
Energy-Aware Scheduling of Distributed Systems
Using Cellular Automata

Pragati Agrawal and Shrisha Rao
pragati.agrawal@iiitb.org, shrao@ieee.org

Abstract—In today’s world of large distributed systems, the
need for energy efficiency of individual components is comple-
mented by the need for energy awareness of the complete system.
Hence, energy-aware scheduling of tasks on systems has become
very important. Our work addresses the problem of finding an
energy-aware schedule for a given system which also satisfies
the precedence constraints between tasks to be performed by
the system. We present a method which uses cellular automata
to find a near-optimal schedule for the system. The rules for
cellular automata are learned using a genetic algorithm. Though
the work presented in this paper is not limited to scheduling
in computing environments only, the work is validated with a
sample simulation on distributed computing systems, and tested
with some standard program graphs.

I. INTRODUCTION

With increasing complexity of requirements and connec-
tivity, distributed systems have become ubiquitous. But using
such systems in an energy-efficient way still needs a lot of
research. Efficiency can only be achieved by proper scheduling
of required tasks over many components. But even with the
simplest case of a two-component system, scheduling a paral-
lel program is an NP-complete problem [1]. Hence obtaining
of optimum schedules for systems with many components is
a challenging open problem.

Many exact solution methods have been employed for
scheduling (for example list scheduling, critical-path-based
heuristics) but they are sequential algorithms. Some limitations
of sequential scheduling algorithms are their sensitivity to
scheduling parameters, lack of scalability, and determinism.
Due to these limitations, they are generally not able to reach
an optimum solution. Parallel scheduling methods have given
a new perspective to this problem, but there is yet a lot of
space for research and development [2].

Stochastic global search techniques based on heuristics have
also been used for scheduling. Some of the successful heuris-
tics include genetic algorithms, neural networks, simulated
annealing, and ant colony optimization. Though such methods
have often produced good results, they have the drawback of
requiring large scheduling overheads. Scheduling overhead is
the computational cost on the system for finding a schedule
dynamically. Since a new schedule has to be designed for
any new program graph while the system remains the same,
some properties remain common among different schedules.
Generally, the stochastic search algorithms do not try to take
advantage of this fact and instead search for a schedule from
scratch.

To reduce the scheduling overhead by taking advantage of
this property, the use of cellular automata was proposed by
Seredynski and Zomaya [3] but their method was restricted to
optimize the overall time taken, not at all considering energy
consumption.

Energy-aware scheduling of distributed systems is unfortu-
nately a seldom-explored area. Liu et al. [4] present a method
for power-aware scheduling under timing-constraints, but their
system assumes only one particular machine for one class of
tasks, and hence does not require parallel scheduling of tasks.
Artigues et al. [5] apply tree searches for finding schedules
under energy constraints in industrial applications. Scheduling
overhead is usually not a concern in industrial scheduling
problems, hence the method presented in their paper does not
optimize for the scheduling overhead. Wang et al. [6] propose
a method for energy-efficient scheduling of a unicomponent
system under thermal constraints. A system could fail if its
peak temperature exceeds its thermal constraints; higher tem-
perature may also lead to higher leakage power consumption.
Their method performs thermal management to minimize the
energy consumption in dynamic voltage/speed scaling (DVS)
components. Chan et al. [7] propose a technique for scheduling
for weighted flow time and energy graphs, which includes the
scope for rejecting some jobs for overall optimality.

Cellular automata (CA) [8], [9] are collections of cells on
a grid of specified shape that evolve through a number of
discrete time steps according to a set of rules based on the
states of neighboring cells. Cellular automata form highly par-
allel and distributed systems of single, locally interacting units
which are able to produce a global behavior. CA can be used
to adapt the properties of real-life system. Hence schedules for
real-life systems can be found with less scheduling overheads,
using CA.

The methods tried to date which have used cellular automata
for scheduling have only concentrated on optimizing for total
execution time. The method proposed by Seredynski and
Zomaya [3] uses genetic algorithms to learn the rules for CA,
and proposes sequential as well as parallel update rules of
an irregular CA. Swiecicka et al. [10] present a method by
adding an artificial immune system (AIS) technique to the
method proposed proposed by Seredynski and Zomaya [3].
Swiecicka et al. [10] use linear cellular automata in place of
the irregular automata of Seredynski and Zomaya [3]. Another
method which uses irregular cellular automata is proposed
by Ghafarian et al. [11], who use ant colony optimization
techniques to learn the rules of their CA.

978-1-4673-0750-5/12/$31.00 ©2012 IEEE

Fig. 1. System graph example: Mesh topology with four nodes

This paper presents a method to try to find an optimum
schedule which minimizes the total energy consumption given
the system and the tasks to be completed by it. Along with
the power required for task execution, the power dissipation
of components when idle is also taken into consideration.
Cellular automata are used for calculating good schedule.
The rules of the CA are learned using genetic algorithms. A
formal definition of the problem considered in this paper is
presented in Section II. The proposed method is explained
in Section III. Section IV illustrates the results observed by
simulating the proposed method on standard program graphs.
Finally, Section V describes the conclusion and future work.

II. ENERGY AWARE SCHEDULING

A distributed system is represented by an undirected un-
weighted graph Gs = (Vs, Es), called the system graph. Here,

• Vs is the set of nodes of the system graph representing
components with their local memories. The cardinality
|Vs| = Ns specifies the number of components in the
system.

• Es is the set of edges representing channels between com-
ponents and defines a topology of the multicomponent
system.

Figure 1 shows an example of a system graph with four
nodes P1, P2, P3 and P4 as components which are connected
in mesh topology with bidirectional links. It is assumed in our
work that communication links themselves do not consume
any power.

A parallel program is represented by a weighted directed
acyclic graph Gp = (Vp, Ep), called a precedence task graph
or a program graph. In the program graph:

• Vp is the set of nodes of the graph where each node
represents an elementary task. The cardinality |Vp| = Np

specifies the number of elementary tasks in the program.
• Ep is the set of edges which specifies the precedence

between the tasks.
The weight of a node represents the execution cost of the

task and the weight on an edge shows the transfer cost between

Fig. 2. Program graph example: Weights of nodes and edges are given by
numbers along them. The precedence constraints are specified by direction of
the edges.

Symbol Meaning

ni node number of task i in program graph

w(ni) weight of node ni

cij weight of edge connecting ni and nj

P (ni) component that is assigned task i

TABLE I
TERMS DEFINED FOR PROGRAM GRAPH

two tasks if they are located at different components. If they
are located on the same component then the transfer cost is
taken as zero. Figure 2 shows a small example of a program
graph with weights of nodes and edges.

Table I describes various parameters of a program graph.
The power consumption specifications of the system are

indicated in Table II.
The total energy consumption of the system is given by:

E =

Ns∑
n=1

[µ(Pn)τc(Pn) + kµ(Pn)τi(Pn)] (1)

If the energy specifications of all system components are
the same, then the minimum-energy problem reduces to that
of calculating the minimum total execution time for a given
program of tasks, since the minimum time corresponds to

Symbol Meaning

µ(Pm)
Power consumption in working state by component

Pm

kµ(Pm) Power consumption in idle state by component Pm,
here 0 ≤ k ≤ 1

τc(Pm) Time taken in working state by Component Pm

τi(Pm) Time taken in idle state by Component Pm

TABLE II
POWER CONSUMPTION SPECIFICATIONS OF THE SYSTEM

minimum power. Our technique considers the general case
where components have different energy requirements, hence
provides an energy-aware solution. The objective is to find
a schedule using cellular automata which minimizes the total
energy consumption E given a system graph Gs and a program
graph Gp. We have solved this problem using the cellular
automata model.

III. PROPOSED METHOD FOR ENERGY AWARE
SCHEDULING

To solve the scheduling problem using CA, the system graph
and program graph have to be mapped to the CA domain.
An elementary task of the program is mapped to a cell in
the CA space. The state of the cell specifies the component
to which the task is assigned. Initially, tasks are assigned
randomly to the components. Then according to the rules and
the neighborhood, CA evolve sequentially to reach a state
which gives a near-optimum schedule. The selection of the
neighborhood and the rules is critical to finding a good solution
with minimal scheduling overhead. Section III-A describes the
method for selecting the neighborhood. The learning of rules
and finding the good schedule is explained in Section III-B.

A. Selection of the Neighborhood

The architecture of the CA used in the proposed method is
linear and irregular, which means that the neighborhood of a
cell need not necessarily consist of the geometric neighbors of
the cell. This provides the scope to choose neighbors which
are more relevant to the task graph. Our proposed method uses
a neighborhood of size 5, which includes two parents and two
children of the task, and the task itself. Some terms are defined
below to explain the neighborhood selection process.

• Entry Node – node with no parent
• Exit Node – node with no child
• AEST – Absolute Earliest Start Time
AEST (ni) for a node ni is recursively defined as:

AEST (ni) = 0, for entry node
AEST (ni) = max

1≤k≤p
(AEST (nik) + w(nik)

+r(P (nik), P (ni))ciki), otherwise

where ni has p parent nodes and nik is its kth parent
node, and

r(i, j) = 0, if i = j

r(i, j) = 1, if i 6= j.

• DCPL – Dynamic Critical Path Length

DCPL = arg max
i

(AEST (ni) + w(ni)) (2)

• ALST – Absolute Latest Start Time
AEST (ni) for a node ni is recursively defined as:

ALST (ni) = DCPL− w(ni), for exit node
ALST (ni) = min

1≤k≤q
(ALST (nik)− w(ni)

−r(P (nik), P (ni))ciki), otherwise

where ni has q children nodes and nik is its kth child
node.

• ∆(ni,nj) – dynamic level distance measure between two
nodes ni and nj .

∆(ni, nj) = AEST (ni)−AEST (nj)+

ALST (ni)−ALST (nj)
(3)

If a node ni has more than two parents (respectively,
children) then the two parents (respectively, children) which
have the smallest ∆(ni, nj) for the node ni are selected as
neighbors. If less than two parents or children exist for a node,
then dummy (null) parents/children are assigned. The process
of assigning dummy nodes is:

1) Two dummy parent nodes with state -1 are assigned to
the entry nodes.

2) Two dummy children nodes with state -1 are assigned
to the exit nodes.

3) If a node has only one parent then a dummy parent node
is added with the same state as the non-dummy parent
node.

4) If a node has only one parent then a dummy child node
is added with the same state as the non-dummy child
node.

AEST and ALST change with states and hence neighbors
may have to be changed dynamically with the schedule. This
increases the scheduling overhead but promises a more rele-
vant neighborhood. Once the scheduling problem is mapped to
the cellular automata domain, we proceed to find the optimal
schedule. The optimal schedule is given by the evolved state
of automata which is obtained by applying a best rule to a
good initial state allocation. Since both the rule and the initial
state allocation are crucial, we search for both of them. We
have designed a procedure in which we keep improving the
state of the CA as well as the rules simultaneously to find the
near-optimum schedule. We use genetic algorithms to search
a the good schedule. The process is explained in the next
subsection.

B. Finding Optimal Schedule using Genetic Algorithm

A genetic algorithm [12] is a heuristic for search, mim-
icking the natural evolution process. In a genetic algorithm,
a population of strings encoding candidate solutions evolves
towards better solutions using mutation and crossover func-
tions. The evolution usually starts from a random population
of individuals and happens over multiple generations. In each
generation, the fitness of every individual in the population is
evaluated, multiple individuals are stochastically selected from
the current population (based on their fitness), and modified
(recombined and possibly randomly mutated) to form a new
population. The new population is then used in the next
iteration of the algorithm. Commonly, the algorithm terminates
when either a maximum number of generations is produced,
or a satisfactory fitness level is reached for the population.

We use a genetic algorithm (GA) to search for good rules
and in the process of doing so we also find the near-optimal

schedule for our scheduling problem. The application of
genetic algorithms to finding CA rules was first discussed by
Das et al. [13]. Since the aim is to search for good CA update
rules, they are treated as individuals, creatures, or phenotypes
in our GA setting. The fitness of a rule is given by the energy
efficiency of the schedules obtained by applying the rule to
some initial states of automata. Since rules can be represented
as number strings, the reproduction is carried out by mutation
and crossover of these strings.

The architecture of the proposed scheduling method is
shown in Figure 3.

Fig. 3. Architecture of the proposed scheduling method

We will first explain the block diagram in this paragraph.
The algorithm is presented later in this subsection to illustrate
the process exactly.

An initial population of CA rules is randomly selected.
Some example schedules are generated by randomly allocat-
ing tasks to components. Cellular automata evolve in these
examples using each rule to give the evolved schedules.
For each rule the average energy is calculated from these
evolved schedules using (1). The best rules which give the
most energy-efficient schedules are chosen for reproduction
to produce the next generation of rules. These rules are also
called elite rules. Mutation and crossover are applied on elite
rules for reproduction to create next generation of rules. These
new rules are tested by applying CA on the best schedules
(allocations) derived in the previous generations and then
calculating energy consumption. By iterating the above process
through generations, we get the best schedule as well as the
best rules are learned. The schedule is used on the program
graph. The rules obtained can be saved for further use in future
though they may not be optimal for a new program graph.

Our examples and simulations show how this all comes
together.

IV. RESULTS

A number of simulations with standard program graphs have
been conducted. These graphs are tree15, g40 and g18 (see,
e.g., [3]). The first program graph referred to as tree15 is
shown in Figure 4.

Tree15 is a binary tree with 15 nodes. All the working costs
and communication costs in this program graph are the same,

Create an initial population X (rules).
Create a set of k examples (test).
for q = 1 to Q do

Begin
for i = 1 to X do
E∗

i = 0
for j = 1 to k do
E∗

i = E∗
i + CA(rulei + testj , CA,Msteps)

end for
E∗

i =
E∗

i

k
end for
Sort current population of rules according to E∗

i .
Move E(elite) best rules to the next generation.
for i = 1 to X − E do
ruleparent1 = select()
ruleparent2 = select() 6= ruleparent1

(rulechild1 , rulechild2) =
crossover(ruleparent1 , ruleparent2)
mutation(rulechild1 , rulechild2)

end for
end for
Problem Solution = The best rules from X .

and can be taken to be unity.
Figure 5 displays the the next program graph g40 which

we considered in our simulation. It is a directed acyclic graph
which has 40 nodes. The computation and communication cost
of tasks are equal to 4 and 1 respectively.

Fig. 4. Program graph tree15

The next program graph g18 is displayed in Figure 6. It
has 18 tasks with different computation costs mentioned in
the figure and the communication cost for all links equal to
unity.

Our algorithm as well as the simulation setup allows any
number of system components. All these components can
have different working state power consumptions and idle
state power consumptions. But most of the present scheduling
algorithms consider less than 8 system components. The
standard graphs which we have used are tested with less than
8 component systems in other previous approaches. Hence for
illustrative purposes we have used an 8-component system,
so that it is easier to compare our algorithm with others.

The other state-of-the-art scheduling algorithms compute good
schedules for minimizing total time rather than energy. Though
our system is energy-aware and works optimize the energy
rather than time, if we take the working power and idle power
as identical then it provides the schedule which minimize total
time. Hence for the sake of comparison with other systems we
have also calculated the schedules for total time optimality.

Fig. 5. Program graph g40

Fig. 6. Program graph g18

In the simulation reported in this Section, we assume that
the cellular automata works asynchronously [3]. It means at
a given instant of time, only one cell updates its state. So, a
single step of CA, i.e., a rule to be applied once on all cells,
will take the order of number of tasks to be completed.

In the simulations, for learning the rules we fixed the
population size of GA to be 20 and the maximum number of
generations to 100. First we look at the results for computation
of schedules for total time optimality.

A. Time Optimality

Scheduling algorithms with total time optimality were pre-
sented by Seredynski and Zomaya [3], Swiecicka et al. [10]
and Ghafarian et al. [11]. The optimal time was computed
to be 7, 24 and 33 for tree15, g18 and g40 respectively.

We also achieved these times with our algorithm. For time
schedules we set the working power and idle power of the
system components to be alike. The progress accross different
generations is shown in Table III.

Generation tree15 g18 g40
1 10 27.4 39
2 9.4 27.4 36.8
3 9.4 25 36
4 8.8 25 34.4
5 8.2 25.1 34.6
6 8.2 24.2 33.2
7 7.5 24.6 33.2
8 7 24.8 33
9 7 24 33
10 7 24 33

TABLE III
TABLE CONTAINING THE OPTIMAL TIME FOR DIFFERENT GRAPHS ACROSS

GENERATIONS

B. Energy Optimality

We have set the the working power of the components to
be 1 and idle power of the components to be 0.1. Results
across generations for different program graphs are shown in
Figures 7, 8 and 9. These figures show the best, worst and
mean values of the fitness function across generations. The
weighted cumulative change for tree15 is 18.94 to 18.78, for
g18 is 102.68 to 102.36, and for g40 is 173.76 to 172.32.

V. CONCLUSION

In this paper we have presented a cellular automata based
algorithm for energy-aware scheduling of tasks on a distributed
system. The approach is very generic in the sense that it can
be used in any distributed system. Its main strength lies in the
fact that it supports any number of components and gives a
schedule which is optimal according to that system’s energy
specifications. Generally the computational complexity for a
scheduling algorithm grows geometrically with the number of
tasks but this is not the case in our method. Genetic algorithms
have been proved good in finding rules for CA. Our method
not only finds good rules over the generations of GA, but
also the optimal schedules across generations. The proposed
approach opens up very promising possibilities in developing
distributed energy-aware scheduling algorithms and reducing
their complexity.

REFERENCES

[1] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[2] I. Ahmad and Y.-K. Kwok, “On parallelizing multiprocessor scheduling
problem,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 10, no. 4, pp. 414 – 432, Apr. 1999.

[3] F. Seredynski and A. Zomaya, “Sequential and parallel cellular
automata-based scheduling algorithms,” Parallel and Distributed Sys-
tems, IEEE Transactions on, vol. 13, no. 10, pp. 1009 – 1023, oct 2002.

[4] J. Liu, P. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-aware schedul-
ing under timing constraints for mission-critical embedded systems,” in
Design Automation Conference, 2001. Proceedings, 2001, pp. 840 – 845.

[5] C. Artigues, P. Lopez, and A. Hait, “Scheduling under energy con-
straints,” in International Conference on Industrial Engineering and
Systems Management (IESM09), 2009.

Fig. 7. Plot for graph tree15

Fig. 8. Plot for program graph g40

Fig. 9. Plot for program graph g18

[6] S. Wang, J.-J. Chen, Z. Shi, and L. Thiele, “Energy-efficient speed
scheduling for real-time tasks under thermal constraints,” in Embedded
and Real-Time Computing Systems and Applications, 2009. RTCSA ’09.
15th IEEE International Conference on, aug. 2009, pp. 201 –209.

[7] S.-H. Chan, T.-W. Lam, and L.-K. Lee, “Scheduling for Weighted
Flow Time and Energy with Rejection Penalty,” in 28th International
Symposium on Theoretical Aspects of Computer Science (STACS
2011), ser. Leibniz International Proceedings in Informatics (LIPIcs),
T. Schwentick and C. Dürr, Eds., vol. 9. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011, pp. 392–403.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2011/3029

[8] J. L. Schiff, Cellular Automata: A Discrete View of the World. wiley-
interscience, 2007.

[9] [Online]. Available: http://mathworld.wolfram.com/CellularAutomaton.
html

[10] A. Swiecicka, F. Seredynski, and A. Zomaya, “Multiprocessor schedul-
ing and rescheduling with use of cellular automata and artificial immune

system support,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 17, no. 3, pp. 253 – 262, march 2006.

[11] T. Ghafarian, H. Deldari, and M.-R. Akbarzadeh-T, “Multiprocessor
scheduling with evolving cellular automata based on ant colony opti-
mization,” in Computer Conference, 2009. CSICC 2009. 14th Interna-
tional CSI, oct. 2009, pp. 431 –436.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc.,
1989.

[13] R. Das, M. Mitchell, and J. P. Crutchfield, “A Genetic Algorithm Discov-
ers Particle-Based Computation in Cellular Automata,” in Proceedings
of the International Conference on Evolutionary Computation. The Third
Conference on Parallel Problem Solving from Nature, ser. Lecture Notes
In Computer Science, vol. 866. London, UK: Springer-Verlag, 1994,
pp. 344–353.

