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a b s t r a c t

Energy efficiency is amajor concern inmodern high performance computing (HPC) systems and a power-
aware scheduling approach is a promising way to achieve that. While there are a number of studies in
power-aware scheduling by means of dynamic power management (DPM) and/or dynamic voltage and
frequency scaling (DVFS) techniques, most of them only consider scheduling at a steady state. However,
HPC applications like scientific visualization often need deadline constraints to guarantee timely
completion. In this paper we present power-aware scheduling algorithms with deadline constraints
for heterogeneous systems. We formulate the problem by extending the traditional multiprocessor
scheduling and design approximation algorithms with analysis on the worst-case performance. We also
present a pricing scheme for tasks in the way that the price of a task varies as its energy usage as well
as largely depending on the tightness of its deadline. Last we extend the proposed algorithm to the
control dependence graph and the online casewhich ismore realistic. Through the extensive experiments,
we demonstrate that the proposed algorithm achieves near-optimal energy efficiency, on average 16.4%
better for synthetic workload and 12.9% better for realistic workload than the EDD (Earliest Due Date)-
based algorithm; The extended online algorithm also outperforms the EDF (Earliest Deadline First)-based
algorithmwith an average up to 26% of energy saving and 22% of deadline satisfaction. It is experimentally
shown as well that the pricing scheme provides a flexible trade-off between deadline tightness and price.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

With more and more applications relying on high performance
computing (HPC), energy consumption is emerging as an impor-
tant issue. Tianhe-1A topping the 36th Top500 list achieves a per-
formance level of 2.57 petaflop/s, but also requires a power budget
of 4.04 MW [64]. High energy consumption leads to low reliabil-
ity of the system since the Arrhenius life-stress model shows that
the failure rate of electronic deviceswill double as the temperature
rises by every 10 °C (18 °F) [10]. Thus, efficient energymanagement
is critical not only for green computing, but also for high reliability.

Generally, there are two ways to reduce power consumption in
the HPC field. One is the low-power architectural approach that is
implemented by changing the design of the architecture through
built-in low-power components, such as Green Destiny [25]
with Transmeta Crusoe processors, Blue Gene/P Solution [36]
and NNSA/SC Blue Gene/Q Prototype [8] with the embedded
PowerPC chip modified with floating point support. While this
approach is effective, it results in expensive design and update
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overheads by relying on the specific components rather than
common commodity parts. Another way called the power-aware
software approach is more practical and regarded as a promising
way [35]. The idea is to make a tradeoff between power
and performance through power-aware algorithms. One such
representative method is power-aware scheduling that considers
energy consumption as one of the scheduling indicators and
reduces energy consumption through power-saving techniques.

Dynamic Voltage and Frequency Scaling (DVFS) [66] and
Dynamic Power Management (DPM) [6] are common system-level
power saving techniques. DVFS provides a way of dynamically
managing the power of processing elements by changing the
supply voltages or operating frequencies. For example, the AMD
Opteron processor has six levels of power consumptions ranging
from 32 to 95 W, coming at the cost of operating frequencies
from 1000 to 2600 MHz. Unfortunately, DVFS is applicable only to
CPUs at the component level, which contributes only about one-
third of the total system power [57,1]. Besides, some legacy CPUs
do not support variable supply voltages or operating frequencies.
In [57], Meisner et al. demonstrated that PowerNap, a DPM based
solution they proposed, can provide greater energy efficiency than
solutions based on DVFS. DPM techniques selectively turn off
system components when they are idle and turn them on when
they are requested, which is an efficient way to reduce the idle
power. Hard disks, for example, consume an average of 6 W when
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they are idle [43], while processors even with AMD PowerNow!
technology consume approximately 32 W when idle [4]. Present-
day servers dissipate about 60% as much power when idle as
when fully loaded [24,48]. Thus, power-aware scheduling should
consider using the DPM approach based on no or less performance
degradation or user-specified QoS requirements to reduce the idle
energy cost.

Power-saving techniques aside, most previous studies address
minimizingperformancedegradationwhen conserving energy [27,
60,71,30,47], while we deal with power-aware scheduling tomini-
mize QoS degradation in terms of meeting deadlines. In this paper,
a novel power-aware deadline scheduling algorithm based on the
DPM technique for heterogeneous systems is proposed. We focus
on heterogeneous systems because they aremore general than ho-
mogeneous systems, in which power-aware deadline scheduling
is often straightforward through bin-packing type formulations.
HPC platforms such as computational grids or data centers which
house a number of machines together may cater for compute and
resource intensive applications that take hours or days to execute,
not only in contrast to the real-time applications that most stud-
ies on deadline scheduling for heterogeneous systems consider
and rely on DVFS, but also different from the workloads made of
small individual processing units such as http requests [53] that
the resizing problemof computational pools addresses. As a type of
application, we focus on bag-of-tasks (BoT) applications [14], i.e.,
parallel applications whose tasks are independent of each other.
Despite their simplicity compared with workflows, a variety of
problems in several fields, including computer imaging [26], com-
putational biology [62], parameter sweeps [68], fractal calculations
and data mining [15], have been modeled as bag-of-tasks applica-
tions. In the realworld of high-performance (such as grids and clus-
ters) and high-throughput computing, bag-of-tasks applications
can easily execute on multiple resources to reduce the response
time or meet the deadline constraints.

Our contributions in this paper are that we

• Formulate power-aware deadline scheduling for heteroge-
neous computing environments as an integer linear program-
ming problem and also design a heuristic algorithm.
• Identify another subproblem related to task assignment on a

single node and design an approximation algorithm.
• Propose a pricing scheme where the price of task execution is

proportional to the total energy usage and largely depends on
the deadline tightness.
• Make important extensions of the proposed algorithms for

online scenarios and application scope, discuss the practical
significance of the problem including the pricing scheme, and
• Demonstrate the effectiveness of the proposed algorithms by

extensive experiments.

The rest of the paper is organized as follows. Section 2 in-
troduces the related work. In Section 3 we formulate the master
problem of power-aware deadline scheduling in heterogeneous
systems. Section 4 discusses a slave problem of task assignment
on a single node and an approximation algorithm is introduced. In
Section 5we design a heuristic algorithm to solve themaster prob-
lem and give a novel pricing scheme. Section 6 extends the pro-
posed algorithms to the online scenario and control dependence
graph, and discuss the practical significance. Experimental results
are presented in Sections 7 and 8 concludes the paper.

2. Related work

Our work belongs to aperiodic, synchronous, non-preemptive
and independent task scheduling with deadline constraints.
In aperiodic independent task scheduling, there are several
classical algorithms. With respect to minimizing the maximum
lateness, EDD (Earliest Due Date) is optimal for the synchronous
scenario [40], EDF (Earliest Deadline First) is optimal for the
asynchronous and preemptive scenario [19], and Tree Search is
optimal for the asynchronous and non-preemptive scenario [7].
Refer to [61] for more details. There are also a number of studies
on deadline scheduling in real-time or grid systems [34,20,22,
65,42,54]. Their objectives are various: minimize the number of
tardy jobs, optimize a fairness criterion, improve stability and
robustness, minimize the makespan, consider the lowest cost, etc.
However, they often do not consider the power or energy index.

Energy-efficient algorithms for deadline scheduling were first
studied by Yao et al. [70], where they propose an offline algorithm,
YDS, and two online algorithms, AVR and OA, that aim tominimize
energy consumption for a set of independent jobs with deadline
constraints on a single variable-speed processor. The authors have
also extended their work to support discrete-voltage processors
and tree-structured tasks [52,51]. There are several other studies
on the single processor case. Irani et al. [38] extend the AVR
algorithm to support the sleep state, first integrating the DVFS
and DPM schemes. Chan et al. [11] propose the OAT algorithm,
consider deadline scheduling on aprocessorwith a fixedmaximum
speed and the system may be overloaded. Lately, Han et al. [33]
investigate the sleep-aware version of the OAT algorithm called
the SOA algorithm, which is 4-competitive for throughput and
(αα
+α24α

+2)-competitive for energy (α is the constant involved
in the speed-to-power function).

The listed efficient heuristics and theoretical analyses are
developed for the single processor scenario. For multiprocessor
systems, power-aware deadline scheduling can be categorized as
per periodic or aperiodic task and homogeneous or heterogeneous
systems. Most existing work investigates the homogeneous
system [41,49,3]. Some recent work [32,13,12] considers the
heterogeneous system, but they focus on periodic real-time tasks.
In addition, all the above work mainly uses the DVFS scheme.
Lately there is also some work on deadline scheduling considering
temperature and thermal limits [69,58]. The background of our
work is closely related to [58], which studies deadline scheduling
for compute-intensive independent jobs without using DVFS in
HPC data centers. One of the algorithms they propose (called
SCINT) tries to minimize the energy consumption, but it is for
preemptive tasks and also it is time-consuming due to the use of
genetic algorithms.

In the context of HPC, there are several studies on energy-
efficient deadline scheduling. Kim et al. [44] consider energy-
optimization deadline scheduling for bag-of-tasks applications
on homogeneous cluster systems. They propose a dynamic
DVFS scheduling algorithm for both time-shared and space-
shared resource sharing policies. Ma et al. [56] propose energy
optimization scheduling for a DAG based applicationwithmultiple
deadlines, combining DVFS and DPM through task clustering and
binary search. Garg et al. [29] address environment-conscious
deadline scheduling of HPC workloads on the distributed data
centers. At the CPU level within a data center, they still use
DVFS to reduce the number of deadline misses and energy
consumption. These works are not applied to the heterogeneous
system without supporting DVFS. Moreover, they just consider
energy consumption from the viewpoint of providers, do not relate
consumers’ interest with energy or give consumers the flexibility
of controlling energy.

Referring to bag-of-tasks applications on the HPC platform
including grids and clusters, Cirne et al. [14] earlier developed
MyGrid considering connectivity, security and heterogeneity
issues to enable the user to run bag-of-tasks applications on
grids. The input data and system scalability for scheduling are
discussed in [17,67]. The authors in [2,5] respectively address
the fault-tolerance and fair resource-sharing scheduling problem.



Y. Ma et al. / J. Parallel Distrib. Comput. 72 (2012) 1725–1740 1727
Scheduling works in [59,16,46,37] focus on the dynamics and
heterogeneity of the execution environment while reducing the
response time or makespan. With increased concerns on energy
use, Kim et al. [44] consider power-aware scheduling of bag-
of-tasks applications with deadline constraints on homogeneous
clusters; To complete the similar work for heterogeneous systems,
in this paper we formulate the problem and propose an effective
algorithm.

Finally, there are some studies on applying a market-oriented
model on power-aware scheduling. Subrata et al. [63] propose
a cooperative, power-aware game theoretic solution to the job
scheduling problem in grids. They directly take into account the
multitude of ownerships of providers and maintain a specified
response time. They focus on the transaction based jobs. A
meta-scheduling model and several meta-scheduling policies are
proposed in [29], aiming to minimize the carbon emissions and
maximize the profit of the cloud provider. When computing the
profit, the price users pay is given by the provider in units of CPU
hours, which is similar to [9]. Li and Li [50]present utility based
scheduling under constraints of deadline and energy budget. They
try to maximize the utility of both parts and use resource price
to interact. Resource price is determined by the previous resource
allocation, and it is a tool of adjusting the utility, not directly related
with energy consumption. At present there exists much work on
pricing based scheduling strategies, as summarized in [55]. In
short, most previous pricing schemes are based on demand and
supply and usually are an iterative and slow process.

3. Master problem

In this section, we give the scheduling overview for the
master problem of energy-efficient deadline scheduling in a
heterogeneous multiprocessor environment and formulate it into
an integer linear programming model.

3.1. Scheduling model

In traditional multiprocessor systems, the scheduling model
consists of three layers: user layer, scheduling layer and resource
layer. The user layer is in charge of submitting tasks. We focus
on bag-of-tasks applications that can be divided into independent
tasks, denoted as T = {T1 · · · Tm}. As a scheduling unit, each task
Tj has computation amount qj (number of cycles) and deadline
constraint dj (min). The parameters are given by users when
submitting. The scheduling layer accepts user requests and assigns
tasks on resource nodes according to status information and
scheduling strategy. Scheduling strategy is critical for saving
energy and satisfying QoS requirements. The resource layer is
responsible for task execution. The heterogeneous resource set
is denoted as P = {P1 · · · Pn}. Each node Pi has parameters with
clock frequency and power consumption, denoted as fi (Hz) and pi
(W), respectively. Heterogeneous systems in this study are abstract
concepts, where parameters f and p are extracted. It is assumed
that for an individual task, execution performance and energy
efficiency depend on the above parameters and we do not go into
details about the type of processing elements.

The task execution process in this scheduling model is as
follows:
1. During a certain time window, bag-of-tasks applications are

submitted by users. In high performance computing, waiting
time is negligible because applications will execute for a long
time ranging from several hours to several days. Sincemost data
centers and supercomputing centers provision enough capacity
to handle their peak utilization while the average usage is
much lower [9], all or close to all requests can be accepted and
scheduled. For the oversaturation case, we simply discuss it in
Section 6.1.
2. The computation requests are sent to the scheduler and it
makes a decision about node selection and task assignment ac-
cording to the scheduling algorithm, requests information and
system status including clock frequency, power consumption,
real-time information and on/off mode.

3. Resource nodes begin to execute tasks. We focus on the
non-preemptive task scheduling. Users pay for the usage of
computation services, which depends on computation amount,
pricing scheme and scheduling efficiency. About the execution
time for a given task Tj running on a resource node Pi, we
assume it can be estimated by qj/fi in order to facilitate the
comparison of different policies [44]. In the model where users
pay for usage, the formula also provides a fair and easy way of
estimation,while overestimation/underestimation analysis and
the influence of different parallel architectures is beyond the
scope of this particular work.

4. Resource nodes return results to users. Suppose application ar-
rival and task assignment to one resource node is intermittent,
once the resource node finishes all the currently assigned tasks,
it can shut down or sleep immediately and wait for the next
assignment. Thus, resource nodes must first change from off
(sleep) state to on state in the next assignment. This transition
process needs an energy cost, denoted as edpm. The discussions
here are for the static case. Refer to Section 6 for complex sce-
narios.

3.2. Problem formulation

The scheduling problem stated above is formally defined as
follows. Given a heterogeneous node set P = {Pi} (i = 1, . . . , n)
and an independent task set T = {Tj} (j = 1, . . . ,m), where node
Pi has power consumption pi, clock frequency fi and transition
cost edpmi and task Tj has size qj and deadline dj, assign tasks
on nodes so that the total energy consumption is minimized
while all the deadlines are satisfied. We call this problem Energy
Minimization Multitask Scheduling (EMMS). Its decision version is
defined by giving a constant K and asking whether there exists a
task assignmentwith the total energy consumptionno greater than
K and all the deadlines satisfied.

For this problem, we have the following hardness result:

Theorem 1. The decision version of EMMS is NP-complete.

Proof. We consider a restricted case of homogeneous nodes
(∀i. fi = f , pi = p, edpmi = e), identical deadlines (∀j. dj =
d) and fixed number of nodes used l such as l = n. This case is
equivalent to MULTIPROCESSOR SCHEDULING [28] due to the
constant energy consumption. Since the decision version of EMMS
is verified in polynomial time for a given assignment, it is NP-
complete. �

Without loss of generality, we assume tasks are sorted in the
non-descending order of deadline; i.e., dj ≤ dj′ for j < j′. Then the
EMMS problem is formulated as

min E =
n

i=1


pi
fi

m
j=1

xijqj + edpmi yi


(1)

s.t. yi =


1

m
j=1

xij ≠ 0

0
m
j=1

xij = 0

∀i (2)

j
k=1

qk
fi
xik ≤ dj ∀i, j (3)
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n
i=1

xij = 1 ∀j (4)

xij = {0, 1} ∀i, j (5)
where xij is the assignment variable that takes 1 when task Tj is
assigned to node Pi, while yi is the status variable that takes 1
when the resource node executes tasks. The linear inequality (3)
is a constraint for satisfying the deadline of each task. This is based
on the optimality of the Earliest Due Date algorithm [40].

Lemma 1. The nonlinear constraint (2) can be replaced by an
equivalent linear constraint:

yi ≤
m
j=1

xij ≤ myi ∀i, yi = {0, 1}. (6)

Proof. First validate inequalities (6) can be derived from Eq. (2). Ifm
j=1 xij = 0 and yi = 0, inequalities (6) hold; If

m
j=1 xij ≠ 0, yi =

1 and 1 ≤
m

j=1 xij ≤ m, inequalities (6) stand. Second prove Eq.
(2) can be derived from inequalities (6). The apagoge approach is
used. Assume inequalities (6) holds and Eq. (2) does not, which
is equivalent to

m
j=1 xij = 0 and yi = 1 or

m
j=1 xij ≠ 0 and

yi = 0. If
m

j=1 xij = 0 and yi = 1, 1 ≤ 0 ≤ m is obtained by
substituting

m
j=1 xij = 0 and yi = 1 in inequalities (6), which is

false; If
m

j=1 xij ≠ 0 and yi = 0, 0 ≤
m

j=1 xij ≤ 0 is derived,
which contradicts with the assumption

m
j=1 xij ≠ 0. �

Based on the above analyses, we get the follow conclusion:

Theorem 2. EMMS can be formulated into an Integer Linear
Programming (ILP) model.

4. Slave problem

Before giving the solution to the master problem, we first
introduce and solve a slave problem as a bonus. In this section we
formulate the slave problem, propose an approximation algorithm
and give its performance analysis.

4.1. Problem statement

The slave problem is to choose a subset of tasks for bag-
of-tasks applications and one resource node such that the total
computation amount is maximized and the deadline constraints
are satisfied, which is formally defined as follows. Task Tj has the
fixed size qj and a hard deadline dj. Each task only executes on one
node. A certain node has the fixed clock frequency f0, and it can
only execute one task at a time. The objective is to find the task
groupwith the largest computation amountwhile satisfying all the
deadlines. Its decision version is defined in a similar way as the one
for the EMMS problem. We call this problem Maximum Merging
with Deadline Constraints (MMDC).

By reduction from SUBSET-SUM using a restriction of dj = d,
∀j, we can also show the NP-hardness of MMDC. Assuming the
tasks are sorted in the non-descending order of deadline, the
MMDC problem is formulated as an ILP as follows:

max
m
i=1

xiqi (7)

s.t.
j

i=1

qi
f0
xi ≤ dj ∀j (8)

xi ∈ {0, 1} ∀i (9)
where xi is a selection variable that takes 1 when task Ti is in the
subset.
Fig. 1. Task placement and task merging.

Fig. 2. Graphic representation of the initial task placement, the change from
preemptive to non-preemptive execution and the removal of idle time.

4.2. Observation

For a task Tj, we define its execution time tj = qj/f0 and
introduce the idea of slack time sj = dj−tj. Fig. 1(a) and (b) describe
the case when executing tasks as late as possible. To fully utilize
the resource, we then try to place one task into the slack time of
another task. For instance, if the execution time of task Th is less
than the slack time of task Tj, th < sj, and its deadline constraint is
satisfied, task Th can be ‘‘merged’’ with task Tj, as shown in Fig. 1(c).

4.3. Approximation algorithm

Based on the above observation, we propose an algorithm for
the MMDC problem, called Largest-Slack-First Placement (LSFP).
Given a task set and a resource node, the LSFP algorithm runs in an
iterativeway. Algorithm 1 shows the concrete steps. The scheduler
first sorts tasks in the non-ascending order of slack time and selects
the tasks that can be placed on the current node. In the algorithm,
parameter Sk(x) is introduced, denoting the sum of slack time in
gk before time point x, where gk denotes the k-th consolidated task
group. If Sk(dj) ≥ qj/f0 holds for the current task Tj, Tj is added to
gk. Our placement order is to put slack time sj first and execution
time tj close to the deadline, just as Fig. 1 shows. The place order
maintains the adjusting rule of Sk(di) shown in Algorithm 1. Lastly,
the algorithm selects and returns a task group g̃ with the largest
computation amount.

The LSFP algorithm puts the current task close to its deadline as
much as possible, which sometimes violates the non-preemptive
execution rule as Fig. 2(c) shows. However, as shown in Fig. 2(d),
it is always possible to swap the time slices so that the schedule
becomes a non-preemptive one, without violating the deadline
constraints. In the end, the idle time is removed as shown in
Fig. 2(e).
Approximation analysis. Suppose OPT’ is the optimal algorithm for
MMDC, its output is the obtained largest computation amount
and the corresponding task group, respectively denoted as Q ∗ and
g∗. For the LSFP algorithm, Q̃ denotes the size of g̃ . We have the
following approximation result.
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Algorithm 1 The LSFP algorithm
procedure LSFP(T , f ) ◃ task set T and node speed f

for j = 1 to |T | do
tj = qj/f
sj = dj − tj

k← 1
T ′ ← T
while T ′ ≠ ∅ do

gk ← ∅
Qk ← 0
Sort T ′ in the non-ascending order of sj, i.e., sj ≥ sj′ for

j < j′
Sk(dj)← dj, ∀j s.t. Tj ∈ T ′

for j s.t. Tj ∈ T ′ do
if Sk(dj) ≥ tj then ◃merging

gk=gk ∪ {Tj}
T ′ = T ′\{Tj}
Qk = Qk + qj
for i s.t. Ti ∈ T ′ and j < i do ◃ adjusting Sk(di)

if di ≥ dj then
Sk(di) = Sk(di)− tj

else if di > Sk(dj)− tj then
Sk(di) = Sk(dj)− tj

k← k+ 1
g̃ ← argmax

gk
Qk

return g̃

Theorem 3. Q̃ ≥ Q ∗ − min{smaxf , 2qmax − qmin}, where f is the
frequency of the resource node, smax = max{sj}, qmax = max{qj},
and qmin = min{qj}.

Please refer to Appendix B for the proof and Appendix A gives
the preliminary knowledge.

5. Solution approach

In this section, we present a heuristic algorithm called EES to
solve themaster problem on the basis of the slave problem, discuss
its approximation ratio and also propose a novel pricing scheme to
relate users’ interest with energy consumption.

5.1. Heuristic algorithm

The master problem is formulated into the ILP model in Sec-
tion 3.2.We design a heuristic algorithm since solving the ILP prob-
lem is computationally expensive. There are three subproblems in
EMMS: (i) selecting resource nodes; (ii) partitioning the task set
into subsets; and (iii) mapping task subsets to resource nodes. We
next give a heuristic algorithm based on the following metric.

For resource node Pi, we define energy cost in unit computation
amount (unitcost for short) as follows:

c i =
E i

Q i
=

piti + edpmi

Q i
= pi/fi + edpmi /Q i (10)

where E i (J) is the total energy consumption of Pi,Q i (cycles) is the
total finished computation amount, pi is the power consumption of
Pi, ti is the time span for resource node Pi to execute Q i, obtained
by the ratio between Q i and fi, and edpmi is the state transition cost.
For simplification we assume edpm1 = · · · = edpmn .

In Eq. (10), an effective way to reduce the unitcost is to choose
the resource node with small pi/fi. Based on this observation, we
design a heuristic algorithm called Energy-Efficient Scheduling
(EES). As shown in Algorithm2, the EES algorithmworks iteratively
Algorithm 2 The EES algorithm
procedure EES(T , P ) ◃ task set T , resource set P

while T ≠ ∅ do
P0 ← arg min

i:Pi∈P
{pi/fi}

LSFP(T , f0)
Map g̃ on P0
T ← T \g̃
P ← P\{P0}

Remove idle time for each task group

from the most power-efficient node. After choosing the node, by
calling the LSFP algorithm to solve theMMDC problemdiscussed in
Section 4, the EES algorithmassigns asmany computation amounts
as possible to that without violating the deadline constraints.

5.2. Theoretical analysis

In this section, we analyze the approximation result of the EES
algorithm. The total energy consumption of the master problem
consists of two parts: the energy consumed by executing tasks
and the energy consumed by switching states of nodes, denoted
as Ee and Es, respectively. Suppose OPT is the optimal algorithm
for EMMS, E∗e and E∗s denote its execution energy and switching
energy.

Before the analysis, we first consider a special case. For a given
task set T and node set P , if all the tasks in T can be assigned to
the most power-efficient node in P and all the deadlines can be
satisfied at the same time, we call this case the minimum optimal
solution. For the specific case, we have the following lemma.

Lemma 2. For the case of the minimum optimal solution, the EES
algorithm can find the optimal solution.

Proof. In the proof, themethod ofmathematical induction is used.
We assume the task set is denoted as T = {Tj}, j = 1, . . . ,m and
the most power-efficient node is denoted as P1. If the case is the
minimum optimal solution, i.e., all the tasks can run on the node P1
within their deadline constraints, we get that the inequalities

j
k=1

qk/f1 ≤ dj, ∀j (11)

hold from the formulation in Section 3.2, where tasks are
sorted in the non-descending order of deadline and denoted
as {T1, T2, . . . , Tm}. In the LSFP algorithm, we sort tasks in
the non-ascending order of slack time and re-mark them as
{T ′1, T

′

2, . . . , T
′
m}.

Base case: if the case is the minimum optimal solution, the EES
algorithm can put the first task T ′1 on the node P1 since it is inferred
from the inequalities (11) that the execution time is not greater
than its deadline for any task.

Inductive step: assume that the EES algorithm can put the first
k, 2 ≤ k < m tasks, {T ′1 · · · T

′

k}, on the node P1, i.e., during the
process of the LSFP algorithm the parameter S(d′j), j = 1, . . . , k
of all the k tasks is not less than their respective execution time t ′j ,
where S(d′j) is the sum of slack time before time point d′j and d′j is
the deadline of task T ′j . For the (k+1)-th task T ′k+1, we next validate
whether the EES algorithm can put it on the node P1. Since the first
k tasks can be put on the node, from the LSFP algorithm we know
that after assigning one task, task T ′k+1 needs to change its value
of S(d′k+1). Its initial value is d′k+1 and it needs to change k times.
When the deadline of T ′k+1 is not less than the deadline of T ′j , j =
1, . . . , k, the value of S(d′k+1) is changed to S(d′k+1)− t ′j . When the
deadline of T ′k+1 is less than the deadline of T ′j , j = 1, . . . , k and
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greater than S(d′j)− t ′j , the value of S(d
′

k+1) is changed to S(d′j)− t ′j .
As for the value of S(d′j), it is similarly computed by iteratively
subtracting the execution time of the tasks whose deadline is less
than d′j . No matter the last change is S(d′k+1)− t ′k, S(d

′

k)− t ′k or no
change, we always obtain S(d′k+1) ≥ t ′k+1 because the inequalities
(11) stand where the tasks are sorted in the non-descending order
of deadline. Thus, the (k+ 1)-th task can be put on P1.

Since the EES algorithm can put the first task on the node P1,
and the (k + 1)-th task can also be put on P1 on the assumption
that the first k tasks can run on P1, then the EES algorithm can put
all m tasks on the most power-efficient node P1 in the case of the
minimum optimal solution. �

If the case is not the minimum optimal solution, we consider a
more general case. The EES and OPT algorithms try to assign tasks
among the node set P = {Pi}, i = 1, . . . , n. Assume the nodes
are sorted in the non-descending order of pi/fi; i.e., pi/fi ≤ pi′/fi′
for i < i′. The EES algorithm first chooses the most power-efficient
node, P1, to assign tasks. It is easy to get that

p1/f1 ≤ E∗e /Q (12)

follows, where Q is the total computation amount of task set T .
Suppose Q ∗1 is the optimal solution to the MMDC problem for P1
and T , and Q1 is the solution of the LSFP algorithm, we derive that

p2/f2 ≤ E∗e /(Q − Q ∗1 ) (13)

is true since the second power-efficient node can cover the
remaining computation amounts at the energy of at most E∗e after
P1 finishes as many computation amounts as possible.

In Section 4.3, we get Q1 ≥ Q ∗1 −min{smaxf , 2qmax−qmin}. Here
we use z to denote min{smaxf , 2qmax − qmin}. If the EES algorithm
can assign all the tasks on P1 and P2, we get the following lemma.

Lemma 3. Ee ≤ (
Q−X0

Q +
X0

X0−z
)E∗e , where z = min{smaxf , 2qmax −

qmin} and X0 is the minimum computation amounts greater than z,
which is a constant for a given T and P1.

Proof. If EES assigns all the tasks on P1 and P2, we get Ee =
p1
f1
Q1+

p2
f2
Q2 ≤ (

Q1
Q +

Q2
Q−Q∗1

)E∗e ≤ (
Q1
Q +

Q−Q1
Q−Q1−z

)E∗e , where Q2 is the
computation amounts assigned to P2 and Q2 = Q − Q1. Next we
analyze the function f (Q1) =

Q1
Q +

Q−Q1
Q−Q1−z

. The range of variable
Q1 is [0,Q − z) since 0 ≤ Q1 < Q and 0 < Q1 + z < Q
stand and it is not the case of the minimum optimal solution. The
derivative of f (Q1) is f ′(Q1) = 1/Q + z/(Q − Q1 − z)2. Since
f ′(Q1) > 0, we know that f (Q1) is an increasing function on the
range of [0,Q − z). Each task can only run on one node, thus
we can get all the combinations of computation amount, Q =
{q1, q2, . . . , qm, q1+ q2, q1+ q3, q2+ q3, . . . , q1+ q2+ · · · + qm},
using q1, . . . , qm. Assume X0 is theminimum computation amount
greater than z in Q and for a given T and P we can easily obtain
the value of X0. Therefore, Ee ≤ (

Q−X0
Q +

X0
X0−z

)E∗e is derived. �

Suppose Q ∗2 is the largest assigned computation amount after
trying P1 and P2 using some optimal solution OPT2, we get that

p3/f3 ≤ E∗e /(Q − Q ∗2 ) (14)

stands because the third power-efficient node can cover the
remaining computation amounts at the energy of at most E∗e after
P1 and P2 finish as many computation amounts as possible.

Similarly, let Q ∗i denote the largest assigned computation
amounts after trying the first i nodes using OPT2 and we derive
that

pi+1/fi+1 ≤ E∗e /(Q − Q ∗i ), i = 1, 2, . . . , n− 1 (15)
follows. For the EES algorithm, we get

Ee =
p1
f1

Q1 +
p2
f2

Q2 + · · · +
pn
fn

Qn

≤


Q1

Q
+

Q2

Q − Q ∗1
+ · · · +

Qn

Q − Q ∗n−1


E∗e (16)

where Qi is the largest computation amounts assigned to Pi using
the EES algorithm,

n
i=1 Qi = Q , Qi ≥ 0.

The EES algorithmmay end in the k-th iteration since Q1+Q2+

· · · + Qk = Q , k ∈ [1, n]. In this case Q ∗k = Q must hold because
the EES algorithm is worse than some optimal algorithm OPT2
which tries to assign as many computation amounts as possible
using k nodes. Meanwhile, for the OPT2 algorithm it may also end
when Q ∗j = Q . From the idea of the EES and OPT2 algorithms, we
get j ≤ k. Lemmas 2 and 3 respectively discuss the casewhen k = 1
and k = 2. Properly speaking, the two cases are k = 1, j = 1 and
k = 2, j = 2 since the value of j cannot be 1 when k = 2 by
analyzing Lemma 2. For the other cases, i.e., 3 ≤ k ≤ n, 1 < j ≤ k,
we have the following lemma.

Lemma 4. Ee ≤ max{ Q
qmin

,
pk/fk
p1/f1
}E∗e , where k is the number of

iterations in the EES algorithm.

Proof. Based on the above analysis, we get Ee ≤ (
Q1
Q + · · · +

Qj
Q−Q∗j−1

)E∗e +
pj+1
fj+1

Qj+1 + · · · +
pk
fk
Qk, 3 ≤ k ≤ n, 1 < j ≤ k.

If (j + 1) > n or (j + 1) > k, pj+1
fj+1

is assigned to 0. Since

Q ≥ Q − Q ∗1 ≥ · · · ≥ Q − Q ∗j−1 and p1
f1
≤

p2
f2
≤ · · · ≤

pk
fk
,

we get Ee ≤
j

i=1 Qi
Q−Q∗j−1

E∗e +
pk
fk

k
i=j+1 Qi. Since each task can only

execute on one node, i.e., no migration, the minimum value of
(Q − Q ∗j−1) is qmin no matter what the value of j is. Then Ee ≤j

i=1 Qi
qmin

E∗e +
pk
fk

k
i=j+1 Qi is true, i.e., Ee

E∗e
≤

j
i=1 Qi
qmin

+

pk
fk

k
i=j+1 Qi

E∗e
.

From inequality (12), we know E∗e ≥
p1
f1
Q follows and the ratio

is changed to Ee
E∗e
≤

j
i=1 Qi
qmin

+

pk
fk

k
i=j+1 Qi

p1
f1

Q
. Since Q1 + · · · + Qk =

Q , Ee
E∗e
≤ max{ 1

qmin
,

pk/fk
Qp1/f1
}Q = max{ Q

qmin
,

pk/fk
p1/f1
} is derived. �

Lemmas 2–4 discuss the approximation ratio of execution
energy in different cases of assignment. For the case of the
minimum optimal solution, Ee = E∗e ≤ max{ Q

qmin
,

pk/fk
p1/f1
}E∗e holds.

For the case of k = j = 2, we get Ee ≤ Q
qmin

E∗e inspired by
Lemma 4. Combining Ee ≤ Q

qmin
E∗e and Lemma 3, we derive Ee ≤

min{ Q−X0Q +
X0

X0−z
, Q

qmin
}E∗e ≤ max{ Q

qmin
,

pk/fk
p1/f1
}E∗e for the case of

k = j = 2. Therefore, for all the cases we conclude that the
approximation ratio between Ee and E∗e is

Ee ≤ max


Q
qmin

,
pk/fk
p1/f1


E∗e . (17)

If the state switching energy of a node is zero, inequality (17)
gives us the approximation ratio between the EES algorithm and
OPT algorithm; else please see Theorem 4.

Theorem 4. EES ≤ max{n, Q
qmin

,
pk/fk
p1/f1
}OPT , where k is the number

of iterations in the EES algorithm.

Proof. The total energy consumption consists of execution energy
and switching energy for the EMMS problem. For the switching
energy, we get Es ≤ nE∗s assuming different nodes have the same
switching energy, i.e., edpm1 = · · · = edpmn ; for the execution energy,
we derive Ee ≤ max{ Q

qmin
,

pk/fk
p1/f1
}E∗e , where k is the number of
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iterations in EES. Thus, Es + Ee ≤ nE∗s + max{ Q
qmin

,
pk/fk
p1/f1
}E∗e ≤

max{n, Q
qmin

,
pk/fk
p1/f1
}(E∗s + E∗e ), i.e., EES ≤ max{n, Q

qmin
,

pk/fk
p1/f1
} OPT is

proved. �

Note that Es ≤ nE∗s is a very loose upper bound. In fact, the ratio
Es
E∗s

is much less than n during the assignment. For the execution

energy, theworst-case upper bound of Ee
E∗e

ismax{ Q
qmin

,
pn/fn
p1/f1
}. As for

the approximation ratio between EES and OPT, although it seems
to be large, the performance of the EES algorithm is close to the
optimal algorithm as evaluated in Section 7.

5.3. Task pricing scheme

The idea of unitcost improves the energy efficiency of
scheduling in a heterogeneous environment, but it can also be
useful for a market-oriented scenario, where users pay amonetary
cost for submitting their tasks. The price of task execution depends
on the cost of energy it takes, and that is affected by its deadline. By
relating energy cost and monetary cost in this way, we can further
promote energy-efficient computing not only at the provider’s side
but also at the users’ side.

Based on unitcost, we define the monetary cost C of task Tj
executed at resource node Pi as follows:

C = αvqjc i, (18)

where α is the coefficient of profit margin, v is the price of unit
electricity, qj is the size of task Tj, and c i is the unitcost of resource
node Pi under a given task group. Note that C is proportional to
the actual energy cost. In the formula, α is a constant providers
control, e.g., a provider can set its profitmargin to 20%; v is decided
by the electric power companies or the government, e.g., the price
of commercial electricity in Beijing, China in 2011 was set to
0.794 RMB/kWh [23]; qj is the computation amount of the j-th task
and is given by the user when submitting; c i depends on the task
assignment and is computed as Eq. (10), where i is the index of the
node the task is assigned to.

The assignment is influenced by the deadline setting of different
users. Through the proposed algorithms, the users know that if
the deadline of a task is tight they may have to pay more money
because the task is likely to be assigned to the less power-efficient
node and the other tasks should accommodate it. The users thus
may combine the rule and their specific performance requirements
to make decisions about the deadline. In this case, it is better for
users to prolong their deadlines within acceptable limits when
they don’t know the information of each before submission. Based
on the input we get the assignment through the EES algorithm and
also relate the monetary cost with energy consumption through
the proposed pricing scheme. We demonstrate the relationship
between cost reduction and deadline increase in Section 7.3 to
sustain the idea. Moreover, the EES algorithm tries to fully utilize
the power-efficient resource node to execute tasks. In this way, the
resource nodes with the lower power efficiency will be eliminated
in the end because they cannot obtain tasks to execute. Thus, the
EES algorithm can guarantee the energy-oriented survival of the
fittest.
Adjustment phase. We just now discussed the situation when there
is no adjustment phase during the submission and execution
phases. Users can increase their deadline to obtain the large
possibility of cost reduction. If the adjustment phase is added, users
are given another chance to choose the deadline and certainly
reduce cost. The objective of the design is to further reduce the
total energy consumption. In order to improve the motivation of
users in energy conservation, we give the users who increase their
deadline economic interests, while the tasks not changing their
deadline are unaffected. The deadline is not allowed to decrease
in the adjustment phase. The adjustment works as follows.

The tasks increasing their deadline are sorted according to the
non-ascending order of power efficiency of the nodes they are
initially assigned to. If two tasks are assigned to the same node, the
task with the larger deadline/size ratio is given a higher priority,
where the deadline here is the first given deadline. This means it
can also raise thepriority in the adjustment phase for a task initially
choosing a large deadline, besides the potential cost reduction.
In this order, each task increasing deadline is reassigned to the
node with higher power efficiency than that of the node it is first
assigned to according to the currently fixed assignment and its
new deadline constraint. The most power-efficient one of all the
nodes where its new deadline can be satisfied is selected. Since
the total energy consumption reduces as long as the tasks move to
themore power-efficient node, providers ignore the effects of state
transition cost of the node. The cost of the tasks not changing their
deadline stays the same, while the part influenced by the power
efficiency, p/f , in the cost of the tasks increasing their deadline
is substituted by the value of the new node. In this way, users
can control their deadline to make more informed decisions in the
adjustment phase.

6. Extension and discussion

So far, we have formulated a power-aware deadline scheduling
problem for heterogeneous systems, proposed its static heuristic
algorithm and dealt with a task pricing scheme based on unitcost
metric. In this section, we analyze its online scenario, extend its
application fields and discuss the practical significance.

6.1. Online scenario

In Sections 4 and 5, we assume that the algorithm takes
decisions based on knowledge of the details of the entire task
set. In the realistic scenarios, tasks are submitted and scheduled
dynamically. We now extend this to deal with the online and
complex cases.

In order to make a better mapping and adapt to the
online scheduling, we introduce the notion of scheduling cycle,
i.e., at a fixed time interval the scheduler assigns tasks to the
heterogeneous system. We have discussed the algorithm in one
scheduling cycle. When the older tasks are being processed and
a new scheduling cycle starts, the EES and LSFP algorithms can
also be easily extended and changed to address the dynamics and
continuity. However, there are several issues as follows:
Information collection. At the beginning of a scheduling cycle, the
scheduler needs to collect the information of the newly arrived
tasks, the old unfinished tasks and the status of resource nodes.
The scheduler also maintains a sequence of the resource nodes
and their current unfinished tasks in the non-ascending order of
power efficiency. A given resource node, for example Pi, currently
has an assigned but undone task set, g i. The newly arrived task set
is denoted as Tnew.
Time horizon. The scheduler records the current scheduling time
tcur in the time horizon. When a task arrives during a scheduling
cycle, the user gives its relative deadline dr

′

j and then the absolute
deadline is computed as dj = dr

′

j + tcur, where tcur is the scheduling
time for the arrival cycle. For the unfinished or unexecuted tasks
arrived at the previous cycles, we view them as the ones arrived
in the current scheduling cycle, where their absolute deadlines
remain the same and the sizes are updated using the remaining
computation amount.
Parameter computation. For each resource node, say P0, the
important parameter S0(dj), introduced in Section 4.3, of its old
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unfinished tasks g0
= {Tj}, ∀j need to be precomputed before a

new cycle, where S0(dj) denotes the sumof slack time on processor
P0 before the time dj. Its computation method follows the same
adjusting rule in Algorithm1. At first, its initial value is given by the
new relative deadline drj = dj − tcur, where tcur is the scheduling
time of the new cycle. Then the value is updated in the non-
ascending order of the initial slack time, which is obtained by
sj = dj − tj − tcur for task Tj, where tj is the updated execution
time using the remaining computation amount.
The selection of resource node. Due to the unitcost metric, similar
to the static case, we select from the most power-efficient node
for the online scenario. Differently, the initial status of a node P0
during the scheduling cyclemay be on or off. If the node P0 is off, we
directly use Algorithm 1 to find its assigned task group; if the node
P0 is on, the online algorithm still follows the framework of the
LSFP algorithm and just needs to update several parameters such
as the initial task group, the sum of slack time before a time point,
etc. Please refer to Algorithm 4 in Appendix C for more details.

From Appendix C, we know that the online algorithm appends
each newly arrived task set to the existing schedule and any
request that is already in the schedule will never be cancelled to
accommodate later arriving requests, which reduces the execution
cost of the scheduling algorithm and migration cost of the
application. The online scenario is in fact the version of the static
algorithm that starts executing from themiddle of the assignment.
Admission control. In a scheduling cycle, whenever requests arrive,
the scheduler can decide whether to admit or reject some of the
requests. There are two cases for a scheduler to reject a request.
Users give the relative deadline when submitting a task Tj. If the
deadline is too tight, i.e. dr

′

j < qj/fmax, where fmax is the maximum
speed for the heterogeneous system, no node can finish it within
the deadline and the scheduler will reject this kind of request.
The premise is that we use q/f to estimate the execution time as
discussed before. The other scenario of rejection is oversaturation
by requests. In this case, the scheduler will invoke the scheduling
algorithm before the new cycle and then decides whether the
task can be included or omitted using the metric of deadline
satisfaction.

6.2. Control dependence graph

We focus on bag-of-tasks applications in the previous part.
In order to enlarge the application scope of our algorithm,
we use a novel decomposition approach to view task graphs
as the phased bag-of-tasks applications. Precedence-constrained
applications usually use a directed acyclic graph (DAG) model,
where cyclic dependencies among tasks in some cases can be
eliminated [18] through branch prediction, parallel loop unrolling
or sequential loop elimination, etc. methods.

In the user layer, if users submit precedence-constrained
applications, we assume the parameters of each task (including
q and d) and dependency of the tasks are given ahead of time
and the scheduler assigns tasks to the heterogeneous system in
the form of a scheduling cycle. In the time horizon, the current
scheduling time is recorded in tcur, the initial time of all the tasks
in the application arrived during the current scheduling cycle is
equal to tcur, and the absolute deadline for each task is naturally
computed as d = dr

′

+ tcur, where dr
′

is the given relative deadline.
Differently, in each scheduling cycle we dynamically record a

set of currently active tasks for each application. The active tasks
refer to the unfinished tasks with no predecessors or where all
the predecessors are finished, and thus all the active tasks for
the arrived applications constitute a set of independent tasks. The
active tasks consist of two parts: assigned to some processing
element (say Pi) but undone task set g i and the newly arrived
task set Tnew. When an application arrives, its entry tasks1 are first
added into Tnew. Once all the predecessors for a task Tj are finished,
task Tj is also added into Tnew. As for the other issues, it is the same
with that in Section 6.1.

In the extension we focus on the applications with control
dependence, where communication cost is negligible. This is how
the EES algorithm is designed. If communication effects are taken
into account, the dynamics of communication costwith the change
of assignment makes the scheduling complicated and we need
to make substantial changes to the original algorithm. Although
computation and communication operations can be assumed to
proceed simultaneously for data dependence graphs, we leave
this part, especially for communication-intensive applications, to
another separate work.

6.3. Practical significance

In this paper, we address the energy-efficient deadline schedul-
ing for heterogeneous systems. For the application, we focus on
bag-of-tasks applications running on the HPC platform such as
computational grids, which can apply to various scenarios [15],
such as Monte Carlo simulations, massive searches (e.g. key break-
ing), parameter sweeps, imagemanipulation, and data mining. We
then extend it to control dependence graphs, which further ex-
tends its application.

For the system, we address the heterogeneous systems, which
have the good performance for the compute intensive applications.
With the development of technology and the on-going upgrading
of the platform, heterogeneous systems have become more
common.

For the scheduling indicator, we consider energy consumption
and deadline constraints. Energy-aware/power-aware scheduling
algorithms are drawing attention with the increased importance
of energy management in the HPC field, as shown in [4,63]. For the
deadline constraints, most schedulers can give the delay bound or
deadline parameter to let users specify their requirements. Many
realworld examples in high performance computing, especially for
the model of utility computing, have deadline limits, e.g. see [45].

We also discuss a market model based on the proposed
algorithm. A user submits its requests to a given heterogeneous
system and the user needs to pay money for the computational
service according to its energy consumption, which depends on
the task assignment. In this case, the user cannot know the price
in advance. However, we can address the problem in several ways.
Before the actual submission, the scheduler can perform pre-
assignment to determine the price for the task execution. For the
tasks with special requirements, the scheduler could also provide
the parameter of specifying themapped node, whichwill not affect
our algorithms andwherewe just need to add these tasks to the old
unfinished task set of the specified node ahead of time. Even if no
steps are adopted, the lower bound and upper bound of the cost
can be obtained. Using C(Tj) to denote the cost task Tj pays to the
system P , its range is

C(Tj) ∈ [αvqj(p/f )min, αvqj(p/f )max + αvedpm] (19)

where (p/f )min = min{pi/fi}, ∀i, Pi ∈ P and (p/f )max = max{pi/
fi},∀i, Pi ∈ P , representing the unit power of the most and least
power-efficient node.

7. Experimental results

In this section we evaluate the performance of the static and
online version of the EES algorithm in the context of synthetic
workload and workload generated from realistic data.

1 A task without any predecessor is called an entry task.
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Table 1
Parameter of heterogeneous nodes.

Server # f (GHz) p (W)

IBM

1 2.13 675
2 2.13 670
3 2.66 1440
4 2 1350
5 1.86 1975
6 2.33 310
7 2.26 670
8 2 835
9 2 675

10 3 400

HP

11 2 460
12 2 750
13 2.4 460
14 2.4 300
15 2.4 920

DELL

16 2.4 345
17 2.4 305
18 2.13 345
19 2.26 1100
20 2.33 345

7.1. Methods

The proper and representative benchmarks are important. For
static EES, we compare it with the OPT, LP and EDD algorithms.
OPT is the optimal solution to EMMS obtained by solving the
ILP problem presented in Section 3.2. Since OPT is hard to solve
when the scale is large, we introduce LP, which is obtained
by relaxing the integer constraint (Inequality (5)) of the ILP
formulation. We use lp_solve 5.5.2.0 package for the LP solver.
EDD works for independent tasks with the same arrival time,
which is a simple form of EDF [19]. For online EES, we compare
it with the EDF algorithm. EDF is a classic deadline scheduling
algorithm for independent tasks with arbitrary arrival times and
first executes the task with the earliest absolute deadline. To adapt
to heterogeneous systems, the EDD and EDF algorithms first sort
the resources in the non-ascending order of power efficiency.

For the configuration of heterogeneous systems, we use
specification parameters from 20 real-world servers sold by IBM,
HP and Dell, as shown in Table 1. Since it takes 200 W on average
and one to two minutes to boot up a node, we set edpm = 20 (kJ).

Synthetic workload can thoroughly and quickly validate the
algorithm using various input parameters with low cost. Table 2
shows the rules we use for generating the synthetic task sets. All
randomparameters obey the uniform distribution. Three node sets
Pi (i = 1, 2, 3) are made using the above servers and assigned for
each of small/medium/large-scaleworkload. The unit of task size is
teracycle,which embodies the long execution time. The deadline of
a task is set to be greater than the task size divided by the slowest
frequency (1.86 GHz) so that it is always no less than the execution
time at any node. In other words, any task can be executed at
any node without violating the deadline constraint if we ignore
all other tasks in the task set. Note that this does not guarantee
the existence of a feasible schedule for the task set. Idle time is set
by 20%–50% of the average execution time for the given task size
range.

Realistic workload helps verify the feasibility of the solution
in practical use. We use DAS-2 trace from Grid Workload Archive
(GWA) [31] and ANL Intrepid trace from ParallelWorkload Archive
(PWA) [21]. DAS-2 traces are published by Advanced School
for Computing and Imaging (the owner of the DAS-2 system),
which provide two job structures: unitary and BoT. ANL Intrepid
traces are from Intrepid system deployed at Argonne Leadership
Computing Facility (ALCF) of Argonne National Laboratory and
Table 2
Generation rule of synthetic workload.

Workload parameter Small-scale Medium-scale Large-scale

Number of tasks [1, 25] [26, 80] [81, 100]
Resource nodes P1 = {1–20} P2 = 2P1∪{1–10} P3 = 3P1
Task size (teracycle) [20, 200]
Task deadline (103 s) [task size/1.86GHz, task size/1.86GHz+ idle time]
Idle time (103 s) [12, 30]

Table 3
LP-normalized energy consumption.

EDD EES OPTa

Mean s.d. Mean s.d. Mean s.d.

Small-scale 1.028 0.011 1.008 0.003 1.006 0.002
Medium-scale 1.143 0.112 1.041 0.033 – –
Large-scale 1.256 0.222 1.047 0.057 – –
a ‘‘–’’ means that the optimal solution cannot be found within a reasonable time.

used primarily for scientific and engineering computing.Weobtain
the parameters of submit time and runtime from the log. In order
to fit system heterogeneity and simplify computation, we compute
the size of the task according to the runtime and its execution
speed [44]. Since our scheduling unit is task instead of job, we
choose the longest one of the tasks for each job when the job
is assigned to multiple processors. As for the deadline, we use
the method in [39] to assign deadlines through the ratio between
deadline and runtime. If the ratio of deadline/runtime for a task is
small, e.g. between 2 and 6, we say the task has a tight deadline.
If the ratio is large, e.g. between 10 and 14, the task has a loose
deadline. About the scheduling cycle, we use 10 min as the time
interval to not only maintain the low scheduling cost but also
reduce the unnecessary large delay.

7.2. Static EES

We now analyze the effectiveness of the static EES algorithm
when it respectively runs on synthetic workload and realistic
workload from GWA.

7.2.1. Synthetic workload
In this section we validate the energy reduction capacity with

the change of various parameters such as deadline, utilization
rate and the number of tasks, and also consider the performance
including deadline violation rate and energy optimization when
the deadlines are tight.

To calculate the average energy consumption, we generate 100
instances for each of the different scale synthetic workloads. For
the convenience of comparison, the average energy consumption
of each algorithms is normalized by the solution of LP. Table 3
shows the comparative results of the EDD, EES andOPT algorithms.
For the small-scale workloads, EES uses 1.98% less energy than
EDD does, and is only 0.20% more than OPT. For medium and
large systems, EES is within 5% worse than LP and 9.8% (medium)
and 19.96% (large) better than EDD. The standard deviation values
show that EES also has less variation in performance, especially for
medium-scale and large-scale workloads. Running time of EES is
less than 0.2 s for all cases.
The number of tasks. Fig. 3(a) explores how the number of tasks
affects energy consumption. Since OPT cannot be solved in a
realistic time for the large problems, its curve is incomplete. With
the increase of the number of tasks, the advantage of EES over EDD
is more obvious while the relative difference between LP and EES
is smaller.
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Fig. 3. (a) Energy consumption in different numbers of tasks. (b) Average system unit energy in different utilization.
Utilization rate. Next we analyze the effect of ‘‘utilization’’, i.e., how
much of the idle time of all nodes is filled by tasks. We use the
following definition of utilization:

u =


Tj∈T

qj
Pi∈P

fi max{dj}
(20)

primarily because this value is unique to the task set and
is insensitive to how the tasks are assigned to the nodes,
i.e., insensitive to the choice of scheduling algorithms. Fig. 3(b)
shows the relationship between utilization and ‘‘system unit
energy’’, which is defined as c = E/Q , where E is the total energy
T consumed and Q is the total size of T . EES has a good energy-
utilization efficiency close to OPT while EDD is much worse than
EES. The energy consumption for the casewhen the utilization rate
equals 1.0 is a theoretical value calculated by assuming all nodes
are active and there is no slack time. We do not have enough data
points for high utilization rate close to 1.0, since it is generally hard
to obtain a randomly-generated task set that is feasible.
Deadline tightness. Next we study how energy consumption is
affected when the deadline is tight or even violated. Fig. 4 shows
the comparative performance in tight deadline. For this case,we set
the deadline of task Tj as qj/2.13. Although the energy saving ability
of all algorithms become worse than the case with the generation
rule in Table 2, EES still has 4.92%–43.58% more advantage over
EDD.

For the case when some deadlines are violated, the EES
algorithm tries to not only save energy consumption, but also
find a solution satisfying all the deadlines. Next we explore its
deadline satisfaction ability. We respectively run 10 times for 100
random instances in different scales. Table 4 gives the results of
average deadline violation in different deadlines. We set deadline
separately as d = 2q/max(f ), d = q/min(f ) and d = q/mean(f ),
which can show different situations of deadline violation. For
example, when d = q/mean(f ), both EES and EDD cannot find a
feasible solution for the large-scale workload, which shows that
this deadline is too tight for the large-scale instances; when d =
2q/max(f ), all the algorithms do not violate deadlines for the
small-scale workload, which shows that this deadline is not tight
for the small-scale instances. Excluding the same value in the table,
we obtain that EES is close to OPT and 19.3% better than EDD in
deadline satisfaction.
Deadline. We have analyzed the results for both loose and tight
deadlines. Next, Fig. 5 shows how energy consumption changes
Fig. 4. Mean and standard deviation value of LP-normalized energy in tight
deadline.

with the increase of deadline for the same instance in small-
scale and large-scale systems. The energy saving ability of EES
increases monotonically with the increasing deadline, while EDD
sometimes has exception and fluctuation as shown in Fig. 5(a).
Energy consumption of EES will eventually approach to that of
OPT or LP, while energy in EDD right now reaches a certain fixed
value higher than EES.Moreover, the number of points for different
algorithms is different. This is because EDD, EES, and OPT cannot
find feasible solutions when the deadline is tight enough.

7.2.2. Realistic workload
Until now we give the comprehensive and statistical validation

of static EES using synthetic instances. In order to further evaluate
its practicality and efficiency, we now run the static EES algorithm
on the DAS-2 workload traces from GWA.

We select the workloads in the first 20 time intervals of 10
consecutive minutes since 10 min is assumed to be a scheduling
cycle. For each 10 min workload, every task in the workload is
assigned a tight or loose deadline in the way Section 7.1 describes.
The range of deadline/runtime ratio for a loose deadline is set
from 10 to 14, while that for a tight deadline is from 2 to 6. The
percentage of tight deadlines gradually changes and we get the
average energy consumption. According to the scale of workload
we set the system composed of 10P1. OPT and EDD may not have
feasible solutions for some instance and we eliminate the results
of the instance during the computation.

Table 5 shows the comparative results for the different
percentage of tight deadlines. EDD performs the worst, especially
when the percentage of tight deadlines is equal to 100%. EDD is
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Table 4
Percentage of average deadline violation in different deadlines.

d = 2q/max(f ) d = q/min(f ) d = q/mean(f )
EES (%) EDD (%) OPT (%) LP (%) EES (%) EDD (%) OPT (%) LP (%) EES (%) EDD (%) OPT (%) LP (%)

Small-scale 0 0 0 0 6.4 7.6 6.2 0 52.9 57.1 51.6 0
Medium-scale 0 2.8 – 0 23.2 35.4 – 0 92 96.9 – 0
Large-scale 0.1 14.7 – 0 87.6 98.3 – 0 100 100 – 0
Fig. 5. The relationship between energy consumption and deadline for the same instance (a) in small-scale system and (b) in large-scale system.
also concluded to have the fluctuation in energy reduction with
the decrease of the percentage, especially for the tight deadline.
As shown in the table, EDD thus shows limited space for energy
saving when reducing the percentage of tight deadlines, while EES
exhibits the stable influence of deadline on energy consumption.
For the DAS-2 workload, EES is on average 1.89% worse than OPT
in energy consumption for different settings of the deadline.

We also discuss the results on deadline satisfaction for
different percentages of tight deadlines. Table 6 shows the average
proportion of the tasks that cannot satisfy their deadlines. EES has a
small differencewith OPTwhile performing 11.4%–96% better than
EDD in deadline satisfaction.

7.3. Online EES

We extend the proposed algorithm to the online scenario in
Section 6.1 and its performance also needs validation. We utilize
the first week of ANL Intrepid trace (Jan 2009–Sep 2009) from PWA
as our realistic workload. Since the workload log does not contain
data about feedback and dependencies among tasks, we view a
record as a scheduling unit. From the log, the arrival time of each
task is extracted. We get the size and assigned deadline in the way
described in Section 7.1. For the system,we still use the parameters
in Table 1 and the system is composed of 30P1.

For the ANL Intrepidworkload, we first uniformly assign a loose
deadline whose ratio is [10, 14] to the workload trace and we
know that the online EES algorithm is 15.6% better than the EDF
algorithm in energy reduction. When we assign a tight deadline
whose deadline is [2, 6], the online algorithm is 36.7% better in
energy reduction and 11.2% better in deadline satisfaction. After
giving two extreme cases of deadline assignment, Fig. 6 shows
the total energy consumption and deadline violation rate with the
percentage of tasks who have tight deadlines. The ONEES (online
EES) algorithm on average outperforms the EDF algorithm 25.72%
in energy saving and 22.14% in deadline satisfaction excluding the
zero values for the realistic workload.
Table 5
Average LP-normalized energy consumption.

The percentage of tight deadlines
0% 20% 40% 60% 80% 100%

EDD 1.086 1.113 1.204 1.251 1.388 1.392
EES 1.014 1.032 1.059 1.096 1.107 1.127
OPT 1.009 1.021 1.039 1.064 1.081 1.100

Table 6
Average proportion of deadline violation.

The percentage of tight deadlines
0% 20% 40% 60% 80% 100%

EDD (%) 1.5 12.8 19.2 36.0 61.9 93.1
EES (%) 0 0.5 3.7 15.8 32.3 82.4
OPT (%) 0 0.2 3.6 12.2 29.5 80.3

Market model. In Section 5.3, we propose a pricing scheme based
on the unitcost metric, while in Section 6.3 we analyze its practical
significance. Next we use experiments to validate its viability.

We first give how task deadline and task size affect unitcost
using the synthetic workload. Fig. 7 shows the relationship
between unitcost and task deadline and size. Unitcost will
decrease with the increase of the ratio between deadline and
size. When deadline is small for the fixed size, there can exist
some fluctuations as shown in Fig. 7(b), but the general decreasing
trend is observed. It is also observed that, when the deadline/size
value is larger than 0.8, the unitcost is stable. We also explore the
relationship between unitcost and the ratio of deadline/runtime
using the realistic workload of ANL Intrepid trace. As shown in
Fig. 8, with the increase of the ratio, the unitcost is reducing
quickly. When the ratio gets beyond a certain value, its unitcost
will remain constant.

As shown in Figs. 7 and 8, the monetary cost of a task may
fluctuate when increasing its deadline, especially for the tight
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Fig. 6. The comparison on energy consumption and deadline violation rate for ONEES and EDF algorithms.
Fig. 7. The two kinds of relationship between unitcost and task deadline/task size for 50-tasks synthetic application.
Fig. 8. The two kinds of relationship between unitcost and ratio of deadline/runtime for realistic application.
deadline. We deduce from the proposed algorithms that if the
deadline of a task is tight they may have to pay more money
and it is wise for tasks to use a loose deadline. We next validate
the probability of the rule using the experimental samples. For
each scale of workloads, we generate 500 synthetic instances and
add the other 500 instances from DAS-2 workload traces. Each
instance runs twice by changing the deadline of a task and the
deadline is increased to 1.2, 1.4, 1.6, 1.8, and 2 times the originally
tight one, respectively. We then get the sample probability of cost
reduction when increasing the deadline, as shown in Table 7. If
a task increases its deadline, it has on average 95% probability of
reducing cost, which coincides with our expectation.
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Table 7
Proportion of cost reduction with deadline increase.

Increased ratio of the deadline
1.2 1.4 1.6 1.8 2

Small-scale 999/1000 1000/1000 1000/1000 1000/1000 1000/1000
Medium-scale 951/1000 953/1000 956/1000 962/1000 964/1000
Large-scale 915/1000 917/1000 917/1000 918/1000 959/1000
8. Conclusions

This paper presents both the static and online Energy-Efficient
Scheduling (EES) algorithm for independent tasks with deadline
constraints in heterogeneous systems. In designing the EES al-
gorithm, we introduced unitcost metric, which describes the en-
ergy consumption of unit computation amount. We have proved
NP-hardness of the problem and its subproblem, and designed
approximation algorithms for each of these. Our experimental
results demonstrate the static EES algorithm has almost as good
energy minimization and deadline satisfaction ability as the op-
timal solution while the online EES algorithm has a much bet-
ter performance than the EDF algorithm. Moreover, since we
relate monetary cost with energy consumption through the unit-
cost metric and pricing scheme, both user and provider can try to
control their own parameters to maximize the respective inter-
ests, which has good marketization application. As future work,
we are planning to study the power-aware deadline schedul-
ing of communication-intensive applications for heterogeneous
systems.
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Appendix A. Notations and analyses

For the convenience of proof description in Theorem 3, we first
give the definition and analyses of several notations.

Notation 1. Before task merging, the task with the longest slack
time is denoted as T (smax), computed as Eq. (A.1). The largest slack
time is denoted as smax. Its size is denoted as q(smax):

T (smax) = argmax
Tj∈T

sj. (A.1)

Notation 2. Before task merging, the task with the largest
computation amount is denoted as T (qmax), computed as Eq. (A.2).
The largest computation amount is denoted as qmax. Its slack time
is denoted as s(qmax):

T (qmax) = argmax
Tj∈T

qj. (A.2)

Notation 3. Before task merging, the task with the smallest
computation amount is denoted as T (qmin), computed as Eq. (A.3).
The smallest computation amount is denoted as qmin:

T (qmin) = argmin
Tj∈T

qj. (A.3)

Notation 4. After task merging, the task group executed on the
same resource node is called the consolidated task group, denoted
as gk (k = 1, . . . , l). Their corresponding computation amounts are
denoted as Qk:

Qk =

Tj∈gk

qj,

k

gk = T , gk ∩ gi = ∅,

∀i, k, i ≠ k. (A.4)

Notation 5. For any given consolidated task group gk, there must
be a taskwith the longest slack time. The task is denoted as T (skmax),
computed as Eq. (A.5). Its slack time is denoted as skmax. In the
consolidated task group, there are some tasks that are put into
the slack time. Let gk

s denote these tasks, while the other tasks
including T (skmax) are denoted as gk

t . They satisfy Eq. (A.6) and their
sizes are denoted as Q (gk

s ) and Q (gk
t ):

T (skmax) = argmax
Tj∈gk

sj (A.5)

gk
s ∩ gk

t = ∅, gk
s ∪ gk

t = gk. (A.6)

Notation 6. For any given consolidated task group gk, there must
be such a task called the dominant task. When the other tasks
merge with it, they will all use its slack time. Let T (sk) denote
the dominant task, and sk is slack time. Eq. (A.7) shows their
relationship. In order to describe conveniently, we use gk

r = gk \
{T (sk)} to denote the other tasks in gk, and its size is denoted as
Q (gk

r ):
Tj∈gk,Tj≠T (sk)

qj/f0 ≤ sk. (A.7)

Appendix B. Approximation proof

Theorem 3. Q̃ ≥ Q ∗ −min{smaxf0, 2qmax − qmin}.

Proof. (i) First prove Q̃ ≥ Q ∗ − smaxf0.
Suppose the largest task group obtained by the OPT′ algorithm

is denoted as g∗, all the other tasks that merged with dominant
task T (s∗) are denoted as g∗r = g∗/{T (s∗)}. According to Eqs. (A.7)
and (A.1), we get Eq. (B.1), where Q (x) denotes the computation
amount of task group x, s∗ denotes the slack time of the dominant
task, and smax denotes the largest slack time in T :

Q (g∗r ) ≤ s∗f0 ≤ smaxf0. (B.1)

Moreover, for task T (s∗), the following is definitely right, where
q(s∗) is the size of the dominant task:

q(s∗) ≤ qmax. (B.2)

According to Eqs. (B.1) and (B.2), we get

Q ∗ = Q (g∗r )+ q(s∗) ≤ smaxf0 + qmax. (B.3)

For largest task group g̃ obtained from the LSFP algorithm, we
know

Q̃ ≥ qmax. (B.4)
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Otherwise, it will contradict the LSFP algorithm. If task T (qmax)

is in g̃ , Eq. (B.4) is tenable; else it is in another smaller task group
than g̃ , and Eq. (B.4) also stands.

Therefore, according to Eqs. (B.3) and (B.4), we get

Q̃ ≥ Q ∗ − smaxf0. (B.5)

(ii) Second prove Q̃ ≥ Q ∗ − (2qmax − qmin).
Suppose inequality Q (g∗r ) − Q (g1

s ) > qmax stands, where g∗r
denotes the remaining tasks except dominant task T (s∗) in g∗, g1

s
denotes the tasks put into the slack time of task T (s1max) in g1 and g1
is the first consolidated task group obtained by the LSFP algorithm,
we know

Q (g∗r )/f0 − Q (g1
s )/f0 > qmax/f0. (B.6)

Since non-ascending order of slack time in the LSFP algorithm
guarantees s1 = smax, we obtain

s1max = s1 ≥ s∗. (B.7)

Eqs. (B.6) and (B.7) show that there must exist one task Tk ∈ g∗r ,
where g1 still has slack time to merge Tk, while LSFP makes sure
that g1 has transferred all the tasks to perform merging and there
is no such task that should be consolidated but was not. Therefore,
since the two cases are contradictive, we get

Q (g∗r )− Q (g1
s ) ≤ qmax. (B.8)

According to Eqs. (B.8) and (A.6), we get

Q ∗ − q(s∗)− Q1 + Q (g1
t ) ≤ qmax. (B.9)

Since we know q(s∗) ≤ qmax and Q (g1
t ) ≥ qmin, Eq. (B.10) is

derived:

Q ∗ − Q1 − qmax + qmin ≤ qmax. (B.10)

The g̃ = argmaxgk Qk of the LSFP algorithm makes sure that

Q̃ ≥ Q1. (B.11)

Therefore, combining Eqs. (B.10) and (B.11), we get Q̃ ≥ Q ∗ −
(2qmax − qmin). �

Appendix C. Pseudocodes

The idea of the online algorithms is similar to their static cases.
In this appendix we give the pseudocodes of the online algorithms,
as shown in Algorithms 3 and 4.

Algorithm 3 The online EES algorithm
procedure ONEES(Tnew, G, P , tcur ) ◃ new
arrived tasks Tnew , old tasks G = {g i

},∀i, Pi ∈ P , resource set
P , current scheduling time tcur

while Tnew ≠ ∅ do
P0 ← arg min

i:Pi∈P
{pi/fi}

if P0 is off then
LSFP(Tnew, f0)

else
ONLSFP(Tnew, g0, f0, tcur )

Map g̃ on P0
Tnew ← Tnew\g̃
P ← P\{P0}

Remove idle time for each task group
Algorithm 4 The online LSFP algorithm
procedure ONLSFP(Tnew, g , f , tcur ) ◃ new arrived tasks
Tnew , old unfinished tasks g on the node, node speed f , current
scheduling time tcur

**update the parameters in g , including ti, si, S0(di)**
for i s.t. Ti ∈ g do

ti = qi/f
si = di − ti − tcur
S0(di) = di − tcur

Sort g in the non-ascending order of si, i.e., si ≥ si′ for i < i′
for j s.t. Tj ∈ g do ◃ adjust S0(di) in g

for i s.t. Ti ∈ g and j < i do
if di ≥ dj then

S0(di) = S0(di)− tj
else if di > S0(dj)− tj then

S0(di) = S0(dj)− tj
**update the parameters in Tnew , including ti, di, si**
for i s.t. Ti ∈ Tnew do

ti = qi/f
di = dr

′

i + tcur
si = di − ti − tcur

**find the largest task group merged with g within deadline satisfaction**
k← 1
T ′new ← Tnew
while T ′new ≠ ∅ do

gk ← g ◃ update the initial task group as g
Qk ← sum(g)
Sort T ′new in the non-ascending order of si, i.e., si ≥ si′

for i < i′
Sk(di)← di − tcur , ∀i s.t. Ti ∈ T ′new
for j s.t. Tj ∈ g do ◃ adjust Sk(di) in T ′new based on g

for i s.t. Ti ∈ T ′new do
if di ≥ dj then

Sk(di) = Sk(di)− tj
else if di > S0(dj)− tj then

Sk(di) = S0(dj)− tj
for j s.t. Tj ∈ T ′new do

if Sk(dj) ≥ tj then ◃merge g with tasks in T ′new
gk=gk ∪ {Tj}
T ′new = T ′new\{Tj}
Qk = Qk + qj
for i s.t.Ti ∈ T ′new and j < i do ◃ adjust Sk(di)

based on the new merger
if di ≥ dj then

Sk(di) = Sk(di)− tj
else if di > Sk(dj)− tj then

Sk(di) = Sk(dj)− tj
k← k+ 1

g̃ ← argmax
gk

Qk\g

return g̃
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