peripherals.

JTAG Debug
256KB On-chip Flash
3-channel 16bit Timers
Periodic Interval Timer
64KB SRAM 4-channel 16bit PWMV

ARM CPU Core

Power management, RTC, reset and watchdog,
intemal oscillator

10/100 Ethernet MAC CAN Interface

Advanced Interrupt
USB 2.0 Interface Controller
10-bit A/D converter

(elght channels) Memory Controller

2 SPI Interfaces 2UARTs

Synchronous Serial
Controller

Two-wire Interface

Figure 1: Block diagram of a typical 32-bit microcontroller

Real-time software is normally structured as a number of tasks running concurrently,
with task scheduling handled by a real-time kernel. The infrastructure provided by the
real-time kernel enables developers to define and control easily the timeliness of their
software.

The main requirements for the hardware are high performance, which enables more
tasks to be executed in parallel, and low interrupt latency, which enables fast reaction
to external events.

Cortex-M3 processor-based Microcontroller Benefits for Real-Time Systems

Cortex-M3 processor-based microcontrollers delivers higher performance and lower
interrupt latency than microcontrollers based on the older, but still popular,
ARM7TDMI processor.

ARM7TDMI Cortex-M3
Instruction set Thumb®/ARM Thumb-2
. . Separate instruction and data
. Single interface, data A .
Memory interface . bus interfaces, single cycle data
read/write takes 3 cycles ;
read/write
Pipeline 3-stage 3-stage with branch speculation
. 8-bit hardware multiplier, 8/32-bit hardware multiplier,
Multiplication . :
result in up to 5 cycles resultin 1 cycle
L In software, result in 100s of | Hardware divider, result in up to
Division
cycles 12 cycles
Bit manipulation Read — modify - write Single instruction

Table 1: Characteristics of ARM7TDMI and Cortex-M3 processor

The Cortex-M3 processor implements the 16/32-bit Thumb-2 instruction set. Building
C/C++ code for the Thumb-2 instruction set results in fewer instructions than building
it for Thumb technology. Since most Thumb and Thumb-2 instructions are executed
in a single cycle, Cortex-M3 microcontrollers can execute the same program in fewer
cycles.

The ARM7TDMI processor also supports the 32-bit ARM instruction set, which
delivers similar performance as Thumb-2 technology at the expense of larger code
size. In practice, using ARM instructions is not common in microcontroller-based
systems because of unit cost constraints.

1 N 1 Y o I

%chd--) NVIC | g 1—’ ETM ;—%—}
3 ARM core T -
= [P -

: M ! | Serial wire |
h[d: DAP proteirtrilgl?umt E éSi:‘i:‘Iwrre : ?
E ______ ¢ _____ t)]
i Data {1 Flash
= s Y]
0 $ 3 ‘ u
Bus Matrix
E Code SRAM &]
E interface Peripheral I,I’F]

I_II_II_H_II_Jl_ILII_II_II_H_I

Figure 2: Cortex-M3 processor block diagram

ARM7TDMI Cortex-M3

Integrated Nested Vectored

Interrupt controller Interrupt Controller

External to processor

One fast (NFIQ) and one

Interrupt handlers

slow (nIRQ)

One handler per interrupt source

RTOS system timer

Uses one timer of the
microcontroller

Uses integrated “SysTick” timer
on the processor

System calls

SWI instruction
(interrupts disabled)

SVC instruction
(interrupts enabled)

Table 2: Exceptions on ARM7TDMI and Cortex-M3 processors

By integrating the interrupt controller in the processor, Cortex-M3 processor-based
microcontrollers have one interrupt vector entry and interrupt handler per interrupt
source. This avoids the need for re-entrant interrupt handlers, which have a negative

effect on interrupt latency.

The Cortex-M3 processor also accelerates the execution of interrupt handlers by
incorporating logic to automatically save its general purpose and status registers in the
stack when an interrupt arrives. The Cortex-M3 processor is comparatively even more
efficient by tail-chaining interrupts that arrive at the same time, as shown in Figure 3.

Highest ;
IRt
ARMTTDMI Push | ISR 1 [Pop | Push | ISR 2 | Pop |
Interrupt Handling : - . —
26 Cycles 16 Cycles 28 Cyoles 16 Cyclea
Cortex-M3 65% Saving
. P Po
Interrupt Handiing [SH] ISR1 IJ ISR2 S - Cycle Overhead 1
i 12 cycles & Cycles 12 Cyolos

Tail-Chaining
Figure 3: Tail-chaining on Cortex-M3 processor

The Keil RTX Real-Time Kernel

RTX is a real-time kernel for ARM7™ and ARM9™ family, and Cortex-M3
processor-based devices. RTX helps create real-time programs by solving scheduling,
maintenance and timing issues. RTX allows flexible scheduling of system resources
like CPU and memory and offers several ways to communicate between tasks.

The main advantages of RTX are its low cost, small code size and low and predictable
response time to interrupts.

RTX Features ARM7, ARM9 or Cortex-M3
Defined Tasks Unlimited

Max Active Tasks 250

User Task Priorities 1-254

Scheduling Round-robin, pre-emptive, co-operative
Mailboxes, Mutex, User Timers Unlimited

Semaphores, Signals Unlimited

Table 3: RTX Features

RTX is fully integrated in the Keil™ Microcontroller Development Kit (MDK). MDK
includes RTX as a royalty-free library. The source code for RTX, a flash file system
and protocol stacks for TCP/IP, USB and CAN are available in the Keil Real-Time
Library (RL-ARM).

Real-time programs written using RTX require only including a special header file
and linking the RTX library. Creating a task can be done by simply adding the __ task
keyword to a C function. All the options in RTX can be configured with a single C
source file.

B C:KeiMARMIRY 30\RTL \Boar ds\KeiMMCBSTRMHttp_demolRTX_Config.c

Expand &ll | Collapse &l Help
Option Walue
= Task Definitions
Murnber of concurrent running tasks 5
Murber of tasks with user-provided stack 1
Task stack size [bytes] 200
Check for the stack overflow v
Murmber of user timers 0
—-Systern Timer Configuration
BT Kernel imer number Tirmer 0
Tirner clock walue [Hz] 43000000
Timer tick value [us 10000
BEF. cLnd-Robin T ching [v
Found-Robin Timeout [toks] 5
Text Editor 4 Configuration Wizard I.-"

Figure 4. RTX Configuration

MDK also provides RTX debug awareness with dialogs that show the status of
different tasks and how they are scheduled over time.

Advanced RTX E|
Active Tazsks l System]

TID | Task Mame Priority | State Delay | Event'falue | Ewert bask | Stack Load
0 oz_clock_demon 285 wWAIT_ITY 1 14%
2 clock 1 RUMMING i+
3 carmand 1 READY EOZ
4 lights 1 WAIT_DLY] 15%
B keyread 1 WAIT_DLY] 15%

285 os_idle_demon 1] READY 2R

Figure 5: RTX awareness in Keil MDK

Porting RTX to Cortex-M3 Processor-based Microcontrollers

Rebuilding and running existing RTX C code on a Cortex-M3 processor-based
microcontroller automatically brought a performance increase. Improved interrupt
latency was achieved by modifying RTX to use the new Cortex-M3 processor
programmer’s model for exceptions.

Interrupts

On RTX for the ARM7TDMI processor a single re-entrant interrupt handler is shared
for all the peripherals in the system. This allows high priority peripherals to interrupt
the processor while it is handling interrupts from low priority peripherals. However,
re-entrant interrupts require long sequences of code at the entry and exit of the
interrupt handler, which is costly in terms of code size, performance and
responsiveness.

The RTX interrupt handlers have been modified to use the new interrupt structure of
Cortex-M3 processor-based microcontrollers. The RTX kernel only includes code for
a single interrupt source, the system timer. When handling other interrupts the
processor does not run any RTX code.

Re-entrant interrupt handler for ARM7TDMI Re-entrant interrupt handler for Cortex-M3
Push general purpose and status registers to the stack
Find and clear source of interrupt
Change processor mode to non-privileged and enable interrupts
===~ =~=========+ ¢ ———————————————— 1 |
: Call the function that handles the source of this interrupt : | Handle the source of this interrupt and return |
_________________ ¢ —_————e e e — 1 —_—— e e s
Disable interrupts and change processor mode to privileged

Pop registers from the stack and return

Figure 6: RTX interrupt handling on ARM7 and Cortex-M3 processors

System Calls

The RTX kernel always runs in privileged mode, as it needs access to resources that
are only available in this mode. Therefore, kernel calls are implemented with
instructions that cause an exception and put the processor in privileged mode.

On RTX for the ARM7TDMI processor, calls are implemented with SWI instructions,
so while system calls are handled the processor cannot respond to interrupts. In order
to keep low interrupt latency only a few short system calls can be implemented. As a
result, some kernel functionality cannot run as system calls and a “demon” task is
required to deal with it.

On RTX for the Cortex-M3 processor, all system calls are implemented with SVC
instructions, so interrupts continue to be handled while the processor executes the
SVC exception hander. RTX for Cortex-M3 processor is not only more responsive to
external events, but also its code is better structured and easier to understand.

Comparison: RTX on ARM7TDMI and Cortex-M3 Processor-based
Microcontrollers

The following tables compare RTX running on an ARM7TDMI processor-based
LPC2138 microcontroller at 60MHz and a Cortex-M3 processor-based
STM32F103RB microcontroller at 72MHz.

The first area of comparison is size. RTX for the Cortex-M3 processor is 0.5 Kbytes
smaller and requires 20 bytes less RAM thanks to its simpler programmer’s model for
exceptions.

RTX Size (bytes) ARM7TDMI Cortex-M3
Code <4.5 K (Thumb) <4.0 K (Thumb-2)
RAM for Kernel 446 428

RAM for a Task TaskStackSize + 52 TaskStackSize + 52
RAM for a Mailbox MaxMessage * 4 + 16 MaxMessages * 4 + 16
RAM for a Semaphore 8 8

RAM for a Mutex 12 12

RAM for a User Timer 8 8

Table 4: RTX Memory Size for ARM7TDMI and Cortex-M3 processors

The second area of comparison is performance. The microcontroller clock frequency
accounts for a 20 percent performance increase on the STM32F103RB
microcontroller. The remaining performance increase up to two fold is mostly due to
the processor’s instruction set and implementation.

RTX Function ARM7TDMI | Cortex-M3 | Improvement
Initialize system, start task 46.2 22.1 2.1x
Create defined task 17.0 8.1 2.1x
Create defined task and switch task 19.1 9.3 2.1x
Delete task 9.3 4.8 1.9x
Task switch 6.6 3.9 1.7x
Set event 24 1.9 1.3x
Send message 4.5 2.5 1.8x
Context switch time <7 usec <4 usec 1.7x
Maximum interrupt latency 4.2 0.1 n/a

Table 5: RTX Performance on ARM7TDMI and Cortex-M3 processors

The maximum interrupt latency is high in the case of the ARM7TDMI processor-
based microcontroller because it requires a re-entrant interrupt handler and because
interrupts are disabled while the kernel is handling system calls. The interrupt latency
is only up to 12 cycles for the Cortex-M3 processor-based microcontrollers.

In summary, the Cortex-M3 processor brings considerable advantages for developers
of real-time applications. The Keil RTX Real-Time Kernel has been updated to make
use of these advantages, which has resulted in faster performance, smaller code size
and faster response to external events.

References

Further details on Cortex-M3 processor and other ARM products:
http://www.arm.com.

Further details on RTX and other Keil products: http://www.keil.com.
Further details on the benchmark used in this article:
http://www.keil.com/support/man/docs/rlarm/rlarm_ar_timing_spec.htm.

http://www.arm.com/
http://www.keil.com/
http://www.keil.com/support/man/docs/rlarm/rlarm_ar_timing_spec.htm

	Requirements of Real-Time Systems
	Cortex-M3 processor-based Microcontroller Benefits for Real-Time Systems
	The Keil RTX Real-Time Kernel
	Porting RTX to Cortex-M3 Processor-based Microcontrollers
	Comparison: RTX on ARM7TDMI and Cortex-M3 Processor-based Microcontrollers
	References

