
Journal of Systems Architecture xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
On-line energy-efficient real-time task scheduling for a heterogeneous
dual-core system-on-a-chip

Ya-Shu Chen ⇑, Ming-Yang Chen
Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan, ROC

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 February 2012
Received in revised form 14 May 2012
Accepted 28 May 2012
Available online xxxx

Keywords:
Energy-efficient
Dual-core
Real-time
Task scheduling
Embedded system
1383-7621/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.sysarc.2012.05.004

⇑ Corresponding author.
E-mail addresses: yschen@mail.ntust.edu.tw, M

(Y.-S. Chen).

Please cite this article in press as: Y.-S. Chen, M
chip, J. Syst. Architect. (2012), http://dx.doi.org/
On-line energy-efficient real-time task scheduling for a heterogeneous dual-core system-on-a-chip is a
challenging problem due to precedence constraints and the varied properties of the general-purpose pro-
cessor core and the synergistic processor core. This study proposes an on-line heterogeneous dual-core
energy-efficient scheduling framework for dynamic workloads with real-time constraints. The energy
efficiency ratio is presented to manage energy consumption while considering of the varied properties
of the cores, while precedence constraints among the tasks are dealt with through interaction between
bandwidth servers. This framework is configurable for low energy consumption and high system utiliza-
tion. The capability of the proposed methodology is evaluated by a series of experiments and the results
obtained are encouraging.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Energy consumption minimization is a critical problem for mod-
ern multimedia hand-held systems. Thus, to improve performance
and power efficiency, such systems can be equipped with a hetero-
geneous dual-core system-on-a-chip with support for dynamic
voltage scaling; for example, one general purpose processor core
and one synergistic processor core (as a coprocessor) [1–3]. In con-
trast to homogeneous multi-core systems, in a heterogeneous dual-
core system, the general purpose processor core and the synergistic
processor core have different properties, such as fast execution
time, significant context overhead and a larger peak power in the
synergistic processor core. To meet the quality of service require-
ment, applications are implemented as several functions to be exe-
cuted on a specific core on such system. Nevertheless, the energy-
efficient real-time task scheduling problem in a heterogeneous
dual-core system-on-a-chip is complicated by the precedence con-
straints of functions and the trade-off between energy consumption
and response time. In this paper, we attempt to minimize energy
consumption, and meet the timing constraints of applications with
a fast admission for on-line dynamic workload.

In the past decade, a lot of research has been performed for
energy-aware real-time scheduling in a homogenous multi-core
environment with independent task sets, e.g., [4–9]. Most research-
ll rights reserved.

9807429@mail.ntust.edu.tw

.-Y. Chen, On-line energy-effici
10.1016/j.sysarc.2012.05.004
ers propose load balance methods for each core based on partition
dispatchers with energy considerations [4–6,9], and some are based
on a global strategy, e.g., [7,8]. However, few researchers have fo-
cused on using a task set with a precedence constraint; the research
work closest to ours is [10,11], which manage the streaming appli-
cation with energy consideration on homogeneous multi-core
systems.

Although the energy-efficient real-time scheduling problem has
been well studied, there are relatively few results that provide en-
ergy-efficient real-time task scheduling in heterogeneous multi-
core systems. The related work most similar to ours, [12], pre-
sented integer linear programming to resolve real-time scheduling
in the form of optimization problems. Without considering energy
efficiency, [13,14] proposed a scheduling framework to deal with
task precedence constraints between cores. Some works, namely
[15–18] extended the resource management algorithm to deal
with the precedence constraint between a general purpose proces-
sor core and a non-preemptive synergistic processor core, such as a
digital signal processor (DSP)/graphics processing unit (GPU).
Some works [19,20] proposed the scheduling algorithm to mini-
mize the communication overhead for streaming applications on
multi-core systems.

To make the resource management algorithm energy-efficient,
some previous research works have also proposed energy-efficient
real-time task synchronization on single core, e.g., [21–25]. The
dual speed (DS) algorithm [21] presents two alternative speeds
for task execution: one without blocking, and the other with block-
ing. Some works extend the idea of dual speed algorithms to
ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004
mailto:yschen@mail.ntust.edu.tw
mailto:M9807429@mail.ntust.edu.tw
http://dx.doi.org/10.1016/j.sysarc.2012.05.004
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc
http://dx.doi.org/10.1016/j.sysarc.2012.05.004

2 Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx
propose the multi-speed concept, which assigns different speeds
for each blocked task [22,23]. With preemptive critical section,
[24] presented the frequency inheritance concept, and [25] pro-
posed frequency locking for a switch overhead model. These ap-
proaches can be directly applied to provide energy efficiency for
a heterogeneous dual-core system-on-a-chip by cooperating with
the resource management algorithm. However, the longer blocking
time from non-preemptible execution in a synergistic processor
core might increase the energy dramatically and decrease the sys-
tem utilization.

This work is motivated by the need for energy-efficient real-time
task scheduling in a heterogeneous dual-core system-on-a-chip,
and the difficulty imposed by the trade-off between priority inver-
sion management and energy consumption. The objective is to min-
imize the energy consumption of a given task set, provided that the
schedulability of tasks is guaranteed. The concept of assigning a
energy efficiency ratio with bandwidth reservation framework is
proposed. Fast frequency assignment and admission control are
presented to manage on-line dynamic workloads in heterogeneous
dual-core systems. Instead of resolving energy-efficient real-time
task scheduling in the form of optimization problems, the proposed
framework is configurable for low energy consumption and high
system utilization. Two separate frequency scaling techniques for
the general purpose processor core and the synergistic processor
core are proposed according to their different properties. A series
of extensive simulations have also been performed to obtain
comparison studies using different workloads, configurations, and
scheduling algorithms.

The rest of this paper is organized as follows. Section 2 defines
the terminologies and system architecture under consideration.
Section 3 proposes the algorithm for on-line energy-efficient
real-time task scheduling in heterogeneous dual-core systems,
and presents the concepts of the energy efficiency ratio and admis-
sion control. Section 4 provides a performance evaluation of the
algorithm through extensive simulations. Section 5 concludes this
work.
2. System model

We are interested in energy-efficient real-time scheduling of
periodic tasks in a heterogeneous dual-core system-on-a-chip,
where a general purpose processor core is supported by one syner-
gistic processor core, such as a DSP for signal processing or a GPU
for graphics processing. For simplicity, we assume that the proces-
sor represents the general purpose processor core, and the copro-
cessor represents the synergistic processor core. The power
consumption functions of each core [26] can be modeled as a resul-
tant dynamic power consumption, which arises due to switching
activity in a circuit, and a leakage power consumption, which is
present even when no logic operations are performed. The power
function of the processor p is Pp ¼ Ppðf Þ þ bp ¼ apV2

ddf þ bp; f ¼

j ðVdd�Vt Þ2
Vdd

, where ap;Vt;Vdd, j, and bp denote the effective switch

capacitance, the threshold voltage, the supply voltage, the hard-
ware design-specific constant, and the leakage power, respectively.
The power function of the coprocessor cop can also be modeled by
Pcop ¼ acopV2

ddf þ bcop, with specific power characteristics acop and
bcop of the coprocessor. In this paper, we assume that the frequency
f of each core can be selected independently as any frequency in a
given range ½f min; f max�, where f min is larger than the lowest speed
required to eliminate the effect of leakage power consumption
[27]. Further extensions of this work for cores with discrete avail-
able frequencies can be performed using approaches similar to
Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
those reported in [28,29]. The effects of discrete frequencies on
the proposed framework are evaluated in the experiment section.

We have further assumed that the processor and the coproces-
sor communicate using dedicated shared memory and a mailbox.
The mailbox is used for sending requests from the processor to
the coprocessor, and vice versa. Under the shared memory model,
the worst-case communication time can be bounded by or ana-
lyzed as a part of the worst-case execution time [30,31]. This study
simply considers the communication cost as a part of the execution
time without special identification. For more details on the com-
munication architecture implementation, refer to the approaches
proposed in [15,16] for DSPs and [17,32] for GPUs. Further exami-
nation for minimizing the communication overhead and memory
usage for streaming applications can be referred to the mechanism
proposed in [19,20].

Most applications are executed in a heterogeneous dual-core
system with timing constraints, which are the arrival time,
worst-case execution cycle, response time, and relative deadline
of a task si denoted by ai; ci; ri, and Di in this paper. A periodic task
si is a collection of ni subtasks with a partial order. If a subtask ap-
pears before another in the partial order, then the latter cannot
start until the former finishes its execution. Each subtask si;j is stat-
ically assigned to execute on a processor p or a coprocessor cop,
and the worst-case execution cycles of si;j is known a priori as
ci;j. We assume that the execution of subtasks of a task is inter-
leaved between the processor and coprocessor. For example, when
the subtask si;j is executed on the processor, then the subtask si;jþ1

is executed on the coprocessor. The subtasks of a task executed on
the processor and coprocessor are referred to as processor subtasks
and coprocessor subtasks. The total worst-case execution cycles of
the processor subtasks and the coprocessor subtasks of si are de-
noted as cp

i and ccop
i , respectively.

Task scheduling on the processor is preemptive unless resource
conflicts are involved. To avoid significant context-switch over-
heads on the coprocessor, subtask executions are usually non-
preemptible [33,34]. To perform inter-process communication,
tasks might share resources with each other. A piece of code is
known as a critical section if it accesses the shared resource that
requires exclusive access. In this study, the critical section is prede-
fined in the corresponding code of each task, and a unique binary
semaphore is used to ensure the exclusive entry to the critical sec-
tion. Before a task accesses any resource, the corresponding sema-
phore must be locked. When access to the resource or coprocessor
has failed due to them being used by a lower priority subtask, the
subtask is said to be blocked. Depending on the adopted resource
manager and the run-time situation, each subtask might suffer
from a different amount of blocking time from some lower priority
subtasks, due to access conflicts.

The system energy is expressed by Esystem ¼ Ep þ Ecop. In this pa-
per, the energy consumption of a task set T ¼ fs1; s2; . . . ; sng in the
system is defined as the energy consumption of tasks in the hyper-
period of T, denoted by HP, where HP is the least common multiple
of the task period in T. In order to meet the deadline constraint of
each task, the low frequencies f L

p and f L
cop are assigned to execute

the processor and coprocessor subtasks, respectively. To eliminate
the blocking effect, the high frequencies f H

p and f H
cop are assigned so

that no deadline violation is possible when there is a block.

3. Energy-efficient heterogeneous dual-core scheduling
framework

3.1. Framework

In this research, we explore energy-efficient real-time task
scheduling for a heterogeneous dual-core system. To resolve
ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

Fig. 1. The energy-efficient heterogeneous dual-core scheduling framework.

Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx 3
the precedence constraints of tasks and non-preemptible task
execution on the coprocessor, prior work in [13] has proposed
a dual-core scheduling (DCS) framework. Under DCS, bandwidth
reservation is applied to deal with the precedence constraint be-
tween subtasks. To trade-off the context switch overhead and
longer non-preemptible executions on a coprocessor, preemption
points are inserted into coprocessor subtasks through a compiler
so that coprocessor subtasks are scheduled in a semi-preemptive
manner.

In consideration of resource sharing and energy-efficiency, we
propose the framework shown in Fig. 1, which extends existing
work in [13]. During the on-line operation, each new task is tested
by admission control. If the task passes the admission control, the
proper frequencies for the processor and the coprocessor are as-
signed to execute tasks; and the frequency assignment should take
the energy efficiency ratio and deadline guarantee into account.
The arrival time of each subtask is unpredictable and dependent
upon the completion time of the previous subtask; and so, each
subtask is scheduled on the processor and the coprocessor by a
preemptive scheduler with density assignment and bandwidth
servers, respectively. After subtasks are assigned priorities by the
corresponding scheduler/server, the resource manager allocates
resources according to the current priorities of the subtasks. The
dynamic voltage frequency scaling operation on the processor
and the coprocessor are then invoked to execute scheduled sub-
tasks. In the following sections, we present a detailed protocol
which includes scheduling policies, resource allocation rules, and
frequency switching conditions. The energy efficiency ratio is then
presented to configure the low energy consumption and high sys-
tem utilization in Section 3.3. The admission control and fre-
quency assignment for this framework will be presented in
Section 3.4.
3.2. Protocol

The details of energy-efficient heterogeneous dual-core sched-
uling EHDS are shown in Algorithm 1, whereby the deadline
assignment and task scheduling are the same as in the scheduling
algorithm DCS proposed by Chen [13]. The idea is to schedule each
task by a corresponding bandwidth reservation on each core to re-
solve the precedence constraint between subtasks. By using sepa-
rate schedulers, each subtask is assigned a local deadline when it
has arrived. The admission control can be performed by checking
the end-to-end deadline and utilization bounds of the bandwidth
reservation. The admission control is listed in Section 3.4. To re-
duce the blocking time from non-preemptible execution and the
context switch overhead on the coprocessor, DCS inserts preemp-
tion points using a compiler into the coprocessor subtasks. Sub-
tasks are scheduled in a semi-preemptive manner on the
coprocessor. Unlike in DCS, to minimize energy consumption we
assign the processor density and server size using the energy effi-
ciency ratio, labeled EER. The detailed processor density and server
size assignment is presented in Section 3.3.
Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
Algorithm 1 EHDS

I Deadline assignment:
� Each task si is assigned a processor density Sp

i on the
processor and a bandwidth server with size Scop

i

according to the energy efficiency ratio EER.
� The deadlines of processor and coprocessor subtasks

are assigned by the density and the server size of the
corresponding task, respectively.

� The deadline assignment follows the concept of
bandwidth server.

II Scheduling rule: let PðtÞ denote the maximum preemp-
tion ceiling of resources currently locked by tasks other
than task si at time t.
� Each task is accepted when it has passed admission

control. Then each subtask of the task is assigned a
local deadline by deadline assignment, and each sub-
task inherits the preemption level of the correspond-
ing task

� After a subtask is released, it is blocked from starting
execution until its preemption level is higher than
the current PðtÞ.

� Subtasks are scheduled with their local deadlines
on the processor by a preemptively deadline-driven
scheduler.

� Subtasks are scheduled by the corresponding
bandwidth server at preemption points of the
coprocessor.

III Resource allocation: whenever there is a subtask
request for a resource, it is allocated the resource.
IV Deadline inheritance: when some subtask is blocked
from starting, the blocking subtask inherits the shortest
deadline of the blocked subtasks.
V Frequency switching:
� The processor (coprocessor) frequency is switched to

a proper one when a subtask is scheduled or finished
its execution at this time point.

� The frequency of the processor (coprocessor) is set
based on the following three conditions:
– The total processor density and total bandwidth

server size are updated when there is a new task
ready or there are no ready tasks.

– When the subtask is scheduled without being
blocked, the processor (coprocessor) frequency is
set as the low frequency f L

p (f L
cop) according to the

total processor density (total bandwidth server
size).

– Whenever a subtask is blocked from starting, the
processor (coprocessor) frequency is set as high
frequency f H

p (f H
cop) according to the total processor

density (bandwidth server size) with blocking uti-
lization taken into account.
ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

4 Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx
To manage resource usage, the rules of resource allocation and
deadline inheritance are the same as in the stack resource policy
(SRP) [35]. The task with a shorter deadline is assigned the higher
preemption level. All subtasks inherit the preemption level of the
corresponding task. Each subtask is scheduled into the ready queue
only if its preemption level is higher than PðtÞ, which PðtÞ denotes
the maximum preemption ceiling of resource currently locked by
tasks other than task si at time t. The preemption ceiling of a re-
source is the highest preemption level of all tasks that require
the resource. If the preemption level is no higher than PðtÞ, the
subtask is blocked. A subtask is blocked only before it is executed
under the SRP. The request for a resource is always granted, and
the value of PðtÞ is updated accordingly. When a subtask is
blocked, the blocking subtask inherits the shortest deadline among
the blocked ones.

As shown in Fig. 2, let us assume that, given a task set T ¼
fs1; s2g, task s1 and s2 have five subtasks and three subtasks,
respectively. Both tasks have arrived at time 0. Subtasks s1;1; s1;3;

s1;5; s2;1 and s2;3 are executed on the processor. Subtasks s1;2; s1;4,
and s2;2 are executed on coprocessor. The periods of s1 and s2

are 50 and 450 time units, respectively. When the processor oper-
ates at its maximum frequency f max

p , the total execution cycles of
Fig. 2. Non-preemptive ver

Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
s1’s and s2’s processor subtasks are 10 and 7 cycles. Subtasks s1;3

and s2;1 require resource R1 for 1 and 2 execution cycles, respec-
tively. When the coprocessor operates at its maximum frequency
f max
cop , the total execution cycles of s1’s and s2’s coprocessor subtasks

are 6 and 12 cycles. The preemption point interval PPI is 2 cycles
and the context switch overhead is 0:25 cycles, when the coproces-
sor operates at f max

cop .
When we manage two tasks under earliest deadline first (EDF)

scheduling with the SRP, as shown in Fig. 2(a), at time 6; s1;2 fin-
ishes and invokes s1;3, and then s1;3 is blocked by s2;1 for accessing
resource R1. At time 10; s1;3 finishes and invokes s1;4, and then s1;4

is blocked by s2;2 for 9 time units from non-preemptible execution
on the coprocessor. Let us assume that the processor densities of s1

and s2 are 0:56 and 0:04, and the bandwidths of s1 and s2 are 0:24
and 0:06. When the deadline assignment based on a total band-
width server [36] is used, the deadline of s1;1 is 0þ 3

0:56 ¼ 5:4, the
deadline of s2;1 is 0þ 4

0:04 ¼ 100, and the deadline of s1;3 is
max d1;1; a1;3

� �
þ 3

0:56 ¼ 10:8. According to the task scheduling as
shown in Algorithm 1, s1;3 is blocked by s2;1 for accessing resource
R1. At the coprocessor, the deadline of s1;2 is a1;2 þ 3

0:24 ¼ 15:5, the
deadline of s2;2 is 7þ 12

0:06 ¼ 207, and the deadline of s1;4 is 28.
sus preemptive points.

ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx 5
When Algorithm 1 is used, as shown in Fig. 2(b), s1;4 preempts s2;2

at the preemption point, so that the blocking time suffered by task
s1;4 is 1:25 time units from the preemption point interval and the
context switch overhead.

As shown in Algorithm 1, the frequency of the processor (copro-
cessor) is switched when a subtask is scheduled or finished. Given
a task set, all subtasks on each core are executed at two alternative
frequencies, as presented in prior work [21]. Each subtask is exe-
cuted at the low frequency f L

p (f L
cop) on the processor (coprocessor),

when it executes without being blocked. Otherwise, the subtask is
executed at the high frequency f H

p (f H
cop) on the processor (coproces-

sor) with blocking time taken into consideration. Unlike in prior
work [21], the frequency f L

p (f L
cop) is calculated according to the cur-

rent total processor density (total bandwidth server size). When
there is a new task si added into the system, the processor density
Sp

i and a bandwidth server size Scop
i are assigned according to EER.

The task is accepted only when it has passed admission control.
The required frequencies of each core are then updated according
to the processor density and the bandwidth server size of the
new task.

Consider the same task set as shown in Fig. 2, let us assume that
f max
p and f max

cop are normalized to 1. When dual speed (DS) [21] is

used, the low and high frequencies are
P ci

Di
¼ 16

50þ 19
450 � 0:4 and

Bk
Dk
þ
P ci

Di
¼ 12

50þ
P ci

Di
� 0:6, respectively. As shown in Fig. 3(a), with-

out blocking, s1;1 and s1;2 are executed at the low frequency. At
time 15; s1;2 finishes and invokes s1;3, and then s1;3 is blocked by
s2;1 for resource access. The processor switches to a high frequency
Fig. 3. Frequen

Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
to execute the remaining critical section and executes s1;3. When
subtask s1;3 is finished, s1;4 is invoked and is then blocked by s2;2.
The coprocessor switches to a high frequency to execute the
remaining executions of s2;2 and s1;4.

In contrast to DS, under EHDS, the processor and coprocessor
subtasks are scheduled by separate schedulers. The high frequency
and low frequency are both varied at the processor and the copro-
cessor. According to the total processor density and total band-
width server size, the low frequencies of processor f L

p and

coprocessor f L
cop are

P
Sp

i � 0:6 and
P

Scop
i � 0:3, respectively.

When the bandwidth server is used, the non-preemption section

effect for bandwidth servers is bmaxðnpÞ
minfci;j=Sp

i
g as in Lemma 3.5 [37],

where bmaxðnpÞ is the longest non-preemption section. The high
frequencies of processor f H

p and coprocessor f H
cop are B

minfci;j=Sp
i
g þP

Sp
i � 1 and maxfPPI;Bg

minfci;j=Scop
i
g þ
P

Scop
i � 0:5, respectively, where PPI is

the maximum length of the preemption point interval on the
coprocessor and B is the maximum length of a subtask that can
be blocked for resource access. The proof of the above calculation
is shown in Section 3.4. With a lower frequency f L

cop applied at
the coprocessor, s1;2 executes for 10 time units, and so s1;3 is not
blocked by s2;1. All processor subtasks are executed at the low fre-
quency. At time 20, when subtask s1;3 is finished, s1;4 is invoked
and blocked by s2;2. The coprocessor switches to the high fre-
quency to execute the remaining execution until it reaches the pre-
emption point at s2;2, whereby it then executes the context switch
operation and s1;4. After s1;4 finishes, without blocking, the copro-
cy scaling.

ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

6 Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx
cessor switches to the low frequency to execute the context switch
operation and the remaining execution of s2;2. As shown in this
example, EHDS minimizes the system energy by reducing the
blocking effect and assigning varied frequencies between cores.
In a later section, we explain how to assign frequency and reserve
bandwidth to minimize the energy and meet the timing constraint.

3.3. Energy efficiency ratio

In this section, we discuss how to assign processor densities and
server sizes to each task while considering the different properties
of the cores. The assignment of processor densities and server sizes
to each task is an NP-complete problem and can be reduced to a
bin-packing problem [38]. It should be noted that assigning a lar-
ger server size to the task can improve task response, but a smaller
server size improves system utilization (further discussion can be
found in [13]). In contrast to homogeneous multi-core systems,
in a heterogeneous dual-core system, the processor and coproces-
sor have a master–slave relationship. Due to the precedence con-
straint, the lower frequency execution on the processor might
result in higher frequency execution on the coprocessor for the
end-to-end deadline constraint. Moreover, with the same fre-
quency, the resulting energy consumption might be different be-
tween the cores due to the varied power characteristics. This
section then presents the energy efficiency ratio EER for configuring
the system energy consumption.

We first define the ratio of total processor subtask utilization to
the total coprocessor subtask utilization with preemption point
insertion as the following function, where CS is the number of con-
text switch cycles of each subtask, and PPI is the maximum length
of the preemption point interval on the coprocessor:

Up : Ucop ¼
X
si;j2p

ci;j

Di �
X

si;k2cop

PPI
:
X

si;k2cop

2CSþ ci;k

Di �
P

si;k2copPPI

We then partition the deadline to each subtask according to the uti-
lization ratio, schedulability bound, and the energy efficiency ratio
EER to configure the trade-off between energy consumption and
system usage. The context switch from executing a coprocessor
subtask is also considered. When the SRP is used, context switching
for each subtask only occurs twice [35]. Proportional deadline par-
tition with total utilization [39] is used to reflect the system utiliza-
tion. As a result, the corresponding density and server size can be
calculated by using the functions described below. For each task si,

Sp
i ¼

cp
i

ðDi �
P

si;k2copPPIÞ � Up
UpþðEERÞ�Ucop

� UðnÞ

Scop
i ¼ 2CSþ ccop

i

ðDi �
P

si;k2copPPIÞ � ðEERÞ�Ucop
UpþðEERÞ�Ucop

� UðnÞ

For a given task set, the total density and server size of the proces-

sor and the coprocessor are
Pn

i¼1Sp
i ¼

UpþðEERÞ�Ucop
UðnÞ and

Pn
i¼1Scop

i ¼
UpþðEERÞ�Ucop

EER�UðnÞ , respectively. To meet the deadline constraint, the re-

quired frequencies to execute tasks on the processor and the copro-
cessor are no less than the total bandwidth, i.e. f L

p P
Pn

i¼1Sp
i and

f L
cop P

Pn
i¼1Scop

i . The detailed proof is shown in Section 3.4. By
assigning the ratio of the total bandwidth between the processor
and the coprocessor as EER, the frequency ratio between cores can
also be EER, where EER represents the energy efficiency ratio to ad-
just the energy consumptions contributed from processor and
coprocessor.

Next, we discuss how to calculate the energy efficiency ratio
EER to minimize the energy consumption. Given a task set, the to-
tal energy of the system is as follows:
Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
Esystem ¼ EpþEcop

¼
Xn

i¼1

Pp fp
� �
� cp

i

fp
�HP

Di

" #
þbp�HP

()

þ
Xn

i¼1

Pcop fcop
� �

� ccop
i

fcop
�HP

Di

" #
þbcop�HP

()

¼HP� Pp fp
� �
� 1

fp
�
Xn

i¼1

cp
i

Di
þPcop fcop

� �
� 1

fcop
�
Xn

i¼1

ccop
i

Di
þbpþbcop

()

�HP� apf 3
p

� �
� 1

fp
�Upþ acopf 3

cop

� �
� 1

fcop
�Ucopþbpþbcop

� 	

where HP is the hyper-period of the task set, fp is the current fre-
quency of the processor, cp

i is the execution time on the processor,
Di is the relative deadline of the task si;bp is the leakage power of
the processor, and Up is the total processor subtask utilization.
The above variables with subscript cop are the values correspond-
ing to those characteristics of the coprocessor.

As the hyper-period HP of a task set and the leakage power of
each core are constants, the minimization goal is transformed as

apf 2
p Up þ acopf 2

copUcop

with the schedulability bound constraint:

Xn

i¼1

cp
i

Di � fp
þ
Xn

i¼1

ccop
i

Di � fcop
� Up

fp
þ Ucop

fcop
6 UðnÞ

As shown in above equation, the value of EER is affected by the
power characteristics of the cores and schedulability utilization of
the given scheduler. This optimization problem can be resolved
by the Lagrange multiplier [40]. The energy efficiency ratio, i.e.,
fp : fcop, is derived as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acop=ap

3
p

. Without considering blocking, the

optimal f L
cop and f L

p are equal to UpþðEERÞ�Ucop
UðnÞ and UpþðEERÞ�Ucop

EER�UðnÞ as the re-

sults of the above assignments.
The energy caused by run-time blocking is unpredictable and

further examination might lead us into probability problem [11].
In this study, we try to minimize the energy caused by run-time
blocking through preemption point insertion as shown in Fig. 3.
In this example, let us assume that ap and acop are 1 and 8, and that
the value of EER is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acop=ap

3
p

¼ 2. Without considering power leak-
age, the total energies of the task set (during hyper-period 450) of
EHDS and DS are 82 and 100 energy units, respectively. With run-
time blocking considered, the total energies of EHDS and DS are 87
and 120 energy units, respectively.

Moreover, the run-time idle slacks caused by high frequency
execution can be reclaimed to minimize the effects of blocking.
The main ideas follow the dual speed dynamic reclaiming (DSDR)
proposed in [21]. Two separate free-time lists record the run-time
slacks of processor subtasks and coprocessor subtasks, respec-
tively, but the slacks are consumed when the core is idle. The
slacks of a subtask on the free-time list expire by the deadline of
the corresponding subtask. Each subtask can only use the slacks
of subtasks with shorter relative deadlines. More experimental re-
sults for this are shown in Section 4.

The idea of this paper is to propose a configurable framework
for a heterogeneous dual-core system to make a trade-off between
low system energy and high system utilization. If there is no way
to assign the bandwidth ratio between cores as EER under the tim-
ing constraint, then the system energy will be increased. Develop-
ers can repartition the workload between cores to minimize the
system energy. To address the system utilization issue, the suffi-
cient schedulability bound is 1 under EHDS. With the precedence
constraint, the bound is varied between task sets [37]. Developers
can perform a binary search to explore the acceptable bound in this
ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx 7
configurable framework, while the system robustness is guaran-
teed by the admission control theorems shown in the next section.

3.4. Admission control

In this section, we present the polynomial time schedulability
test and frequency assignment for fast admission control. Many
bandwidth server techniques are designed for dynamic scheduling
algorithms. To compare with the EDF scheduling with SRP, this
study uses a total bandwidth server (TBS) [36] with EDF scheduling
as an example to demonstrate how to schedule tasks with the pre-
cedence constraint and preemption points. The admission control
is based on the concept of TBS to simplify the presentation. When
the processor and coprocessor are executed at full speed, that is,
f L
p ¼ f max

p and f L
cop ¼ f max

cop , the schedulability of EHDS follows the
concept proposed by Chen [13] as follows:

Theorem 3.1. [13] Given a task set with a processor density
assignment, if the sum of the processor density

Pn
i¼1Sp

i is no larger
than 1, then the task set is schedulable on the processor under dual-
core scheduling.
Theorem 3.2. [13] Given a task set if, 8i; j PPI

min
ci;j

Scop
i

� 	þPn
i¼1Scop

i 6 1,

the task set is schedulable on the coprocessor under dual-core sched-
uling, where PPI is the maximum length of the preemption point inter-
val and Scop

i is the bandwidth server size of task si on the coprocessor.
Theorem 3.3. [13] A task si is schedulable under dual-core schedul-

ing if, 8j; k
P

si;j2p
ci;j

Sp
i
þ
P

si;k2cop
2CSþci;k

Scop
i
þ PPI

� �
6 Di, where CS is the

number of context switch cycles of each subtask, PPI is the maximum
length of the preemption point interval on the coprocessor, Sp

i is the
processor density of task si; S

cop
i is the bandwidth server size of task

si, and Di is the relative deadline of task si.
When dual-core scheduling is applied, each subtask is sched-

uled by two separate EDF schedulers with bandwidth reservation
on the processor and the coprocessor. With the SRP and an EDF
scheduler on a processor, two alternative frequencies to minimize
energy without deadline violation can be calculated as follows:

Theorem 3.4. [21] Suppose that n periodic tasks with blocking
sections are sorted by their periods. They can all be feasibly scheduled
by the dual speed EDF algorithm with high frequency f H and low

frequency f L if, 8k Bk
Dk
þ
Pn

i¼1
ci
Di
6 f H and

Pn
i¼1

ci
Di
6 f L , where Bk is

the maximum length of a job in sk that can be blocked.
All subtasks on a processor are scheduled by the assigned pro-

cessor density and hence, the dual speed concept can be applied di-
rectly to the processor after taking into account processor density.
The low frequency is not less than the total processor density, and
the high frequency is derived from the total processor density
including blocking effects. When bandwidth reservation is used,
the non-preemption critical section effect for bandwidth servers

is bmaxðnpÞ
minfci;j=Sp

i
g [37], as shown in Lemma 3.5.

Lemma 3.5. [37] When a system of periodic tasks is scheduled with
one or more total bandwidth servers on the an EDF basis, every
periodic task and every server meets its deadlines if the sum of the
total density of the periodic tasks and the total size of all servers is no

greater than 1� bmaxðnpÞ
Dmin

, where bmaxðnpÞ and Dmin are the maximum

execution time of the non-preemption portion and minimum of the
relative deadlines of all periodic tasks and the effective execution times
of jobs executed by all servers in the system, respectively.
Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
From Theorem 3.4 and Lemma 3.5, the schedulability under
EHDS of a processor can be derived as Corollary 3.6.

Corollary 3.6. Given a task set with the processor density assignment
and blocking sections, the task set is schedulable on the processor
under EHDS with low frequency f L

p and high frequency f H
p if,

Xn

i¼1

Sp
i 6 f L

p

and

8j; k
Bk

min ci;j

Sp
i

� 	þXn

i¼1

Sp
i 6 f H

p ;

where Bk is the maximum length of a subtask in sk that can be blocked.
Proof. The proof of this corollary directly follows from that of The-
orem 3.1, Theorem 3.4 and Lemma 3.5. As discussed previously, the
low frequency of the coprocessor is no less than the total band-
width server size. The high frequency is derived with worst case
blocking assumed, including resource contention and the non-
preemption execution portion, because subtasks are scheduled
by the assigned bandwidth server at the preemption point. h
Corollary 3.7. Given a task set with the bandwidth server size assign-
ment and blocking sections, the task set is schedulable on the copro-
cessor under EHDS with low frequency f L

cop and high frequency f H
cop if,

Xn

i¼1

Scop
i 6 f L

cop

and

8j; k
max PPI;Bkf g

min ci;j

Scop
i

� 	 þ
Xn

i¼1

Scop
i 6 f H

cop;

where PPI is the maximum length of the preemption point interval on
the coprocessor and Bk is the maximum length of a subtask in sk can
be blocked for resource contention.
Proof. The proof of this corollary directly follows from that of
Theorem 3.2, Theorem 3.4 and Lemma 3.5. h
Theorem 3.8. A task si is schedulable under EHDS if,

8j; k;
X
si;j2p

ci;j

Sp
i

þ
X

si;k2cop

2CSþ ci;k

Scop
i

þ PPI

 !
6 Di ð1Þ

8si;j 2 p;
ci;j

f H
p
þ Bi;j

f H
p
6

ci;j

Sp
i

ð2Þ

and

8si;k 2 cop;
2CSþ ci;k

f H
cop

þ
max PPI;Bi;k

� �
f H
cop

6
ci;k

Scop
i

; ð3Þ

where CS is the number of context switch cycles of each subtask on the
coprocessor, Bi;j is the maximum length of a subtask si;j can be blocked
by resource usage, and PPI is the maximum length of the preemption
point interval on the coprocessor.
Proof. According to Corollary 3.6 and Corollary 3.7, the low fre-
quency of the processor, f L

p , or the coprocessor, f L
cop, is no less than

the bandwidth of each task si. Following Theorem 3.3, Eq. (1) guar-
ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

8 Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx
antees that response time of task si is no larger than its deadline Di.
According to the properties of SRP [35], each subtask is blocked
only once before it begins execution. When a subtask of task si is
blocked by the resource contention (Bi;j), the processor is set as
the high frequency until the blocking section and the blocked sub-
task are finished. The coprocessor is set as the high frequency,
when a subtask of task si is blocked by the non-preemption portion
(i.e., PPI) or by the resource contention (Bi;k). Eq. (2) and Eq. (3)
guarantee that the required execution time units of each subtask
si;j are no larger than the local relative deadline of the correspond-
ing subtask si;j.

Considering the task set and frequency assignment as shown in
Fig. 3, for task s1, it meets the end-to-end deadline constraint of Eq.

(1),
P

si;j2p
ci;j

Sp
i
þ
P

si;k2cop
2CSþci;k

Scop
i
þ PPI

� �
¼ 10

0:56þ 6
0:24þ 2 � 45 6 50,

each processor subtask meets the conditions of Eq. (2), (e.g., for
s1;1

3
1þ 2

1

� �
6

3
0:56 � 5), and each coprocessor subtask meets the

conditions of Eq. (3), (e.g., for s1;2
2�0:25þ3

0:5 þ 2
0:5

� �
6

3
0:24 ¼ 12:5).

Task s2 is also schedulable by passing the above conditions. h
4. Performance evaluation

4.1. Data sets and performance metrics

The purpose of this section is to evaluate energy consumption
in task execution. We compare the power consumption of our
EHDS algorithm, DS, and SRP, which executes all tasks for the max-
imum frequency with the EDF scheduler. The specifications of an
OMAP35x Evaluation Module [12] containing an ARM Cortex A9
for the processor and a C64X + DSP for the coprocessor, are used
for this evaluation, in which the power consumption can be
Table 1
Frequency levels of OMAP 35x.

Core Frequency Normalized speed

ARM 125 0.22 f max
p

250 0.45 f max
p

500 0.90 f max
p

550 1 f max
p

DSP 90 0.20 f max
cop

180 0.41 f max
cop

400 0.93 f max
cop

430 1 f max
cop

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 S
ys

te
m

 E
ne

rg
y

Utilization

SRP

DS

EHDS

EHDS-NP

(a) Non-preemptive coprocessor

Fig. 4. Varying u

Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
approximately modeled as Pðf Þ ¼ ð0:0013f 3 þ 40Þ W for ARM and
Pðf Þ ¼ ð0:0026f 3 þ 41Þ W for DSP. The frequency levels of the
OMAP35x Evaluation Module are shown in Table 1. Without the
specialized claim, tasks are executed by any frequency in the given
range, in which the maximum and minimum available frequencies
are normalized to 1 and 0:1, respectively. The effect of discrete fre-
quency is also evaluated in Section 4.2.5. The workloads in the
experiments are generated in a randomized way. The utilization
of the system ranges from 0:1 to 0:9. The number of tasks in each
core is 10. The generated periods of each task ranges from 200 to
1300 cycles. The ratio of total processor subtask utilization to the
total coprocessor subtask utilization is 2. The execution cycles of
each task are given with the harmonic utilization. Each task has
3–7 subtasks and each subtask is executed with the processor
and coprocessor interleaved. The number of resources ranges from
2 to 6. The length of resource usage is from 20% to 66% of the exe-
cution time in each subtask. For each setting, 100 task sets are gen-
erated to average the experimental results.

The primary metric is the normalized energy consumption. Let X
and Y denote the amount of energy consumption under the evalu-
ated algorithm and the amount of energy consumption under the
SRP, respectively. The normalized energy consumption of the evalu-
ated algorithm is defined as X=Y . The second metric is infeasibility
which is the ratio of the number of task set with deadline violation
under the evaluated algorithm to the number of total task sets
generated.

4.2. Experiment results

In this section, we present the results from experiments using
different workloads to compare our EHDS algorithm against DS
and SRP.

4.2.1. Varying utilization
Fig. 4(a) shows the normalized energy consumptions of EHDS,

DS, EHDS-NP, and SRP. EHDS schedules a coprocessor subtask at
the preemption point, and the length of PPI is equal to the maxi-
mum length of shared resource usage. DS, SRP, and EHDS-NP exe-
cute non-preemptible tasks on the coprocessor. The horizontal axis
represents the system utilization, i.e.,

P ci
Di

, and the vertical axis
represents the normalized energy consumption. The performance
is better when the energy consumption is less. The results show
that EHDS achieved the lowest normalized energy consumption
compared to the other algorithms. It is because the bandwidth res-
ervation through energy efficiency ratio improves the system utili-
zation and hence minimizes the energy. Furthermore, the
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 S
ys

te
m

 E
ne

rg
y

Utilization

SRP-FP

DS-FP

EHDS-FP

(b) Fully preemptive coprocessor

tilizations.

ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

In
fe

as
ib

ili
ty

(%
)

Utilization

DS

EHDS

Fig. 6. Schedulability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 S
ys

te
m

 E
ne

rg
y

Utilization

SRP

DS

EHDS

DS-DR

EHDS-DR

Fig. 7. Reclaiming.

Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx 9
preemption point insertion decreases the blocking time and elim-
inates the energy from high speed execution. Compared with DS
and SRP, EHDS saves up to 20% and 45% more energy, respectively.
The performance of EHDS-NP is slightly worse than EHDS, but still
better than DS because of the energy efficiency ratio assignment.
Fig. 4(b) shows the normalized energy consumption of EHDS-FP,
DS-FP, and SRP-FP, and all task executions on the coprocessor
can be fully preemptible. The performance gap is decreased by pre-
emptible execution, but EHDS-FP still performs better than DS-FP.

4.2.2. Varying preemption point interval
Fig. 5(a and b) shows the normalized energy consumptions of

EHDS, DS, and SRP, when the system utilizations are 0:8 and 0:9,
respectively. The horizontal axis represents the length of the PPI,
and the vertical axis represents the normalized energy consump-
tion. The maximum length of PPI is set as 70, because the coproces-
sor subtask almost becomes non-preemptible by such setting. All
algorithms schedule subtasks on the coprocessor only at the pre-
emption point. As shown in Fig. 5, the energy of all algorithms in-
creases with the length of the PPI. However, the performance gap
of EHDS is small because the bandwidth reservation takes the va-
lue of PPI into account. It should be noted that the system utiliza-
tion is less than 1 in order to compare with DS and SRP. In a later
section, we show the experimental results for schedulability capa-
bility of EHDS.

4.2.3. Schedulability
Fig. 6 shows the schedulability capabilities of DS and EHDS. The

horizontal axis represents system utilization, and the vertical axis
represents infeasibility. In this experiment, 100 task sets were gen-
erated for different system utilizations without schedulability
tests. As shown in Fig. 6, the schedulability bound of EHDS is closed
to 1:3. This is because the bandwidth server assignment as shown
in Section 3.3 takes system utilization into account to achieve bet-
ter results.

4.2.4. Run-time reclaiming
Fig. 7 shows the normalized energy consumptions of algorithms

with and without run-time reclaiming. The horizontal axis repre-
sents the system utilization, and the vertical axis represents the
normalized energy consumption. In this experiment, we extend
DS-DR [21] as two separate lists for the processor and the copro-
cessor to reclaim the energy from the blocking effect. EHDS-DR
and DS-DR reclaim run-time slacks from the blocking effect. As
shown in Fig. 7, the performance of EHDS is still better than that
of DS-DR. Compared with EHDS, the EHDS-DR saves up to 10%

more energy.
 0

 0.2

 0.4

 0.6

 0.8

 1

10 30 50 70

N
or

m
al

iz
ed

 S
ys

te
m

 E
ne

rg
y

PPI

SRP

DS

EHDS

(a) U=0.8

Fig. 5. Varying preempt

Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
4.2.5. Discrete frequency
Fig. 8 shows a comparison of discrete and continuous frequency

levels, when the discrete frequency levels of the OMAP35x Evalu-
ation Modules are used. As shown in Fig. 8, EHDS-DF and DS-DF
shows the energy consumption when the discrete frequency levels
are applied. The effects of the discrete frequency levels of the cores
results in significant energy increases when U ¼ 0:5. The reason for
this is the large gap between the second and third frequency levels
of the cores, as shown in Table 1. As a result, as compared to con-
tinuous frequency levels, the energy increases up to 30% due to the
effects of discrete frequency. The performance of EHDS-DF is still
 0

 0.2

 0.4

 0.6

 0.8

 1

10 30 50 70

N
or

m
al

iz
ed

 S
ys

te
m

 E
ne

rg
y

PPI

SRP

DS

EHDS

(b) U=0.9

ion point intervals.

ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 S
ys

te
m

 E
ne

rg
y

Utilization

SRP

DS

EHDS

DS-DF

EHDS-DF

Fig. 8. Discrete frequency.

10 Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx
better than that of DS-DF because the lower frequency level is as-
signed to the coprocessor through the energy efficiency ratio, and
then this eliminates the effect from discrete frequency.

5. Conclusion

This paper explores the on-line energy-efficient real-time task
scheduling problem in heterogeneous dual-core systems, and con-
siders tasks with precedence constraints and non-preemptible
execution. The precedence constraint and non-preemptive copro-
cessor are dealt with through the bandwidth server scheduling
framework and preemption point insertion proposed in [13]. To
ensure energy efficiency in this scheduling framework, fast fre-
quency assignment is proposed to accept a dynamic workload
and minimize system energy. The energy efficiency ratio is pre-
sented to configure low energy consumption and high system uti-
lization. A heuristic approach for derivation of the energy efficiency
ratio is also presented to provide further insights into workload
partitioning between cores. The capabilities of the proposed algo-
rithms are evaluated by a series of experiments over synthesized
workloads. Performance evaluations show that our proposed algo-
rithms can reduce the energy consumption and outperform previ-
ous approaches.

Future research should extend this framework to heteroge-
neous multi-core systems and derive the utilization bounds of such
systems. Further research and development in these areas may
also prove to be very important for future mobile system designs.

Acknowledgement

The authors would like to thank Hung-Hsiu Tsai at the National
Taiwan University of Science and Technology for his contribution
to part of the experimental design. This work is supported in part
by a grant from the NSC program NSC 99-2221-E-011-116-MY3.

References

[1] Texas Instruments Inc., OMAP3 Platform, Tech. Rep., Texas Instruments, 2009.
Available from: <http://www.ti.com/lit/ml/swpt024b/swpt024b.pdf>.

[2] Texas Instruments Inc., OMAP Platform, Tech. Rep., Texas Instruments, 2011.
Available from: <http://focus.ti.com/omap/docs/omaphomepage.tsp>.

[3] Qualcomm Inc., Snapdragon, Tech. Rep., Qualcomm, 2011. Available from:
<http://www.qualcomm.com/documents/snapdragon-s4-architecture>.

[4] J.-J. Chen, H.-R. Hsu, T.-W. Kuo, Leakage-aware energy-efficient scheduling of
real-time tasks in multiprocessor systems, in: Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Symposium, 2006, pp. 408–417.

[5] J.-J. Chen, L. Thiele, Energy-efficient scheduling on homogeneous
multiprocessor platforms, in: Proceedings of the ACM Symposium on
Applied Computing, 2010, pp. 542–549.

[6] H. Aydin, R. Melhem, D. Mosse’, P. Meji’a-Alvarez, Dynamic and aggressive
scheduling techniques for power-aware real-time systems, in: Proceedings of
the IEEE Real-Time Systems Symposium, 2001, pp. 95–105.
Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
[7] X. Qi, D. Zhu, H. Aydin, Global reliability-aware power management for
multiprocessor real-time systems, in: Proceedings of the Embedded and Real-
Time Computing Systems and Applications, 2010, pp. 183–192.

[8] H.K. Xuefeng Piao, Y. Cho, S. Han, M. Park, M. Park, S. Cho, Power-aware edzl
scheduling upon identical multiprocessor platforms, in: Proceedings of the
Reliable and Autonomous Computational Science International Conference,
2010, pp. 61–80.

[9] H. Aydin, Q. Yang, Energy-aware partitioning for multiprocessor real-time
systems, in: Proceedings of the International Parallel and Distributed
Processing Symposium, 2003, p. 9.

[10] R. Xu, R. Melhem, D. Mosse, Energy-aware scheduling for streaming
applications on chip multiprocessors, in: Proceedings of the Real-Time
Systems Symposium, 2007, pp. 25–38.

[11] A. Abousamra, R. Melhem, D. Mosse, Minimizing expected energy
consumption for streaming applications with linear dependencies on chip
multiprocessors, in: Proceedings of the IEEE International Symposium on
Industrial Embedded Systems, 2009, pp. 100–109.

[12] W.-Y. Shieh, B.-W. Chen, Energy-efficient tasks scheduling algorithm for dual-
core real-time systems, in: Proceedings of the International Computer
Symposium, 2010, pp. 568–575.

[13] Y.-S. Chen, L.-P. Chang, C.-M. Jeng, On-line task scheduling for dual-core real-
time embedded systems, in: Proceedings of the Conference on Industrial
Informatics, 2009, pp. 182–187.

[14] C.-F. Kuo, Y.-C. Hai, Real time task scheduling on heterogeneous two-processor
systems, in: Proceedings of the Conference on Algorithms and Architectures
for Parallel Processing, 2010, pp. 68–78.

[15] P. Gai, L. Abeni, G. Buttazzo, Multiprocessor dsp scheduling in system-on-a-
chip architecture, in: Proceedings of the Euromicro Conference on Real Time
Systems, 2002, pp. 231–238.

[16] K. Kim, D. Kim, C. Park, Real-time scheduling in heterogeneous dual-core
architecture, in: Proceedings of the Conference on Parallel and Distributed
Systems, 2006, p. 6.

[17] S. Kato, K. Lakshmanan, R. Rajkumar, Y. Ishikawa, Timegraph: GPU scheduling
for real-time multi-tasking environments, in: Proceedings of the USENIX
Annual Technical Conference, 2011, pp. 17–30.

[18] S. Kato, K. Lakshmanan, Y. Ishikawa, R. Rajkumar, Resource sharing in GPU-
accelerated window systems, in: Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium, 2011, pp. 191–200.

[19] Y. Wang, D. Liu, M. Wang, Z. Qin, Z. Shao, Optimal task scheduling by removing
inter-core communication overhead for streaming applications on MPSoC, in:
Proceedings of the Real-Time and Embedded Technology and Applications
Symposium, 2010, pp. 195–204.

[20] Y. Wang, D. Liu, Z. Qin, Z. Shao, Memory-aware optimal scheduling with
communication overhead minimization for streaming applications on chip
multiprocessors, in: Proceedings of the Real-Time Systems Symposium, 2010,
pp. 350–359.

[21] F. Zhang, S.T. Chanson, Processor voltage scheduling for real-time tasks with
non-preemptible sections, in: Proceedings of the Real-Time Systems
Symposium, 2002, pp. 235–245.

[22] J. Lee, K. Koh, C.-G. Lee, Multi-speed DVS algorithms for periodic tasks with
non-preemptible sections, in: Proceedings of the IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, 2007, pp.
459–468.

[23] A. Elewi, M. Awadalla, M. Eladawy, Energy-efficient multi-speed algorithm for
scheduling dependent real-time tasks, in: Proceedings of the International
Conference on Computer Engineering Systems, 2008, pp. 237–242.

[24] R. Jejuilar, R. Gutpa, Energy aware task scheudling with task synchoronization
for embedded real-time system, IEEE Transaction on Computer Aided Design
of Integrated Circuits and Systems 25 (6) (2006) 1024–1037.

[25] Y.-S. Chen, C.-Y. Yang, T.-W. Kuo, Energy-efficient task synchronization for
real-time systems, IEEE Transactions on Industrial Informatics 6 (3) (2010)
287–301.

[26] D. Zhu, Reliability-aware dynamic energy management in dependable
embedded real-time systems, in: Proceedings of the Real-Time and
Embedded Technology and Applications Symposium, 2006, pp. 397–407.

[27] R. Jejurikar, C. Pereira, R.K. Gupta, Leakage aware dynamic voltage scaling for
real-time embedded systems, in: Proceedings of the Design Automation
Conference, 2004, pp. 275–280.

[28] J.-J. Chen, T.-W. Kuo, C.-S. Shih, 1+� approximation clock rate assignment for
periodic real-time tasks on a voltage-scaling processor, in: Proceedings of the
ACM Conference on Embedded Software, 2005, pp. 247–250.

[29] W.-C. Kwon, T. Kim, Optimal voltage allocation techniques for dynamically
variable voltage processors, in: Proceedings of the Design Automation
Conference, 2003, pp. 125–130.

[30] J. Rosen, P. Eles, Z. Peng, A. Andrei, Predictable worst-case execution time
analysis for multiprocessor systems-on-chip, in: Proceedings of the IEEE
International Symposium on Electronic Design, Test and Application, 2011, pp.
99–104.

[31] L. Steffens, M. Agarwal, P. van der Wolf, Real-time analysis for memory access
in media processing SOCS: a practical approach, in: Proceedings of the
Euromicro Conference on Real-Time Systems, 2008, pp. 255–265.

[32] M. Bautin, A. Dwarakinath, T. Chiueh, Graphics engine resource management,
in: Proceedings of Annual Multimedia Computing and Networking Conference,
2008, p. 12 pp.

[33] Texas Instruments Inc., DSP/BIOS II Timing Benchmarks on the TMS320C54x
DSP, Tech. Rep., Texas Instruments, 2000. <http://focus.ti.com>.
ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://www.ti.com/lit/ml/swpt024b/swpt024b.pdf
http://focus.ti.com/omap/docs/omaphomepage.tsp
http://www.qualcomm.com/documents/snapdragon-s4-architecture
http://focus.ti.com
http://dx.doi.org/10.1016/j.sysarc.2012.05.004

Y.-S. Chen, M.-Y. Chen / Journal of Systems Architecture xxx (2012) xxx–xxx 11
[34] K.-Y. Hsieh, Y.-C. Lin, C.-C. Huang, J.-K. Lee, Enhancing microkernel
performance on VLIW DSP processors via multiset context switch, Journal of
Signal Processing Systems 51 (3) (2008) 257–268.

[35] T.P. Baker, Stack-based resource allocation policy for real-time process, in:
Proceedings of the Real Time Systems Symposium, 1990, pp. 191–200.

[36] M. Spuri, G. Buttazo, Scheduling aperiodic tasks in dynamic priority systems,
Real-Time Systems 10 (2) (1996) 179–210.

[37] J.W. Liu, Real-Time systems, Prentice Hall, 2000.
[38] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H. Freeman, 1979.
[39] B. Kao, H. Garcia-Molina, Deadline assignment in a distributed soft real-time

system, IEEE Transactions on Parallel and Distributed Systems 8 (12) (1997)
1268–1274.

[40] J. Stewart, Calculus: Early Transcendentals, Brooks Cole, 2002.

Ya-Shu Chen joined Department of Electrical Engineer-
ing, National Taiwan University of Science and Technol-
ogy, at August 2007. She currently serves as an Assistant
Professor. Ya-Shu Chen earned her BS degree in computer
information and science at National Chiao-Tung Univer-
sity in 2001. Then, she studied in Department of Com-
puter Science and Information Engineering, National
Taiwan University, and was supervised by Prof. Tei-Wei
Kuo. She successfully defended her master thesis and
doctoral dissertation at 2003 and 2007, respectively. Her
research interest includes operating systems, embedded
systems, and hardware/software co-design.
Please cite this article in press as: Y.-S. Chen, M.-Y. Chen, On-line energy-effici
chip, J. Syst. Architect. (2012), http://dx.doi.org/10.1016/j.sysarc.2012.05.004
Ming-Yang Chen joined Multisuns Corporation, at
March 2012. He currently serves as a Software Devel-
opment Engineer. He received his M.S. degree in elec-
trical engineering from National Taiwan University of
Science and Technology at 2012, and was supervised by
Dr. Ya-Shu Chen. He earned his B.S. degree in electronic
engineering from Fu Jen Catholic University at 2008. His
research interests include operating systems, and
energy-efficient real-time scheduling in heterogeneous
multi-core systems.
ent real-time task scheduling for a heterogeneous dual-core system-on-a-

http://dx.doi.org/10.1016/j.sysarc.2012.05.004

	On-line energy-efficient real-time task scheduling for a heterogeneous dual-core system-on-a-chip
	1 Introduction
	2 System model
	3 Energy-efficient heterogeneous dual-core scheduling framework
	3.1 Framework
	3.2 Protocol
	3.3 Energy efficiency ratio
	3.4 Admission control

	4 Performance evaluation
	4.1 Data sets and performance metrics
	4.2 Experiment results
	4.2.1 Varying utilization
	4.2.2 Varying preemption point interval
	4.2.3 Schedulability
	4.2.4 Run-time reclaiming
	4.2.5 Discrete frequency

	5 Conclusion
	Acknowledgement
	References

