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Abstract In this paper, scheduling parallel tasks on multiprocessor computers with
dynamically variable voltage and speed are addressed as combinatorial optimiza-
tion problems. Two problems are defined, namely, minimizing schedule length with
energy consumption constraint and minimizing energy consumption with schedule
length constraint. The first problem has applications in general multiprocessor and
multicore processor computing systems where energy consumption is an important
concern and in mobile computers where energy conservation is a main concern. The
second problem has applications in real-time multiprocessing systems and environ-
ments where timing constraint is a major requirement. Our scheduling problems are
defined such that the energy-delay product is optimized by fixing one factor and
minimizing the other. It is noticed that power-aware scheduling of parallel tasks has
rarely been discussed before. Our investigation in this paper makes some initial at-
tempt to energy-efficient scheduling of parallel tasks on multiprocessor computers
with dynamic voltage and speed. Our scheduling problems contain three nontriv-
ial subproblems, namely, system partitioning, task scheduling, and power supply-
ing. Each subproblem should be solved efficiently, so that heuristic algorithms with
overall good performance can be developed. The above decomposition of our op-
timization problems into three subproblems makes design and analysis of heuristic
algorithms tractable. A unique feature of our work is to compare the performance of
our algorithms with optimal solutions analytically and validate our results experimen-
tally, not to compare the performance of heuristic algorithms among themselves only
experimentally. The harmonic system partitioning and processor allocation scheme
is used, which divides a multiprocessor computer into clusters of equal sizes and
schedules tasks of similar sizes together to increase processor utilization. A three-
level energy/time/power allocation scheme is adopted for a given schedule, such that
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the schedule length is minimized by consuming given amount of energy or the en-
ergy consumed is minimized without missing a given deadline. The performance of
our heuristic algorithms is analyzed, and accurate performance bounds are derived.
Simulation data which validate our analytical results are also presented. It is found
that our analytical results provide very accurate estimation of the expected normal-
ized schedule length and the expected normalized energy consumption and that our
heuristic algorithms are able to produce solutions very close to optimum.

Keywords Energy consumption · List scheduling · Parallel task · Performance
analysis · Power-aware scheduling · Simulation · Task scheduling

1 Introduction

To achieve higher computing performance per processor, microprocessor manufactur-
ers have doubled the power density at an exponential speed over decades, which will
soon reach that of a nuclear reactor [31]. Such increased energy consumption causes
severe economic, ecological, and technical problems. A large-scale multiprocessor
computing system consumes millions of dollars of electricity and natural resources
every year, equivalent to the amount of energy used by tens of thousands U.S. house-
holds [9]. A large data center such as Google can consume as much electricity as a
city. Furthermore, the cooling bill for heat dissipation can be as high as 70% of the
above cost [8]. A recent report reveals that the global information technology indus-
try generates as much greenhouse gas as the world’s airlines, about 2% of global car-
bon dioxide (CO2) emissions.1 Despite sophisticated cooling facilities constructed to
ensure proper operation, the reliability of large-scale multiprocessor computing sys-
tems is measured in hours, and the main source of outage is hardware failure caused
by excessive heat. It is conceivable that a supercomputing system with 105 processors
would spend most of its time checkpointing and restarting [11].

There has been increasing interest and importance in developing high-performance
and energy-efficient computing systems. There are two approaches to reducing power
consumption in computing systems (see [4, 30, 31] for comprehensive surveys). The
first approach is the method of thermal-aware hardware design. Low power con-
sumption and high system reliability, availability, and usability are main concerns of
modern high-performance computing system development. In addition to the tradi-
tional performance measure using FLOPS, the Green500 list uses FLOPS per Watt
to rank the performance of computing systems, so that the awareness of other perfor-
mance metrics such as energy efficiency and system reliability can be raised.2 All the
current systems which can achieve at least 400 MFLOPS/W are clusters of low-power
processors, aiming to achieve high performance/power and performance/space. For
instance, the IBM Roadrunner, currently the world’s fastest computer, which achieves
top performance of 1.456 PFLOPS, is also the fourth most energy efficient supercom-
puter in the world with an operational rate of 444.94 MFLOPS/W.3 Intel’s Tera-scale

1http://www.foxnews.com/story/0,2933,479127,00.html.
2http://www.green500.org/.
3http://en.wikipedia.org/wiki/IBM_Roadrunner.
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research project has developed the world’s first programmable processor that delivers
supercomputer-like performance from a single 80-core chip which uses less electric-
ity than most of today’s home appliances and achieves over 16.29 GFLOPS/W.4

The second approach to reducing energy consumption in computing systems is
the method of power-aware software design, by using a mechanism called dynamic
voltage scaling (equivalently, dynamic frequency scaling, dynamic speed scaling,
dynamic power scaling). Many modern components allow voltage regulation to be
controlled through software, e.g., the BIOS or applications such as PowerStrip. It is
usually possible to control the voltages supplied to the CPUs, main memories, local
buses, and expansion cards.5 Processor power consumption is proportional to fre-
quency and the square of supply voltage. A power-aware algorithm can change sup-
ply voltage and frequency at appropriate times to optimize a combined consideration
of performance and energy consumption. There are many existing technologies and
commercial processors that support dynamic voltage (frequency, speed, power) scal-
ing. SpeedStep is a series of dynamic frequency scaling technologies built into some
Intel microprocessors that allow the clock speed of a processor to be dynamically
changed by software.6 LongHaul is a technology developed by VIA Technologies
which supports dynamic frequency scaling and dynamic voltage scaling. By execut-
ing specialized operating system instructions, a processor driver can exercise fine
control on the bus-to-core frequency ratio and core voltage according to how much
load is put on the processor.7 LongRun and LongRun2 are power management tech-
nologies introduced by Transmeta. LongRun2 has been licensed to Fujitsu, NEC,
Sony, Toshiba, and NVIDIA.8

Dynamic power management at the operating system level refers to supply voltage
and clock frequency adjustment schemes implemented while tasks are running. These
energy conservation techniques explore the opportunities for tuning the energy-delay
tradeoff [29]. Power-aware task scheduling on processors with variable voltages and
speeds has been extensively studied since mid 1990s. In a pioneering paper [32], the
authors first proposed the approach to energy saving by using fine grain control of
CPU speed by an operating system scheduler. The main idea is to monitor CPU idle
time and to reduce energy consumption by reducing clock speed and idle time to a
minimum. In a subsequent work [34], the authors analyzed offline and online algo-
rithms for scheduling tasks with arrival times and deadlines on a uniprocessor com-
puter with minimum energy consumption. These research have been extended in [2,
6, 16, 19–21, 35] and inspired substantial further investigation, much of which focus
on real-time applications, namely, adjusting the supply voltage and clock frequency
to minimize CPU energy consumption while still meeting the deadlines for task ex-
ecution. In [1, 12, 13, 15, 17, 22, 23, 25, 27, 28, 33, 37–39] and many other related
works, the authors addressed the problem of scheduling independent or precedence

4http://techresearch.intel.com/articles/Tera-Scale/1449.htm.
5http://en.wikipedia.org/wiki/Dynamic_voltage_scaling.
6http://en.wikipedia.org/wiki/SpeedStep.
7http://en.wikipedia.org/wiki/LongHaul.
8http://en.wikipedia.org/wiki/LongRun.
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constrained tasks on uniprocessor or multiprocessor computers where the actual ex-
ecution time of a task may be less than the estimated worst-case execution time. The
main issue is energy reduction by slack time reclamation.

There are two considerations in dealing with the energy-delay tradeoff. On the
one hand, in high-performance computing systems, power-aware design techniques
and algorithms attempt to maximize performance under certain energy consumption
constraints. On the other hand, low-power and energy-efficient design techniques and
algorithms aim to minimize energy consumption while still meeting certain perfor-
mance goals. In [3], the author studied the problems of minimizing the expected
execution time given a hard energy budget and minimizing the expected energy ex-
penditure given a hard execution deadline for a single task with randomized execution
requirement. In [5], the author considered scheduling jobs with equal requirements
on multiprocessors. In [26], the authors investigated the problem of system value
maximization subject to both time and energy constraints.

In [18], we addressed scheduling sequential tasks on multiprocessor computers
with dynamically variable voltage and speed as combinatorial optimization problems.
A sequential task is executed on one processor. We defined the problem of minimizing
schedule length with energy consumption constraint and the problem of minimizing
energy consumption with schedule length constraint on multiprocessor computers.
The first problem has applications in general multiprocessor and multi-core proces-
sor computing systems where energy consumption is an important concern and in
mobile computers where energy conservation is a main concern. The second problem
has applications in real-time multiprocessing systems and environments such as par-
allel signal processing, automated target recognition, and real-time MPEG encoding,
where timing constraint is a major requirement. Our scheduling problems are defined
such that the energy-delay product is optimized by fixing one factor and minimizing
the other.

In this paper, we address scheduling parallel tasks on multiprocessor computers
with dynamically variable voltage and speed as combinatorial optimization problems.
A parallel task can be executed on multiple processors. We define the problem of
minimizing schedule length with energy consumption constraint and the problem of
minimizing energy consumption with schedule length constraint for parallel tasks on
multiprocessor computers. We notice that power-aware scheduling of parallel tasks
has rarely been discussed before; all previous studies were on scheduling sequential
tasks which require one processor to execute. Our investigation in this paper makes
some initial attempt to energy-efficient scheduling of parallel tasks on multiprocessor
computers with dynamic voltage and speed.

Our scheduling problems contain three nontrivial subproblems, namely, system
partitioning, task scheduling, and power supplying. Each subproblem should be
solved efficiently, so that heuristic algorithms with overall good performance can
be developed. These subproblems and our strategies to solve them are described as
follows.

• System Partitioning—Since each parallel task requests for multiple processors, a
multiprocessor computer should be partitioned into clusters of processors to be
assigned to the tasks. We use the harmonic system partitioning and processor al-
location scheme, which divides a multiprocessor computer into clusters of equal
sizes and schedules tasks of similar sizes together to increase processor utilization.
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• Task Scheduling—Parallel tasks are scheduled together with system partitioning,
and it is NP-hard even scheduling sequential tasks without system partitioning.
Our approach is to divide a list of tasks into sublists such that each sublist contains
tasks of similar sizes which are scheduled on clusters of equal sizes. Scheduling
such parallel tasks on clusters is no more difficult than scheduling sequential tasks
and can be performed by list scheduling algorithms.

• Power Supplying—Tasks should be supplied with appropriate powers and execu-
tion speeds such that the schedule length is minimized by consuming given amount
of energy or the energy consumed is minimized without missing a given deadline.
We adopt a three-level energy/time/power allocation scheme for a given schedule,
namely, optimal energy/time allocation among sublists of tasks (Theorems 7 and
8), optimal energy allocation among groups of tasks in the same sublist (Theo-
rems 5 and 6), and optimal power supplies to tasks in the same group (Theorems 3
and 4).

The above decomposition of our optimization problems into three subproblems
makes design and analysis of heuristic algorithms tractable. Our analytical results
provide very accurate estimation of the expected normalized schedule length and the
expected normalized energy consumption. A unique feature of our work is to compare
the performance of our algorithms with optimal solutions analytically and validate
our results experimentally, not to compare the performance of heuristic algorithms
among themselves only experimentally. Such an approach is consistent with tradi-
tional scheduling theory. We find that our heuristic algorithms are able to produce
solutions very close to optimum.

The rest of the paper is organized as follows. In Sect. 2, we present the power con-
sumption model used in this paper. In Sect. 3, we introduce our scheduling problems,
show the strong NP-hardness of our scheduling problems, derive lower bounds for the
optimal solutions, and find an energy-delay tradeoff theorem. In Sects. 4 and 5, we
describe the harmonic system partitioning and processor allocation scheme and list
scheduling algorithms used to schedule sublists of tasks of similar sizes on clusters
of equal sizes. In Sects. 6 and 7, we discuss optimal power supplies to tasks in the
same group and optimal energy allocation among groups of tasks in the same sublist.
In Sect. 8, we discuss optimal energy/time allocation among sublists of tasks, ana-
lyze the performance of our heuristic algorithms, and derive accurate performance
bounds. In Sect. 9, we present simulation data which validate our analytical results.
Finally, we conclude the paper in Sect. 10.

2 The power consumption model

Power dissipation and circuit delay in digital CMOS circuits can be accurately mod-
eled by simple equations, even for complex microprocessor circuits. CMOS circuits
have dynamic, static, and short-circuit power dissipation; however, the dominant
component in a well-designed circuit is dynamic power consumption p (i.e., the
switching component of power), which is approximately p = aCV 2f , where a is
an activity factor, C is the loading capacitance, V is the supply voltage, and f is the
clock frequency [7]. Since s ∝ f , where s is the processor speed, and f ∝ V γ with



228 K. Li

0 < γ ≤ 1 [36], which implies that V ∝ f 1/γ , we know that power consumption is
p ∝ f α and p ∝ sα , where α = 1+2/γ ≥ 3. It is clear from f ∝ V γ and s ∝ V γ that
linear change in supply voltage results in up to linear change in clock frequency and
processor speed. It is also clear from p ∝ V γ+2 and p ∝ f α and p ∝ sα that linear
change in supply voltage results in at least quadratic change in power supply and that
linear change in clock frequency and processor speed results in at least cubic change
in power supply.

Assume that we are given n independent parallel tasks to be executed on m iden-
tical processors. Task i requires πi processors to execute, where 1 ≤ i ≤ n, and any
πi of the m processors can be allocated to task i. We call πi the size of task i. It is
possible that in executing task i, the πi processors may have different execution re-
quirements (i.e., the numbers of CPU cycles or the numbers of instructions executed
on the processors). Let ri represent the maximum execution requirement on the πi

processors executing task i. We use pi to represent the power supplied to execute
task i. For ease of discussion, we will assume that pi is simply sα

i , where si = p
1/α
i

is the execution speed of task i. The execution time of task i is ti = ri/si = ri/p
1/α
i .

Note that all the πi processors allocated to task i have the same speed si for dura-
tion ti , although some of the πi processors may be idle for some time. The energy
consumed to execute task i is ei = πipiti = πirip

1−1/α
i = πiris

α−1
i .

We would like to mention a number of important observations. First, since si/pi ∝
s
−(α−1)
i and si/pi ∝ V −2, the processor energy performance, measured by speed per

Watt,9 is at least quadratically proportional to the voltage and speed reduction. Sec-
ond, since wi/ei ∝ s

−(α−1)
i and wi/ei ∝ V −2, where wi = πiri is the amount of

work to be performed for task i, the processor energy performance, measured by
work per Joule [32], is at least quadratically proportional to the voltage and speed
reduction. Third, the relation ei ∝ p

1−1/α
i ∝ V (γ+2)(1−1/α) = V 2 implies that linear

change in supply voltage results in quadratic change in energy consumption. Fourth,
the equation ei = wis

α−1
i implies that linear change in processor speed results in at

least quadratic change in energy consumption. Fifth, the equation ei = wip
1−1/α
i im-

plies that energy consumption reduces at a sublinear speed as power supply reduces.
Finally, we observe that ei t

α−1
i = πir

α
i and pit

α
i = rα

i , namely, for a given parallel
task, there exist energy-delay and power-delay tradeoffs. Later, we will extend such
tradeoff to a set of parallel tasks, i.e., the energy-delay tradeoff theorem.

3 Lower bounds and energy-delay tradeoff

Given n independent parallel tasks with task sizes π1, π2, . . . , πn and task execution
requirements r1, r2, . . . , rn, the problem of minimizing schedule length with energy
consumption constraint E on a multiprocessor computer with m processors is to find
the power supplies p1, p2, . . . , pn and a nonpreemptive schedule of the n parallel
tasks on the m processors such that the schedule length is minimized and the total
energy consumed does not exceed E.

9See footnote 2.
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Given n independent parallel tasks with task sizes π1, π2, . . . , πn and task execu-
tion requirements r1, r2, . . . , rn, the problem of minimizing energy consumption with
schedule length constraint T on a multiprocessor computer with m processors is to
find the power supplies p1, p2, . . . , pn and a nonpreemptive schedule of the n par-
allel tasks on the m processors such that the total energy consumption is minimized
and the schedule length does not exceed T .

When all the πi ’s are identical, the above scheduling problems are equivalent to
scheduling sequential tasks discussed in [18]. Since both scheduling problems are
NP-hard in the strong sense for all rational α > 1 in scheduling sequential tasks, our
problems for scheduling parallel tasks are also NP-hard in the strong sense for all
rational α > 1. Hence, we will develop fast polynomial-time heuristic algorithms to
solve these problems.

We will compare the performance of our algorithms with optimal solutions ana-
lytically. Since it is infeasible to compute optimal solutions in reasonable amount of
time, we derive lower bounds for the optimal solutions in Theorems 1 and 2. These
lower bounds can be used to evaluate the performance of heuristic algorithms when
they are compared with optimal solutions.

Let W = w1 +w2 + · · ·+wn = π1r1 +π2r2 + · · ·+πnrn denote the total amount
of work to be performed for the n tasks. The following theorem gives a lower bound
for the optimal schedule length T ∗ for the problem of minimizing schedule length
with energy consumption constraint.

Theorem 1 For the problem of minimizing schedule length with energy consumption
constraint in scheduling parallel tasks, we have the following lower bound:

T ∗ ≥
(

m

E

(
W

m

)α
)1/(α−1)

for the optimal schedule length.

Proof Imagine that each parallel task i is broken into πi sequential tasks, each having
execution requirement ri . It is clear that any schedule of the n parallel tasks is also
a legitimate schedule of the n′ = π1 + π2 + · · · + πn sequential tasks. However, it
is more flexible to schedule the n′ sequential tasks, since the πi sequential tasks
obtained from parallel task i do not need to be scheduled simultaneously. Hence,
the optimal schedule length of the n′ sequential tasks is no longer than the optimal
schedule length of the n parallel tasks. It has been proven in [18] that the optimal
schedule length of sequential tasks is at least

(
m

E

(
R′

m

)α
)1/(α−1)

,

where R′ is the total execution requirement of the sequential tasks. It is clear that
R′ = π1r1 + π2r2 + · · · + πnrn = W . �
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The following theorem gives a lower bound for the minimum energy consump-
tion E∗ for the problem of minimizing energy consumption with schedule length
constraint.

Theorem 2 For the problem of minimizing energy consumption with schedule length
constraint in scheduling parallel tasks, we have the following lower bound:

E∗ ≥ m

(
W

m

)α 1

T α−1

for the minimum energy consumption.

Proof Using an argument similar to that in the proof of Theorem 1, we break each
parallel task i into πi sequential tasks, each having execution requirement ri . The
minimum energy consumption of the n′ sequential tasks is no more than the mini-
mum energy consumption of the n parallel tasks. It has been proven in [18] that the
minimum energy consumption of sequential tasks is at least

m

(
R′

m

)α 1

T α−1
.

This proves the theorem. �

The lower bounds in Theorems 1 and 2 essentially state the following important
theorem.

ETα−1 Lower Bound Theorem (Energy-Delay Tradeoff Theorem) For any execution
of a set of parallel tasks with total amount of work W on m processors with schedule
length T and energy consumption E, we must have the following tradeoff :

ET α−1 ≥ m

(
W

m

)α

,

by using any scheduling algorithm.

Therefore, our scheduling problems are defined such that the energy-delay product
is optimized by fixing one factor and minimizing the other.

4 System partitioning

To schedule a list of n independent parallel tasks, algorithm Hc-A, where A is a
list scheduling algorithm to be presented in the next section, divides the list into
c sublists according to task sizes (i.e., numbers of processors requested by tasks),
where c ≥ 1 is a positive integer constant. For 1 ≤ j ≤ c − 1, we define sublist j to
be the sublist of tasks with m/(j + 1) < πi ≤ m/j , i.e., sublist j contains all tasks
whose sizes are in the interval Ij = (m/(j + 1),m/j ]. We define sublist c to be the
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sublist of tasks with 0 < πi ≤ m/c, i.e., sublist c contains all tasks whose sizes are in
the interval Ic = (0,m/c]. The partition of (0,m] into intervals I1, I2, . . . , Ij , . . . , Ic

is called the harmonic system partitioning scheme whose idea is to schedule tasks of
similar sizes together. The similarity is defined by the intervals I1, I2, . . . , Ij , . . . , Ic.
For tasks in sublist j , processor utilization is higher than j/(j + 1), where 1 ≤ j ≤
c − 1. As j increases, the similarity among tasks in sublist j increases, and processor
utilization also increases. Hence, the harmonic system partitioning scheme is very
good at handling small tasks.

Algorithm Hc-A produces schedules of the sublists sequentially and separately.
To schedule tasks in sublist j , where 1 ≤ j ≤ c, the m processors are partitioned into
j clusters, and each cluster contains m/j processors. Each cluster of processors is
treated as one unit to be allocated to one task in sublist j . This is basically the har-
monic system partitioning and processor allocation scheme. Therefore, scheduling
parallel tasks in sublist j on the j clusters where each task i has processor require-
ment πi and execution requirement ri is equivalent to scheduling a list of sequential
tasks on j processors where each task i has execution requirement ri . It is clear that
scheduling of the list of sequential tasks on j processors can be accomplished by
using algorithm A, where A is a list scheduling algorithm.

5 Task scheduling

When a multiprocessor computer with m processors is partitioned into j ≥ 1 clusters,
scheduling tasks in sublist j is essentially dividing sublist j into j groups of tasks,
such that each group of tasks are executed on one cluster. Such a partition of sublist j

into j groups is essentially a schedule of the tasks in sublist j on m processors with
j clusters. Once a partition (i.e., a schedule) is determined, we can use the methods
in Sects. 6–8 to find power supplies.

We propose to use the list scheduling algorithm and its variations to solve the
task scheduling problem. Tasks in sublist j are scheduled on j clusters by using the
classic list scheduling algorithm [10] and by ignoring the issue of power supplies. In
other words, the task execution times are simply r1, r2, . . . , rn, and tasks are assigned
to the j clusters (i.e., groups) by using the list scheduling algorithm, which works as
follows to schedule a list of tasks 1,2,3, . . . .

• List Scheduling (LS): Initially, task k is scheduled on cluster (or group) k, where
1 ≤ k ≤ j , and tasks 1,2, . . . , j are removed from the list. Upon the completion of
a task k, the first unscheduled task in the list, i.e., task j + 1, is removed from the
list and scheduled to be executed on cluster k. This process repeats until all tasks
in the list are finished.

Algorithm LS has many variations, depending on the strategy used in the initial or-
dering of the tasks. We mention several of them here.

• Largest Requirement First (LRF): This algorithm is the same as the LS algorithm,
except that the tasks are arranged so that r1 ≥ r2 ≥ · · · ≥ rn.

• Smallest Requirement First (SRF): This algorithm is the same as the LS algorithm,
except that the tasks are arranged so that r1 ≤ r2 ≤ · · · ≤ rn.
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• Largest Size First (LSF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged so that π1 ≥ π2 ≥ · · · ≥ πn.

• Smallest Size First (SSF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged so that π1 ≤ π2 ≤ · · · ≤ πn.

• Largest Task First (LTF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged so that π

1/α

1 r1 ≥ π
1/α

2 r2 ≥ · · · ≥ π
1/α
n rn.

• Smallest Task First (STF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged so that π

1/α

1 r1 ≤ π
1/α

2 r2 ≤ · · · ≤ π
1/α
n rn.

We call algorithm LS and its variations simply as list scheduling algorithms.

6 Task level power supplying

As mentioned earlier, our scheduling problems consist of three components, namely,
system partitioning, task scheduling, and power supplying. Our strategies for schedul-
ing parallel tasks include two basic ideas. First, tasks are divided into c sublists, where
each sublist contains tasks of similar sizes, and the sublists are scheduled separately.
Second, for each sublist j , the m processors are partitioned into j ≥ 1 clusters and
tasks in sublist j are partitioned into j groups such that each cluster of processors ex-
ecute one group of tasks. Once a partition (and a schedule) is given, power supplies
which minimize the schedule length within energy consumption constraint or the en-
ergy consumption within schedule length constraint can be determined. We adopt a
three-level energy/time/power allocation scheme for a given schedule, namely, opti-
mal power supplies to tasks in the same group (Theorems 3 and 4 in Sect. 6), optimal
energy allocation among groups of tasks in the same sublist (Theorems 5 and 6 in
Sect. 7), and optimal energy/time allocation among sublists of tasks (Theorems 7 and
8 in Sect. 8).

We first consider optimal power supplies to tasks in the same group. In fact, we
discuss task level power supplying in a more general case, i.e., when n parallel tasks
have to be scheduled sequentially on m processors. This may happen when πi > m/2
for all 1 ≤ i ≤ n. In this case, the m processors are treated as one unit, i.e., a cluster,
to be allocated to one task. Of course, for each particular task i, only πi of the m

allocated processors are actually used and consume energy. It is clear that the problem
of minimizing schedule length with energy consumption constraint E is simply to
find the power supplies p1, p2, . . . , pn such that the schedule length

T = r1

p
1/α

1

+ r2

p
1/α

2

+ · · · + rn

p
1/α
n

is minimized and the total energy consumed e1 + e2 + · · · + en does not exceed E,
i.e.,

π1r1p
1−1/α

1 + π2r2p
1−1/α

2 + · · · + πnrnp
1−1/α
n ≤ E.

Let M = π
1/α

1 r1 + π
1/α

2 r2 + · · · + π
1/α
n rn. The following result gives the optimal

power supplies when the n tasks are scheduled sequentially.
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Theorem 3 When the n tasks are scheduled sequentially, the schedule length is min-
imized when task i is supplied with power pi = (E/M)α/(α−1)/πi , where 1 ≤ i ≤ n.
The optimal schedule length is T = Mα/(α−1)/E1/(α−1).

Proof We can minimize T by using the Lagrange multiplier system

∇T (p1,p2, . . . , pn) = λ∇F(p1,p2, . . . , pn),

where T is viewed as a function of p1, p2, . . . , pn, λ is the Lagrange multiplier, and
F is the constraint π1r1p

1−1/α

1 + π2r2p
1−1/α

2 + · · · + πnrnp
1−1/α
n − E = 0. Since

∂T

∂pi

= λ
∂F

∂pi

,

that is,

ri

(
− 1

α

)
1

p
1+1/α
i

= λπiri

(
1 − 1

α

)
1

p
1/α
i

,

1 ≤ i ≤ n, we get

pi = 1

λ(1 − α)πi

,

which implies that

n∑
i=1

πiri

(λ(1 − α)πi)1−1/α
= E,

1

λ(1 − α)
=

(
E

M

)α/(α−1)

,

and

pi = 1

πi

(
E

M

)α/(α−1)

for all 1 ≤ i ≤ n. Consequently, we get the optimal schedule length

T =
n∑

i=1

ri

p
1/α
i

=
n∑

i=1

π
1/α
i ri

(
M

E

)1/(α−1)

= M

(
M

E

)1/(α−1)

= Mα/(α−1)

E1/(α−1)
.

This proves the theorem. �

It is clear that on a unicluster computer with time constraint T , the problem of
minimizing energy consumption with schedule length constraint is simply to find the
power supplies p1, p2, . . . , pn such that the total energy consumption

E = π1r1p
1−1/α

1 + π2r2p
1−1/α

2 + · · · + πnrnp
1−1/α
n
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is minimized and the schedule length t1 + t2 + · · · + tn does not exceed T , i.e.,

r1

p
1/α

1

+ r2

p
1/α

2

+ · · · + rn

p
1/α
n

≤ T .

The following result gives the optimal power supplies when the n tasks are sched-
uled sequentially.

Theorem 4 When the n tasks are scheduled sequentially, the total energy con-
sumption is minimized when task i is supplied with power pi = (M/T )α/πi , where
1 ≤ i ≤ n. The minimum energy consumption is E = Mα/T α−1.

Proof We can minimize E by using the Lagrange multiplier system

∇E(p1,p2, . . . , pn) = λ∇F(p1,p2, . . . , pn),

where E is viewed as a function of p1, p2, . . . , pn, λ is the Lagrange multiplier, and
F is the constraint

r1

p
1/α

1

+ r2

p
1/α

2

+ · · · + rn

p
1/α
n

− T = 0.

Since
∂E

∂pi

= λ
∂F

∂pi

,

that is,

πiri

(
1 − 1

α

)
1

p
1/α
i

= λri

(
− 1

α

)
1

p
1+1/α
i

,

1 ≤ i ≤ n, we get

pi = λ

(1 − α)πi

,

which implies that

n∑
i=1

ri

(
(1 − α)πi

λ

)1/α

= T ,

1 − α

λ
=

(
T

M

)α

,

and

pi = 1

πi

(
M

T

)α

for all 1 ≤ i ≤ n. Consequently, we get the minimum energy consumption

E =
n∑

i=1

πirip
1−1/α
i =

n∑
i=1

πiri
1

π
1−1/α
i

(
M

T

)α−1

= M

(
M

T

)α−1

= Mα

T α−1
.
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This proves the theorem. �

7 Group level energy allocation

Now, we consider optimal energy allocation among groups of tasks in the same sub-
list. Again, we discuss group level energy allocation in a more general case, i.e.,
scheduling n parallel tasks on m processors, where πi ≤ m/j for all 1 ≤ i ≤ n with
j ≥ 1. In this case, the m processors can be partitioned into j clusters such that each
cluster contains m/j processors. Each cluster of processors are treated as one unit to
be allocated to one task. Assume that the set of n tasks is partitioned into j groups
such that all the tasks in group k are executed on cluster k, where 1 ≤ k ≤ j . Let Mk

denote the total π
1/α
i ri of the tasks in group k. For a given partition of the n tasks into

j groups, we are seeking power supplies that minimize the schedule length. Let Ek

be the energy consumed by all the tasks in group k. The following result characterizes
the optimal power supplies.

Theorem 5 For a given partition M1, M2, . . . ,Mj of the n tasks into j groups on a
multiprocessor computer partitioned into j clusters, the schedule length is minimized
when task i in group k is supplied with power pi = (Ek/Mk)

α/(α−1)/πi , where

Ek =
(

Mα
k

Mα
1 + Mα

2 + · · · + Mα
j

)
E

for all 1 ≤ k ≤ j . The optimal schedule length is

T =
(

Mα
1 + Mα

2 + · · · + Mα
j

E

)1/(α−1)

for the above power supplies.

Proof We observe that by fixing Ek and supplying power pi = (Ek/Mk)
α/(α−1)/πi

to task i in group k according to Theorem 3, the total execution time of the tasks in
group k can be minimized to

Tk = M
α/(α−1)
k

E
1/(α−1)
k

.

Therefore, the problem of finding power supplies p1, p2, . . . , pn that minimize the
schedule length is equivalent to finding E1, E2, . . . ,Ej that minimize the sched-
ule length. It is clear that the schedule length is minimized when all the j clus-
ters complete their execution of the j groups of tasks at the same time T , that is,
T1 = T2 = · · · = Tj = T , which implies that

Ek = Mα
k

T α−1
.



236 K. Li

Since E1 + E2 + · · · + Ej = E, we have

Mα
1 + Mα

2 + · · · + Mα
j

T α−1
= E,

that is,

T =
(

Mα
1 + Mα

2 + · · · + Mα
j

E

)1/(α−1)

and

Ek =
(

Mα
k

Mα
1 + Mα

2 + · · · + Mα
j

)
E.

The theorem is proven. �

The following result gives the optimal power supplies that minimize energy con-
sumption for a given partition of the n tasks into j groups on a multiprocessor com-
puter.

Theorem 6 For a given partition M1, M2, . . . ,Mj of the n tasks into j groups on a
multiprocessor computer partitioned into j clusters, the total energy consumption is
minimized when task i in group k is executed with power pi = (Mk/T )α/πi , where
1 ≤ k ≤ j . The minimum energy consumption is

E = Mα
1 + Mα

2 + · · · + Mα
j

T α−1

for the above power supplies.

Proof By Theorem 4, the energy consumed by tasks in group k is minimized as
Ek = Mα

k /T α−1 without increasing the schedule length T by supplying power pi =
(Mk/T )α/πi to task i in group k. The minimum energy consumption is simply E =
E1 + E2 + · · · + Ej = (Mα

1 + Mα
2 + · · · + Mα

j )/T α−1. �

Notice that our results in Sects. 3, 6, 7 include those results in [18] as special cases.
In other words, when πi = 1 for all 1 ≤ i ≤ n, Theorems 1–6 and the energy-delay
tradeoff theorem become the results in [18].

8 Performance analysis

To use algorithm Hc-A to solve the problem of minimizing schedule length with
energy consumption constraint E, we need to allocate the available energy E to the
c sublists. We use E1, E2, . . . ,Ec to represent an energy allocation to the c sublists,
where sublist j consumes energy Ej , and E1 + E2 + · · · + Ec = E. By using any of
the list scheduling algorithms to schedule tasks in sublist j , we get a partition of the
tasks in sublist j into j groups. Let Rj be the total execution requirement of tasks in
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sublist j , Rj,k be the total execution requirement of tasks in group k, and Mj,k be the

total π
1/α
i ri of tasks in group k, where 1 ≤ k ≤ j . Theorem 7 provides optimal energy

allocation to the c sublists for minimizing schedule length with energy consumption
constraint in scheduling parallel tasks by using scheduling algorithm Hc-A, where A

is a list scheduling algorithm.
We define the performance ratio as β = T/T ∗ for heuristic algorithms that solve

the problem of minimizing schedule length with energy consumption constraint on a
multiprocessor computer. The following theorem gives the performance ratio when
algorithm Hc-A is used to solve the problem of minimizing schedule length with
energy consumption constraint.

Theorem 7 For a given partition Mj,1, Mj,2, . . . ,Mj,j of the tasks in sublist j into
j groups produced by a list scheduling algorithm A, where 1 ≤ j ≤ c, and an energy
allocation E1, E2, . . . ,Ec to the c sublists, the scheduling algorithm Hc-A produces
the schedule length

T =
c∑

j=1

(
Mα

j,1 + Mα
j,2 + · · · + Mα

j,j

Ej

)1/(α−1)

.

The energy allocation E1, E2, . . . ,Ec which minimizes T is

Ej =
(

N
1/α
j

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c

)
E,

where Nj = Mα
j,1 + Mα

j,2 + · · · + Mα
j,j for all 1 ≤ j ≤ c, and the minimized schedule

length is

T = (N
1/α

1 + N
1/α

2 + · · · + N
1/α
c )α/(α−1)

E1/(α−1)
,

by using the above energy allocation. The performance ratio is

β ≤
(((

c∑
j=1

Rj

j

)
+ cr∗

)/(
W

m

))α/(α−1)

,

where r∗ = max(r1, r2, . . . , rn) is the maximum task execution requirement.

Proof By Theorem 5, for a given partition Mj,1, Mj,2, . . . ,Mj,j of the tasks in sublist
j into j groups, the schedule length Tj for sublist j is minimized when task i in group
k is supplied with power pi = (Ej,k/Mj,k)

α/(α−1)/πi , where

Ej,k =
(

Mα
j,k

Mα
j,1 + Mα

j,2 + · · · + Mα
j,j

)
Ej

for all 1 ≤ k ≤ j . The optimal schedule length is

Tj =
(

Mα
j,1 + Mα

j,2 + · · · + Mα
j,j

Ej

)1/(α−1)
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for the above power supplies. Since algorithm Hc-A produces the schedule length
T = T1 + T2 + · · · + Tc , we have

T =
c∑

j=1

(
Mα

j,1 + Mα
j,2 + · · · + Mα

j,j

Ej

)1/(α−1)

.

By the definition of Nj , we obtain

T =
(

N1

E1

)1/(α−1)

+
(

N2

E2

)1/(α−1)

+ · · · +
(

Nc

Ec

)1/(α−1)

.

To minimize T , we use the Lagrange multiplier system

∇T (E1,E2, . . . ,Ec) = λ∇F(E1,E2, . . . ,Ec),

where λ is the Lagrange multiplier, and F is the constraint E1 +E2 +· · ·+Ec −E =
0. Since

∂T

∂Ej

= λ
∂F

∂Ej

,

that is,

N
1/(α−1)
j

(
− 1

α − 1

)
1

E
1/(α−1)+1
j

= λ,

1 ≤ j ≤ c, we get

Ej = N
1/α
j

(
1

λ(1 − α)

)(α−1)/α

,

which implies that

E = (
N

1/α

1 + N
1/α

2 + · · · + N
1/α
c

)( 1

λ(1 − α)

)(α−1)/α

and

Ej =
(

N
1/α
j

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c

)
E

for all 1 ≤ j ≤ c. By using the above energy allocation, we have

T =
c∑

j=1

(
Nj

Ej

)1/(α−1)

=
c∑

j=1

N
1/(α−1)
j((

N
1/α
j

N
1/α
1 +N

1/α
2 +···+N

1/α
c

)
E

)1/(α−1)
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=
c∑

j=1

N
1/α
j (N

1/α

1 + N
1/α

2 + · · · + N
1/α
c )1/(α−1)

E1/(α−1)

= (N
1/α

1 + N
1/α

2 + · · · + N
1/α
c )α/(α−1)

E1/(α−1)
.

For any list scheduling algorithm A, we have

Rj,k ≤ Rj

j
+ r∗

for all 1 ≤ j ≤ c and 1 ≤ k ≤ j . Since πi ≤ m/j for every task i in sublist j , we get

Mj,k ≤
(

m

j

)1/α

Rj,k ≤
(

m

j

)1/α(
Rj

j
+ r∗

)
.

Therefore,

Nj ≤ m

(
Rj

j
+ r∗

)α

,

N
1/α
j ≤ m1/α

(
Rj

j
+ r∗

)
,

and

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c ≤ m1/α

((
c∑

j=1

Rj

j

)
+ cr∗

)
,

which implies that

T ≤ m1/(α−1)

((
c∑

j=1

Rj

j

)
+ cr∗

)α/(α−1)
1

E1/(α−1)
.

By Theorem 1, we get

β = T

T ∗ ≤
(((

c∑
j=1

Rj

j

)
+ cr∗

)/(
W

m

))α/(α−1)

.

This proves the theorem. �

Theorems 5 and 7 give the power supply to the task i in group k of sublist j as

1

πi

(
Ej,k

Mj,k

)α/(α−1)

= 1

πi

((
Mα

j,k

Mα
j,1 + Mα

j,2 + · · · + Mα
j,j

)(
N

1/α
j

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c

)
E

Mj,k

)α/(α−1)
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for all 1 ≤ j ≤ c and 1 ≤ k ≤ j .
We notice that the performance bound given in Theorem 7 is pessimistic mainly

due to the overestimation of the πi ’s in sublist j to m/j . One possible remedy is to
use (m/(j + 1) + m/j)/2 as an approximation to πi . Also, as the number of tasks
gets large, the term cr∗ may be removed. This gives rise to the following performance
bound for β: ((

c∑
j=1

Rj

j

(
2j + 1

2j + 2

)1/α
)/(

W

m

))α/(α−1)

. (1)

Our simulation shows that the modified bound in (1) is more accurate than the per-
formance bound given in Theorem 7.

To use algorithm Hc-A to solve the problem of minimizing energy consumption
with schedule length constraint T , we need to allocate the time T to the c sublists. We
use T1, T2, . . . , Tc to represent a time allocation to the c sublists, where tasks in sublist
j are executed within deadline Tj , and T1 + T2 + · · · + Tc = T . Theorem 8 provides
optimal time allocation to the c sublists for minimizing energy consumption with
schedule length constraint in scheduling parallel tasks by using scheduling algorithm
Hc-A, where A is a list scheduling algorithm.

We define the performance ratio as β = E/E∗ for heuristic algorithms that solve
the problem of minimizing energy consumption with schedule length constraint on a
multiprocessor computer. The following theorem gives the performance ratio when
algorithm Hc-A is used to solve the problem of minimizing energy consumption with
schedule length constraint.

Theorem 8 For a given partition Mj,1, Mj,2, . . . ,Mj,j of the tasks in sublist j into
j groups produced by a list scheduling algorithm A, where 1 ≤ j ≤ c, and a time
allocation T1, T2, . . . , Tc to the c sublists, the scheduling algorithm Hc-A consumes
the energy

E =
c∑

j=1

(
Mα

j,1 + Mα
j,2 + · · · + Mα

j,j

T α−1
j

)
.

The time allocation T1, T2, . . . , Tc which minimizes E is

Tj =
(

N
1/α
j

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c

)
T ,

where Nj = Mα
j,1 + Mα

j,2 + · · · + Mα
j,j for all 1 ≤ j ≤ c, and the minimized energy

consumption is

E = (N
1/α

1 + N
1/α

2 + · · · + N
1/α
c )α

T α−1
,

by using the above time allocation. The performance ratio is

β ≤
(((

c∑
j=1

Rj

j

)
+ cr∗

)/(
W

m

))α

,
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where r∗ = max(r1, r2, . . . , rn) is the maximum task execution requirement.

Proof By Theorem 6, for a given partition Mj,1, Mj,2, . . . ,Mj,j of the tasks in sublist
j into j groups, the total energy Ej consumed by sublist j is minimized when task
i in group k is executed with power pi = (Mj,k/Tj )

α/πi , where 1 ≤ j ≤ c and 1 ≤
k ≤ j . The minimum energy consumption is

Ej = Mα
j,1 + Mα

j,2 + · · · + Mα
j,j

T α−1
j

for the above power supplies. Since algorithm Hc-A consumes the energy E = E1 +
E2 + · · · + Ec, we have

E =
c∑

j=1

(
Mα

j,1 + Mα
j,2 + · · · + Mα

j,j

T α−1
j

)
.

By the definition of Nj , we obtain

E = N1

T α−1
1

+ N2

T α−1
2

+ · · · + Nc

T α−1
c

.

To minimize E, we use the Lagrange multiplier system

∇E(T1, T2, . . . , Tc) = λ∇F(T1, T2, . . . , Tc),

where λ is the Lagrange multiplier, and F is the constraint T1 +T2 +· · ·+Tc −T = 0.
Since

∂E

∂Tj

= λ
∂F

∂Tj

,

that is,

Nj

(
1 − α

T α
j

)
= λ,

1 ≤ j ≤ c, we get

Tj = N
1/α
j

(
1 − α

λ

)1/α

,

which implies that

T = (
N

1/α

1 + N
1/α

2 + · · · + N
1/α
c

)(1 − α

λ

)1/α

and

Tj =
(

N
1/α
j

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c

)
T



242 K. Li

for all 1 ≤ j ≤ c. By using the above time allocation, we have

E =
c∑

j=1

Nj

T α−1
j

=
c∑

j=1

Nj((
N

1/α
j

N
1/α
1 +N

1/α
2 +···+N

1/α
c

)
T

)α−1

=
c∑

j=1

N
1/α
j (N

1/α

1 + N
1/α

2 + · · · + N
1/α
c )α−1

T α−1

= (N
1/α

1 + N
1/α

2 + · · · + N
1/α
c )α

T α−1
.

Similar to the proof of Theorem 7, we have

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c ≤ m1/α

((
c∑

j=1

Rj

j

)
+ cr∗

)
,

which implies that

E ≤ m

((
c∑

j=1

Rj

j

)
+ cr∗

)α
1

T α−1
.

By Theorem 2, we get

β = E

E∗ ≤
(((

c∑
j=1

Rj

j

)
+ cr∗

)/(
W

m

))α

.

This proves the theorem. �

Theorems 6 and 8 give the power supply to task i in group k of sublist j as

1

πi

(
Mj,k

Tj

)α

= 1

πi

(
Mj,k(N

1/α

1 + N
1/α

2 + · · · + N
1/α
c )

N
1/α
j T

)α

for all 1 ≤ j ≤ c and 1 ≤ k ≤ j .
Again, we adjust the performance bound given in Theorem 8 to((

c∑
j=1

Rj

j

(
2j + 1

2j + 2

)1/α
)/(

W

m

))α

. (2)

Our simulation shows that the modified bound in (2) is more accurate than the per-
formance bound given in Theorem 8.
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9 Numerical and simulation data

To validate our analytical results, extensive simulations are conducted. In this section,
we demonstrate some numerical and experimental data.

We define the normalized schedule length (NSL) as

NSL = T(
m
E

(
W
m

)α)1/(α−1)
.

When T is the schedule length produced by a heuristic algorithm Hc-A according to
Theorem 7, the normalized schedule length is

NSL =
(

(N
1/α

1 + N
1/α

2 + · · · + N
1/α
c )α

m
(

W
m

)α

)1/(α−1)

.

NSL is an upper bound for the performance ratio β = T/T ∗ for the problem of mini-
mizing schedule length with energy consumption constraint on a multiprocessor com-
puter. When the πi ’s and the ri ’s are random variables, T , T ∗, β , and NSL all become
random variables. It is clear that for the problem of minimizing schedule length with
energy consumption constraint, we have β̄ ≤ NSL, i.e., the expected performance ra-
tio is no larger than the expected normalized schedule length. (We use x̄ to represent
the expectation of a random variable x.)

We define the normalized energy consumption (NEC) as

NEC = E

m
(

W
m

)α 1
T α−1

.

When E is the energy consumed by a heuristic algorithm Hc-A according to Theo-
rem 8, the normalized energy consumption is

NEC = (N
1/α

1 + N
1/α

2 + · · · + N
1/α
c )α

m
(

W
m

)α .

NEC is an upper bound for the performance ratio β = E/E∗ for the problem of
minimizing energy consumption with schedule length constraint on a multiprocessor
computer. For the problem of minimizing energy consumption with schedule length
constraint, we have β̄ ≤ NEC.

Notice that the expected normalized schedule length NSL and the expected nor-
malized energy consumption NEC are determined by A, c, m, n, α, and the proba-
bility distributions of the πi ’s and ri ’s. In our simulations, the algorithm A is chosen
as LS; the parameter c is set as 20; the number of processors is set as m = 128; the
number of tasks is set as n = 1,000; and the parameter α is set as 3. The particu-
lar choices of these values do not affect our general observations and conclusions.
For convenience, the ri ’s are treated as independent and identically distributed (i.i.d.)
continuous random variables uniformly distributed in [0,1). The πi ’s are i.i.d. dis-
crete random variables. We consider three types of probability distributions of task
sizes with about the same expected task size π̄ . Let ab be the probability that πi = b,
where b ≥ 1.
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• Uniform distributions in the range [1..u], i.e., ab = 1/u for all 1 ≤ b ≤ u, where u

is chosen such that (u + 1)/2 = π̄ , i.e., u = 2π̄ − 1.
• Binomial distributions in the range [1..m], i.e.,

ab =
(
m
b

)
pb(1 − p)m−b

1 − (1 − p)m

for all 1 ≤ b ≤ m, where p is chosen such that mp = π̄ , i.e., p = π̄/m. However,
the actual expectation of task sizes is

π̄

1 − (1 − p)m
= π̄

1 − (1 − π̄/m)m
,

which is slightly greater than π̄ , especially when π̄ is small.
• Geometric distributions in the range [1..m], i.e.,

ab = q(1 − q)b−1

1 − (1 − q)m

for all 1 ≤ b ≤ m, where q is chosen such that 1/q = π̄ , i.e., q = 1/π̄ . However,
the actual expectation of task sizes is

1/q − (1/q + m)(1 − q)m

1 − (1 − q)m
= π̄ − (π̄ + m)(1 − 1/π̄)m

1 − (1 − 1/π̄)m
,

which is less than π̄ , especially when π̄ is large.

In Tables 1 and 2, we show and compare the analytical results with simulation data.
For each π̄ in the range 10,15,20, . . . ,60, and each probability distribution of task
sizes, we generate 200 sets of n tasks, produce their schedules by using algorithm Hc-
LS, calculate their NSL (or NEC) and the bound (1) (or bound (2)), report the average
of NSL (or NEC) which is the experimental value of NSL (or NEC), and report the
average of bound (1) (or bound (2)) which is the numerical value of analytical results.
The 99% confidence interval of all the data in the same table is also given.

We have the following observations from our simulations.

• NSL is less than 1.4, and NEC is less than 1.95, except the case for uniform distri-
bution with π̄ = 45. Since NSL and NEC only give upper bonds for the expected
performance ratios, the performance of our heuristic algorithms are even better,
and our heuristic algorithms are able to produce solutions very close to optimum.

• The performance of algorithm Hc-A for A other than LS (i.e., LRF, SRF, LSF,
SSF, LTF, STF) is very close (within ±1%) to the performance of algorithm Hc-
LS. Since these data do not provide further insight, they are not shown here.

• The performance bound (1) is very close to NSL, and the performance bound (2)
is very close to NEC. Our analytical results provide very accurate estimation of
the expected normalized schedule length and the expected normalized energy con-
sumption.
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Table 1 Simulation data for expected NSL

π̄ Uniform Binomial Geometric

Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1311531 1.1846499 1.0711008 1.0636341 1.2176904 1.3172420

15 1.1262486 1.1493186 1.0794990 1.0549572 1.2042597 1.2607125

20 1.1377073 1.1495630 1.0991387 1.0820476 1.2260825 1.2718070

25 1.1963542 1.2221468 1.1179888 1.1164336 1.2472974 1.2887673

30 1.1925090 1.2028694 1.1377585 1.1406375 1.2650054 1.3045373

35 1.2671006 1.3060567 1.1627916 1.1730722 1.2758955 1.3126316

40 1.3724390 1.4507239 1.2108560 1.2372959 1.2822935 1.3162972

45 1.4036446 1.4835721 1.2629891 1.3070823 1.2863025 1.3173556

50 1.3963575 1.4611373 1.2486138 1.2775513 1.2907750 1.3198693

55 1.3667205 1.4084232 1.2095924 1.2158904 1.2915822 1.3179406

60 1.3275050 1.3448166 1.2823717 1.3218361 1.2953585 1.3205274

(99% confidence interval ±0.289%)

Table 2 Simulation data for expected NEC

π̄ Uniform Binomial Geometric

Simulation Analysis Simulation Analysis Simulation Analysis

10 1.2796678 1.4030164 1.1486957 1.1318542 1.4833754 1.7352263

15 1.2696333 1.3238851 1.1659599 1.1137040 1.4469347 1.5848844

20 1.2935587 1.3196059 1.2091747 1.1717433 1.5002288 1.6140745

25 1.4304500 1.4922751 1.2505756 1.2465521 1.5614698 1.6698993

30 1.4221576 1.4470699 1.2940850 1.3000633 1.5917814 1.6898822

35 1.6006477 1.6981148 1.3515095 1.3745887 1.6257366 1.7213599

40 1.8792217 2.0984836 1.4663274 1.5313174 1.6441691 1.7334538

45 1.9726518 2.2049910 1.5960920 1.7100668 1.6554994 1.7372576

50 1.9496911 2.1343696 1.5591070 1.6324087 1.6652267 1.7404442

55 1.8710998 1.9885360 1.4628489 1.4780403 1.6717055 1.7421288

60 1.7632633 1.8092858 1.6380633 1.7373764 1.6737146 1.7375970

(99% confidence interval ±0.553%)

10 Concluding remarks

We have made some initial attempt to address energy-efficient scheduling of parallel
tasks on multiprocessor computers with dynamic voltage and speed as combinato-
rial optimization problems. We defined the problem of minimizing schedule length
with energy consumption constraint and the problem of minimizing energy consump-
tion with schedule length constraint for independent parallel tasks on multiprocessor
computers. We argued that each heuristic algorithm should solve three nontrivial sub-
problems efficiently, namely, system partitioning, task scheduling, and power supply-
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ing. By using the harmonic system partitioning and processor allocation method, the
list scheduling algorithms, and a three-level energy/time/power allocation scheme,
we have developed heuristic algorithms which are able to produce schedules very
close to optimum. In doing so, we have also established lower bounds for the optimal
solutions and have found an energy-delay tradeoff theorem.

There are several further research directions. In addition to independent parallel
tasks in this paper, our scheduling problems can be extended to precedence con-
strained parallel tasks. Investigation can also be directed toward scheduling parallel
tasks on multiprocessors with discrete voltage/speed settings [14, 24].
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