
Thermal-Aware Global Real-Time Scheduling on

Multicore Systems

Nathan Fishera, Jian-Jia Chenb, Shengquan Wangc, Lothar Thieleb

aDepartment of Computer Science, Wayne State University, USA
bComputer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland

cDepartment of Computer and Information Science, University of Michigan-Dearborn,
USA

Abstract

As the power density of modern electronic circuits increases dramatically,

systems are prone to overheating. Thermal management has become a promi-

nent issue in system design. This paper explores thermal-aware scheduling

for sporadic real-time tasks to minimize the peak temperature in a homoge-

neous multicore system, in which heat might transfer among some cores. By

deriving an ideally preferred speed for each core, we propose global schedul-

ing algorithms which can exploit the flexibility of multicore platforms at low

temperature. We perform simulations to evaluate the performance of the

proposed approach.

Keywords: Thermal-aware scheduling, Dynamic voltage scaling, Global

real-time scheduling, Multicore systems.

Email addresses: fishern@cs.wayne.edu (Nathan Fisher), jchen@tik.ee.ethz.ch
(Jian-Jia Chen), shqwang@umd.umich.edu (Shengquan Wang), thiele@tik.ee.ethz.ch
(Lothar Thiele)

Preprint submitted to Elsevier February 3, 2010

1. Introduction

As the power density of modern electronic circuits increases dramatically,

systems are prone to overheating. High temperature also reduces system

reliability and increases timing errors [1]. Thermal management has become

a prominent issue in system design. Techniques for thermal management

have been explored both at design time through appropriate packaging and

active heat dissipation mechanisms, and at run time through various forms

of Dynamic Thermal Management (DTM). The packaging cost of cooling

systems grows exponentially [2]. Recent estimates have placed the packaging

cost at $1 to $3 per watt of heat dissipated [3]. The techniques to reduce

the packaging cost of cooling systems (e.g., the amount of cooling hardware

in the system) or reduce the temperature in architectural levels have been

studied in [3, 4, 5, 1]. As an alternative solution, the DTM [3, 4, 5] has been

proposed to control the temperature at run time by adjusting the system

power consumption. Many modern computer architectures provide system

designers with such flexibility.

In real-time systems, thermal-aware scheduling aims to maintain safe tem-

perature levels or minimize the peak temperature for processors without

violating timing constraints for real-time tasks. For uniprocessor systems,

thermal-aware scheduling has been explored to optimize the performance

by exploiting the DTM [3, 4, 5] to prevent the system from overheating by

adopting Dynamic Voltage Scaling (DVS) [6, 7]. Wang et al. [8, 9, 10] devel-

oped reactive speed control with schedulability tests and delay analysis, while

Chen et al. [11] developed proactive speed control to improve the schedula-

bility. Bansal et al. [12] developed an algorithm to maximize the workload

2

that can complete in a specified time window without violating the thermal

constraints. Zhang and Chatha [13] provided approximation algorithms to

minimize the completion time, while each task is restricted to execute at one

speed. Chen et al. [14] showed that the schedule with the minimum energy

consumption is an e-approximation algorithm in terms of peak temperature

minimization for periodic real-time tasks. Bansal et al. [2] show that Yao’s

algorithm [6] for real-time jobs is a 20-approximation algorithm for peak

temperature minimization.

Thermal-aware multiprocessor scheduling has also been explored recently,

e.g., [15, 16, 17, 18]. For multiprocessor real-time scheduling, there are typi-

cally two choices of scheduling paradigm: global or partitioned. In the global

scheduling paradigm, a real-time job is permitted to migrate between the

processors on the processing platform. In partitioned scheduling, a job is

statically assigned to a single processor in the platform and migration is not

permitted. A significant portion of prior research in thermal-aware multi-

processor systems has focused on the partitioned scheduling paradigm. For

multiprocessor systems without heat transfer among the processors, Chen

et al. [14] proved that the largest-task-first strategy (also called worst-fit

decreasing [19]) has a constant approximation factor for the minimization

of peak temperature. If heat transfer between two cores is taken into ac-

count, thermal-aware scheduling of real-time tasks has only limited results.

Chantem et al. [20] provided a mixed integer linear programming (MILP)

formulation for peak temperature reduction by assuming that the power con-

sumption of a task on a processor is fixed and the heat transfer can be esti-

mated by accumulating the power consumption of the other cores. However,

3

the above thermal-aware scheduling algorithms focus on partitioned schedul-

ing of periodic real-time tasks or a set of job instances without periodicity.

Applying partitioned scheduling for real-time tasks in a multicore environ-

ment is often too conservative. The focus of this paper is obtaining results

for thermal-aware scheduling under the global paradigm.

This paper explores thermal-aware scheduling for sporadic real-time tasks

to minimize the peak temperature in a homogeneous multicore system. As

heat can transfer among cores and heat sinks, the cooling and heating phe-

nomena is modeled by applying the Fourier’s cooling model in the literature

[16, 20, 15, 17], in which the thermal parameters can be calculated by the

RC thermal model. Although heat transfer is a dynamic process, it is not

difficult to see that the temperature on a core is non-decreasing if the execu-

tion speed on a core is fixed. Moreover, it will end up with a steady state,

in which the temperatures on all cores become steady. We show how to ap-

proximately minimize the peak temperature at the steady state. This paper

proposes a two-stage approach. In the first stage, we derive the preferred

speeds for execution to minimize the peak temperature under the necessary

schedulability conditions of global scheduling. Then, in the second stage, we

derive a proper speedup factor to satisfy the sufficient schedulability con-

ditions of global scheduling. The proposed approach is quite general, and

can be adopted for global scheduling algorithms that have both a necessary

condition and a sufficient condition for the global schedulability of sporadic

tasks, such as the global earliest-deadline-first (edf) scheduling policy and

the global deadline-monotonic (dm) scheduling policy. Furthermore, in our

approach, we permit each core to have a potentially different speed than the

4

other cores. To evaluate the effectiveness of the proposed algorithms, we use

three multicore platforms with 4×1, 2×2, 4×2, and layouts for simulations.

The rest of this paper is organized as follows: Section 2 shows the system

model and problem definition. Section 3 presents how to derive the preferred

speeds of cores for minimizing the peak temperature under the necessary

schedulability conditions of global scheduling. Section 4 derives the feasible

speed scheduling based on the preferred speeds. Section 5 presents perfor-

mance evaluation over simulated multicore platforms. We will conclude the

paper in Section 6.

2. System Model and Problem Statement

Thermal model We consider a multicore system, in which each core is a

discrete thermal element. In the system, there is a set of heat sinks on top

of the cores. Those heat sinks generate no power, and are used only for heat

dissipation. Figure 1 is an example layout for 4 cores with 2 heat sinks. Heat-

ing or cooling is a complicated dynamic process depending on the physical

system. We could approximately model this process by applying Fourier’s

Law [2, 12, 15, 20, 13, 21, 8, 9, 10, 17], in which the thermal coefficients

can be obtained by using the RC thermal model, such as the approaches in

[16, 20, 15, 17]. The thermal model adopted in this paper is similar to the

recent approaches in [16, 20, 15].

We define M = {1, 2, 3, . . . , M} as the set of the M cores in the multicore

system. Suppose that the thermal conductance between Cores j and ℓ in M

is Gj,ℓ, where Gj,ℓ = Gℓ,j. Note that if Cores j and ℓ have no intersection

for heat transfer, then Gj,ℓ = 0. We assume Gj,j be 0 for any j in M. We

5

assume that the capacitance of Core j in M is Cj.

We define H = {1, 2, 3, . . . , ~} as the set of the ~ sinks in the multicore

system. Suppose that the thermal conductance of a heat sink dissipating heat

to the environment is G†. We define Hj as the set of heat sinks connected to

Core j. Suppose that the vertical thermal conductance between Core j and

Sink h in Hj is Hj,h, which depends on the distance and the linking material.

For Sinks h and g in Hj, the horizontal thermal conductance between the

sinks is Gh,g, where Gh,g = Gg,h. If there is no heat dissipation from Core j

to Sink h, then Hj,h = 0. We assume the capacitance of Sink h in H is Ch.

We define Θj(t) and Θh(t) as the temperature at time instant t on Core

j and Sink h, respectively. We assume that the ambient temperature Θa is

fixed. We also define Ψj(t) as the power consumption on Core j at time t.

Informally, the rate of change in the temperature on a core is proportional

to the power consumption times the quantity of the heating coefficient mi-

nus the cooling coefficients times the quantity of the temperature gradients

among the core, its neighboring cores, and its heat sinks. The heating/cooling

process by Fourier’s Law can be formulated as

Cj

dΘj(t)

dt
=Ψj(t) −

∑
h∈H

Hj,h(Θj(t) − Θh(t))

−
∑

ℓ∈M
Gj,ℓ(Θj(t) − Θℓ(t)), (1a)

Ch

dΘh(t)

dt
= − G†(Θh(t) − Θa)

−
∑

j∈M
Hj,h (Θh(t) − Θj(t))

−
∑

g∈H
Gg,h(Θh(t) − Θg(t)), (1b)

where
dΘj(t)

dt
and dΘh(t)

dt
are the derivatives of the temperatures on Core j and

6

the heat sink, respectively. All these parameters can be derived by applying

the RC thermal model for a given platform, e.g., [16, 20, 15].

Power consumption model We explore thermal-aware scheduling on

cores, each with an independent DVS capabilities (referred to as DVS cores).

As shown in the literature [7, 20, 22], the power consumption Ψj on Core j

is contributed by:

• The dynamic power consumption Ψdyn,j mainly resulting from the charg-

ing and discharging of gates on the circuits, which can be modeled by

Ψdyn,j = αsγ
j , where sj is the execution speed of Core j and both γ

(≤ 3) and α are constant.

• The static power consumption Ψsta,j mainly resulting from the leakage

current. The static power consumption function is a constant Ω when

the leakage power consumption is irrelevant to the temperature [23, 14].

When the leakage power consumption is related to the temperature, it

is a super linear function of the temperature [24]. As shown in [25, 20],

the static power consumption could be approximately modeled by a

linear function of the temperature with roughly 5% error. Hence, the

static power consumption in this paper is as follows: Ψsta,j = δΘj + Ω,

where Θj is the absolute temperature on Core j and both δ and Ω are

non-negative constants.

As a result, the following formula is used as the overall power consumption

on Core j of speed sj with temperature Θj :

Ψ = Ψdyn,j + Ψsta,j = αsγ
j + Ω + δΘj. (2)

7

core 1

core 2

core 3

core 4

sink 1

sink 2

Figure 1: An example for 4 cores.

Task model In this paper, we consider jobs generated by a sporadic task

system [26], T
def
= {τ1, τ2, . . . , τN}. Each sporadic task, τi, is characterized by

(ei, di, pi) where ei is the required execution cycles, di is the relative deadline,

pi is the minimum inter-arrival separation parameter (historically, called the

period). The interpretation of sporadic task τi is that the first job a task

τi may arrive at any time; however, subsequent job arrivals are separated

by at least pi time units. After every job arrival for task τi the processor

must execute ei cycles of the job within di time units. If, at any given

time t, a job has execution remaining, the job is said to be active at time

t. The utilization of task τi is denoted by ui
def
= ei/pi. For this paper, we

consider two special subclasses of sporadic task systems: implicit-deadline

and constrained-deadline. An implicit-deadline sporadic task system requires

that for each τi ∈ T, the relative deadline equals the period (i.e., di = pi). For

an implicit-deadline task system, we will assume that the tasks are indexed

in non-decreasing order of utilization: ui ≤ ui+1 for all 1 ≤ i < N . A

constrained-deadline task system requires di ≤ pi for all τi ∈ T. Furthermore,

we will also assume that tasks are indexed in non-decreasing order of their

relative deadline: di ≤ di+1 for all 1 ≤ i < N .

We define the following metrics on task system workload. The total

8

utilization of the first k tasks (1 ≤ k ≤ N) is defined as:

usum(T, k)
def
=

k∑

i=1

ui. (3)

The maximum utilization over all tasks of T is denoted by umax(T). The

density of τi is denoted by δi
def
= ei/ (min ((di, pi)). The max density (among

the first k tasks of T) are respectively defined as:

δmax(T, k)
def
=

k
max
i=1

{δi}. (4)

The demand-bound function dbf(τi, t) quantifies the maximum cumulative

execution cycles of τi that must execute over any interval of length t. More

specifically, dbf(τi, t) is the maximum cumulative execution of jobs of τi that

have both arrival times and absolute deadlines in any interval of length t.

In [27], it has been shown that for a sporadic task τi, the demand-bound

function may be computed as follows:

dbf(τi, t)
def
= max

(

0,

(⌊
t − di

pi

⌋

+ 1

)

ei

)

. (5)

Using the demand-bound function, we may compute the maximum “load”

that first k tasks of T places upon the processing platform:

load(T, k) = max
t≥0

{∑k
i=1 dbf(τi, t)

t

}

. (6)

In general, load(τ, k) may be determined exactly in pseudo-polynomial time

or approximated to within an arbitrary additive error in polynomial time [28].

Scheduling algorithms Each DVS core on our platform M is permitted

to execute at a potentially different speed than the other cores. The uni-

9

form multiprocessor model (e.g., see [29]) is a machine-scheduling abstrac-

tion which appropriately characterizes DVS multicore processors executing

at different speeds. In the uniform multiprocessor model, Core j executes at

a rate sj. Any job (regardless of the generating task) executing upon Core j

will complete sj × t cycles over any time interval of length t.

For our current work, we consider two priority-driven global scheduling

algorithms: edf and dm. Upon uniform multiprocessor platforms, priority-

driven scheduling works by assigning each job a priority and executing, at

any time instant, the (at most) M highest-priority active jobs. Furthermore,

among the set of at most M highest-priority active jobs, higher-priority jobs

are favored over lower-priority jobs, by executing the highest-priority jobs

upon the fastest processors. Note that, if there are a(< M) active jobs at

time t, then only the a fastest processors execute jobs at time t; the M − a

slowest processors are idled at time t. The (global) edf scheduling algorithm

assigns priority to jobs in inverse proportion to their absolute deadline: the

earlier a job’s deadline the greater its priority. The (global) dm scheduling

algorithm assigns priority to each job proportional to the inverse of its relative

deadline: the smaller a job’s relative deadline the greater its priority. We

will summarize some current results concerning global scheduling of sporadic

tasks upon uniform multiprocessors in Section 3.2.

Problem definition Given a system T of sporadic real-time tasks, the

thermal-aware global scheduling problem is to find an assignment of execu-

tion speeds on the multicore system such that all the tasks may complete

by their respective deadlines by applying the global scheduling policy (ei-

ther edf or dm) and the peak temperature is minimized. This paper obtains

10

an execution-speed assignment approximation algorithm that runs in polyno-

mial time. Without loss of generality, we assume that the initial temperature

is equal to the ambient temperature.

3. Deriving Preferred Speeds

This section presents how to derive the preferred speed of each core so

that the peak temperature is minimized while the necessary schedulability

conditions are satisfied. First, in Section 3.1, we will present how to re-

formulate the thermal parameters so that we can easily calculate the peak

temperature of a speed assignment. Then, in Section 3.2, we will summarize

the schedulability conditions of global scheduling in uniform multiprocessor

systems, following the derivation of preferred speeds based on the necessary

schedulability conditions for global scheduling of sporadic real-time tasks in

Section 3.3.

3.1. Thermal Parameters Reformulation

Suppose that Core j is assigned with a constant speed sj for its execution

(and also for idling) all the time. If each core runs at its constant speed,

it is clear that the temperature is non-decreasing on each core. Moreover,

it will end up with a steady state, in which the temperatures on all cores

become steady. Therefore, the peak temperature of Core j is no more than

the temperature Θ∗
j , which is the solution to Equation

dΘj

dt
= 0. Similarly,

we can obtain the peak temperature Θ∗
h of Sink h. By reformulating (1), we

11

know that at the steady state, for all j,

0 = Ψj −
∑

h∈H

Hj,h(Θ
∗
j − Θ∗

h) −
∑

ℓ∈M

Gj,ℓ(Θ
∗
j − Θ∗

ℓ)

= αsγ
j + Ω + (δ −

∑
h∈H

Hj,h −
∑

ℓ∈M
Gj,ℓ)Θ

∗
j

+
∑

h∈H
Hj,hΘ

∗
h +

∑
ℓ∈M

Gj,ℓΘ
∗
ℓ

and, for the heat sink h,

0 = −G† (Θ∗
h − Θa) −

∑
j∈M

Hj,h

(
Θ∗

h − Θ∗
j

)

−
∑

g∈H
Gg,h(Θ

∗
h − Θ∗

g).

As Θa is fixed, for the rest of the this paper, we can simply take Θa as 0 and

the temperatures on the cores and sinks are shifted accordingly, i.e., Θ∗
h is

Θ∗
h − Θa, Θ∗

g is Θ∗
g − Θa, and Θ∗

j is Θ∗
j − Θa. Therefore, for all j,

0 = αsγ
j + Ω + δΘa + (δ −

∑
h∈H

Hj,h −
∑

ℓ∈M
Gj,ℓ)Θ

∗
j

+
∑

h∈H
Hj,hΘ

∗
h +

∑
ℓ∈M

Gj,ℓΘ
∗
ℓ ,

and, for the heat sink h,

0 = −G†Θ∗
h −

∑
j∈M

Hj,h

(
Θ∗

h − Θ∗
j

)
−
∑

g∈H
Gg,h(Θ

∗
h − Θ∗

g).

We can simplify the above equations by the following notations: for any

12

1 ≤ j 6= ℓ ≤ M and 1 ≤ h 6= g ≤ ~,

Aj,j = δ −
∑

h∈H
Hj,h −

∑
ℓ∈M

Gj,ℓ,

Aj,ℓ = Gj,ℓ,

Aj,M+h = AM+h,j = Hj,h,

AM+h,M+h = −G† −
∑

j∈M
Hj,h −

∑
g∈H

Gg,h,

AM+h,M+g = Gg,h.

Then, we know that

A1,1 · · · A1,η

A2,1 · · · A2,η

...
...

...

AM,1 · · · AM,η

AM+1,1 · · · AM+1,η

...
...

...

Aη,1 · · · Aη,η

Θ∗

1

Θ∗

2

...

Θ∗

M

Θ∗

M+1

...

Θ∗

η

= −

αs
γ
1 + Ω + δΘa

αs
γ
2 + Ω + δΘa

...

αs
γ
M + Ω + δΘa

0

...

0

,

where η is M +~. For notational brevity, let [A] be the (M +~)-dimensional

matrix of Aj,ℓ, in which all the elements in matrix [A] are constants. Let

~Θ be the vector of the peak temperatures of the cores and the sinks in the

above equation. Let ~B be the transposition of the (M + ~)-dimensional

vector (

M︷ ︸︸ ︷
Ω, Ω, . . . , Ω,

~︷ ︸︸ ︷
0, . . . , 0). Let ~P be the transposition of the (M + ~)-

dimensional vector of dynamic power consumption on these cores, where the

power consumption of the (M + h)-th element in ~P is 0 for 1 ≤ h ≤ ~.

With these notations, the above equation can be simplified as [A]~Θ =

−~P − ~B. Therefore, we have

~Θ = −[A]−1(~P + ~B), (7)

13

where [A]−1 is the inverse of matrix [A]. Since matrix [A] is only related to

the hardware implementation of the multicore platform, we can calculate its

inverse [A]−1 off-line. For notational brevity, let [V] be the inverse matrix

of [A]. For vector ~B, Bn is the value at the n-th row. For matrix [V], Vj,ℓ

is its element at the j-th row and the ℓ-th column. Hence, after assigning

the execution speed of these M cores, the peak temperature can be easily

obtained with the above formula.

We now provide an example to show why speed scaling matters for min-

imizing the peak temperature. Consider a system with 4 cores and 2 sinks

with matrix [A] defined as follows:

−1.7000 0.2500 0 0 0.1500 1.2000

0.2500 −1.0000 0 0 0.0500 0.6000

0 0 −1.3500 0.5000 0.1500 0.6000

0 0 0.5000 −1.8500 0.0500 1.2000

0.1500 0.0500 0.1500 0.0500 −5.0300 1.0000

1.2000 0.6000 0.6000 1.2000 1.0000 −10.000

Suppose that vector ~B is [4.73, 4.73, 4.73, 4.73, 0, 0]T and ambient tempera-

ture Θa is 30 ◦C. The power consumption of a core at 1GHz is 40 (α = 40),

and γ = 3. The peak temperatures reached on these four cores by execut-

ing at speed 1GHz for all cores are 83.60, 102.08, 95.13, 86.61 ◦C. Assigning

the speed of the four cores as 1.1, 0.9, 0.95, 1.05 GHz leads to a solution

with peak temperatures 90.45, 93.25, 92.23, 89.55 ◦C on these four cores. The

above speed assignments provide the same computation capability, but are

14

with different peak temperatures. As a result, speed assignment must be

done carefully so that the peak temperature can be reduced.

3.2. Preliminary Results for Global Scheduling

In this subsection, we summarize some schedulability and feasibility re-

sults obtained by Funk, Goossens, and Baruah [30, 31, 32, 33] for global

scheduling of implicit-deadline and constrained-deadline sporadic task sys-

tems upon uniform multiprocessor platforms. We will develop our approach

based on these schedulability and feasibility conditions. Let π(i) denote

the i’th fastest processor (ties broken arbitrarily) of multicore platform M;

that is, sπ(1), sπ(2), . . . sπ(M) are the speeds of the processors of M, in non-

increasing order. Some important metrics [29] on uniform multiprocessor

platforms are:

Sℓ(M)
def
=

ℓ∑

j=1

sπ(j), (8)

λ(M)
def
=

M
max
ℓ=1

{∑M
j=ℓ+1 sπ(j)

sπ(ℓ)

}

, (9)

λ̂(M)
def
=

M
max
ℓ=1

{∑M
j=ℓ sπ(j)

sπ(ℓ)

}

. (10)

We will use the convention that Sπ(0)(M) equals zero.

Sufficient conditions for global scheduling of implicit-deadline sporadic

task systems upon uniform multiprocessors are known:

Lemma 1 ([30]). An implicit-deadline sporadic task system T is globally

edf-schedulable upon a processing platform M, if

SM(M) ≥ usum(T, N) + λ(M) · max

{

umax(T),
usum(T, N)

M

}

. (11)

15

Lemma 2 ([31]). An implicit-deadline sporadic task system T is globally

dm-schedulable upon a processing platform M, if

SM(M) ≥ 2usum(T, N) + λ̂(M) · umax(T). (12)

Sufficient conditions for global scheduling of constrained-deadline spo-

radic task systems upon uniform multiprocessors are known:

Lemma 3 ([32, 33]). A constrained-deadline sporadic task system T is glob-

ally S-schedulable (S is either edf or dm) upon a processing platform M,

if

load(T, i) ≤
1

φS
(µ(M,T, i) − ν(M,T, i)δmax(T, i)) , (13)

for i = N if S = edf and for all i (1 ≤ i ≤ N) if S = dm, where

µ(M,T, i)
def
= SM(M) − λ(M)δmax(T, i), (14)

ν(M,T, i)
def
= max{ℓ : Sℓ(M) < µ(M,T, i)}, (15)

and

φS
def
=

1, if S = edf

2, if S = dm

(16)

Additionally, a necessary and sufficient condition for feasibility may be

obtained for implicit-deadline sporadic task systems. A task system T is

feasible if there exists always exist a way to schedule (by any algorithm) the

jobs of T such that they meet their respective deadlines on M.

16

Lemma 4 ([30]). An implicit-deadline sporadic task system T is feasible

upon a processing platform M, if and only if, the following two conditions

hold:

usum(T, N) ≤ SM(M), (17)

usum(T, k) ≤ Sk(M), for all k = 1, . . . , M. (18)

The above lemma can be trivially weakened to obtain a necessary condi-

tion for feasibility of implicit-deadline sporadic task systems:

Corollary 1. An implicit-deadline sporadic task system T is feasible upon

a processing platform M, if the following two conditions hold:

usum(T, N) ≤ SM(M), (19)

and

umax(T) ≤ sπ(1). (20)

Necessary conditions for constrained-deadline sporadic task systems can

be obtained using load(T, i) and δmax(T, i):

Lemma 5 ([33]). If a constrained-deadline task system T is feasible upon

a processing platform M, then for all i (1 ≤ i ≤ N),

load(T, i) ≤ SM(M), (21)

and

δmax(T, i) ≤ sπ(1). (22)

17

3.3. Optimization for Preferred Speeds

For the rest of this section, we present how to derive the lower bound

of the peak temperature among all cores and preferred speeds by solving

non-linear programming optimally to minimize the peak temperature while

feasibility conditions are satisfied. Let us first consider a derivation of a tight

lower bound on temperature for implicit-deadline sporadic tasks. Let Π(M)

be the set of all permutations of {1, 2, . . . , M}. Thus, any π ∈ Π(M) is

a function π : {1, 2, . . . , M} 7→ {1, 2, . . . , M}. In the necessary and suffi-

cient conditions of Lemma 4, the second condition (Equation 18) states that

the k’th fastest processors must have total computational capacity greater

than the k’th largest utilization tasks. Therefore, we need to consider all

permutations of processors as candidates for the different relative orderings

according to speed. Based on the necessary and sufficient condition for feasi-

bility of implicit-deadline tasks (Lemma 4) and the peak temperature formula

in Section 3.1, the lower bound Θ∗
π on peak temperature, for a specified per-

mutation of processors, π ∈ Π(M), can be obtained by solving the following

non-linear programming (denoted SYSTEM
∗([A], ~B, ~P ,T, π)):

minimize Θ∗
π

def
= max

1≤j≤M+~

{∑M+~

ℓ=1
−Vj,ℓ(αsγ

ℓ + Bℓ)
}

subject to usum(T, N) ≤
∑M

ℓ=1
sℓ,

usum(T, k) ≤ sπ(k), 1 ≤ k ≤ M

sℓ ≥ 0, 1 ≤ ℓ ≤ M + ~. (23)

Obviously, an optimal solution to (23) will set sM+j to zero where j =

1, . . . , ~. Thus, we do not specify the constraints of the sinks in the above

18

system.

The minimum among {SYSTEM
∗([A], ~B, ~P ,T, π) : π ∈ Π(M)} is a

“tight” lower bound Θ∗
min of the peak temperature. (The bound is tight

since we derived it from a necessary and sufficient condition). Denote πmin
def
=

arg min{Θ∗
π : π ∈ Π(M)} and Θ∗

min
def
= Θ∗

πmin
. Let Mmin be the system cor-

responding to Θ∗
min with the derived speeds sπmin(1), sπmin(2), . . . , sπmin(M). An

optimal multiprocessor global scheduling algorithm for implicit-deadline task

systems upon uniform multiprocessors (e.g., see [34]) may be used to schedule

T upon Mmin obtaining the minimum obtainable peak temperature. How-

ever, for other online scheduling algorithms such as edf and dm, we must

further modify the speeds of Mmin before we can ensure that all deadlines of

T will be met. Section 4 will describe algorithms for determine the values of

speeds to ensure edf and dm schedulability.

A major drawback of the above approach is that it requires calculation

of SYSTEM
∗([A], ~B, ~P ,T, π) for all π ∈ Π(M). However, there are M ! ele-

ments of Π(M). We may reduce the overall complexity of determining a lower

bound on temperature, if we use instead the necessary conditions (Corollary 1

and Lemma 5) on feasibility. Note the second inequality of both the necessary

conditions for implicit-deadline and constrained-deadline systems require the

fastest processor to have sufficient computational capacity to accommodate

the “largest” task in the system; thus, we will first derive the peak tempera-

ture of the platform for a specified Core r such that δmax(T, N) ≤ sr ≤ sπ(1).

Then, among these M solutions by setting r = 1, 2, . . . , M , the correspond-

ing speeds with the minimum peak temperature are returned as the preferred

speeds. The lower bound Θ∗
r , for a specified r, of the peak temperature

19

can be obtained by solving the following non-linear programming (denoted

SYSTEM([A], ~B, ~P ,T, r)):

minimize Θ∗
r

def
= max

1≤j≤M+~

{∑M+~

ℓ=1
−Vj,ℓ(αsγ

ℓ + Bℓ)
}

subject to W (T, N) ≤
∑M

ℓ=1
sℓ,

L(T, N) ≤ sr,

sℓ ≥ 0, 1 ≤ ℓ ≤ M + ~. (24)

W (T, N) equals usum(T, N) (resp., load(T, N)), if T is an implicit-deadline

(resp., constrained-deadline) sporadic task system. Similarly, L(T, N) equals

umax(T) (resp., δmax(T, N)), if T is an implicit (resp., constrained-deadline)

sporadic task system.

Then the minimum among {SYSTEM([A], ~B, ~P ,T, r) : r = 1, . . . , M} is

the lower bound Θ∗
min of the peak temperature. Denote rmin

def
= arg min{Θ∗

r :

r = 1, . . . , M} and Θ∗
min

def
= Θ∗

rmin
. Let Mmin be the system corresponding to

Θ∗
min with the derived speeds s1, s2, . . . , sM .

To our best knowledge, there is no explicit form for an optimal solution

of SYSTEM
∗([A], ~B, ~P ,T, π) or SYSTEM([A], ~B, ~P ,T, r). Here, we adopt

the approach proposed by Dutta and Vidyasagar [35] by solving the above

constrained non-linear programming with a transformation to unconstrained

non-linear programming. Due to space limitation, we will only summarize

the procedure as shown in the appendix, while the proof of optimality can

be found in [35]. Moreover, for a given set T of tasks, the load(T, N) is

irrelevant to the speed settings. For the rest of this section, we assume that

load(T, N) is known a priori by applying the exact or approximated methods

20

in [28].

The following theorem shows that Θ∗
min is the lower bound of the peak

temperature for feasible speed scheduling 1:

Theorem 1. Θ∗
min is a lower-bound on the peak temperature for task system

T schedulable (by any algorithm) upon platform M with thermal character-

istics expressed by matrix [A] and vectors ~B and ~P .

4. Feasible Speed Scheduling

Given Mmin determined by the preferred-speed calculation of Section 3.3,

we now describe the next phase of deriving feasible speed scheduling. In this

phase, we will obtain a constant multiplicative factor by which processing

platform Mmin’s speed would need to increase to guarantee that T is globally

schedulable (edf or dm).

Let β ·M denote the platform where each of M’s M processors has their

speed increase by a constant factor β ≥ 1; i.e. the speed of each processor ℓ

in β ·M is β · sℓ. The following lemma states some properties of β ·M (the

proof is straightforward):

Lemma 6. Sℓ(β · M) = β · Sℓ(M) and λ(β · M) = λ(M), for all ℓ =

1, . . . , M .

With the above notation, our objective for the feasible speed scheduling

is to obtain a constant β ≥ 1 such that T is globally schedulable (by edf or

dm) upon β ·Mmin. We propose two methods to compute such a β. The first

1All proofs of the lemmas and the theorems and the corollaries are put in Appendix
(unless otherwise stated).

21

method derives a pessimistic bound on the speed-up required for both edf

and dm. The second method gives an iterative algorithm which improves

upon this pessimistic bound.

4.1. Deriving a Pessimistic Feasible Speed Scheduling

A pessimistic bound on β for global edf and dm on implicit-deadline task

systems may be achieved by simply deriving a β that satisfies Lemmas 1 or 2.

The following theorem obtains such a bound. The theorems directly follow

by solving Equations 11 and 12 (respectively) for the speed-scaling factor β.

Theorem 2. For constrained-deadline sporadic task system T and Mmin, T

is globally edf-schedulable upon βI
edf

· Mmin where βI
edf

is defined as

usum(T, N) + λ(Mmin) · max
{
u1,

usum(T,N)
M

}

SM(Mmin)
. (25)

Theorem 3. For constrained-deadline sporadic task system T and Mmin, T

is globally dm-schedulable upon βI
dm

· Mmin where βI
dm

is defined as

2usum(T, N) + λ̂(Mmin) · umax(T)

SM(Mmin)
. (26)

A pessimistic bound on β for global edf and dm on constrained-deadline

task systems may be achieved by simply deriving a β that satisfies Lemma 3.

The following theorem (which follows a similar argument to Lemma 5 in [33])

obtains such a bound.

Theorem 4. For constrained-deadline sporadic task system T and Mmin

(called M below), T is globally S-schedulable (S is either edf or dm) upon

22

βC
S ·Mmin where βC

S is defined as

SM(M)(sπ(1) + φSsπ(M)) + λ(M)sπ(1)sπ(M)

+

((
SM(M)(sπ(1) + φSsπ(M)) + λ(M)sπ(1)sπ(M)

)2

−4SM(M)λ(M)s2
π(1)sπ(M)

) 1
2

(
2SM(M)s2

π(M)

)−1

(27)

where φS is defined in (16).

Using the above theorems, we can obtain an approximation ratios (in

terms of the ideal-processor speeds) for the peak temperature of the system,

using the speedup-factor bounds (Theorems 2, 3, and 4)

Theorem 5. The peak temperature of βX
S ·Mmin (where S is either edf or

dm and X is either C or I) is at most a factor of βγ
S greater than the peak

temperature of the optimal M-processor platform on which task system T is

globally schedulable.

4.2. Deriving a Better Feasible Speed Scheduling for Constrained-Deadline
Systems

The above analysis for constrained-deadline task systems did not specify

the task workload. For specific task workload, we can further improve the

feasible speed scheduling. Let Mmin again be the “preferred-speed” processor

determined from the previous section. We will now describe an algorithm for

more precisely determining a processor β · Mmin such that β is minimized.

The next two lemmas give upper and lower bounds on the value β must

satisfy in order for T to be global schedulable upon β · Mmin.

23

Lemma 7. Given T, M, and β ≥ 1, if ν(β · M,T, i) equals ℓ where ℓ ∈

{0, 1, . . . , M − 1}, then

Γ(M,T, ℓ, i) < β ≤ Γ(M,T, ℓ + 1, i) (28)

where

Γ(M,T, ℓ, i)
def
=

λ(M)·δmax(T,i)
SM (M)−Sℓ(M)

, 0 ≤ ℓ < M − 1

∞, otherwise.

(29)

Given the input task workload, by Lemma 6 we may simply solve (13) in

Lemma 3 as shown in the following lemma (the proof is straightforward):

Lemma 8. For global scheduler S (either edf or dm), if T satisfies (13),

then there exists ℓ ∈ {0, 1, . . . , M − 1}, equal to ν(β · M,T, i), such that

β ≥ Γ̂(S,M,T, ℓ, i), (30)

for i = N if S = edf and for all i (1 ≤ i ≤ N) if S = dm, where

Γ̂(S,M,T, ℓ, i)
def
=

1

SM(M)
(φS · load(T, i)

+(λ(M) + ℓ)δmax(T, i)), (31)

and φS is defined in (16).

Next we aim to find the minimum β that satisfy Lemmas 7 and 8 upon

a processor β · Mmin. Since Γ̂() is an increasing function with respects to ℓ,

then we only need to find the minimum ℓ satisfying both lemmas, which is

24

defined as

ℓmin,i
def
= min{ℓ ∈ {0, 1, . . . , M − 1} :

Γ(Mmin,T, ℓ, i) < Γ̂(S,Mmin,T, ℓ, i)

≤ Γ(Mmin,T, ℓ + 1, i)}. (32)

Then the minimum β can be obtained as the following theorem (the proof

is straightforward based on the above analysis):

Theorem 6. For sporadic task system T and Mmin, T is globally edf-

schedulable upon βedf ·Mmin where βedf is defined as

βedf

def
= Γ̂(edf,Mmin,T, ℓmin,N , N); (33)

T is globally dm-schedulable upon βdm · Mmin where βdm is defined as

βdm

def
= max

i∈{1,2,...,N}
{Γ̂(dm,Mmin,T, ℓmin,i, i)}, (34)

where Γ̂() is defined in (31) and ℓmin,i is defined in (32).

5. Performance Evaluation

This section provides performance evaluations of the proposed algorithm

for speed assignments under global real-time scheduling. In the simulations,

we evaluate two different algorithms defined as follows:

• Algorithm Balanced: first derives speed assignment by applying the

necessary schedulability condition so that the speeds are as balanced as

25

Multicore
Floorplan

RC
Thermal
Model

Speed
Assignment

Global
Scheduling
Analysis

Power
Model

Input
Tasks

Peak temperature

HotSpot

Figure 2: Simulation setup by using Hotspot thermal model.

possible, and then applies Theorem 6 for speed determination. Specif-

ically, for the necessary condition, when W (T,N)
M

< L(T, N), one core

is assigned with speed L(T, N) and the other cores are with speed

W (T,N)−L(T,N)
M−1

, and we choose the one with the minimum peak temper-

ature.

• Algorithm PTO: first applies sequential quadratic programming for

deriving optimal solutions of (23), and then applies Theorem 6 for

determining the resulting speeds.

5.1. Platform and Simulation Setup

We evaluate the performance in terms of peak temperature of the result-

ing speed assignments on three different hardware platforms, in which their

layouts are 2 × 2, 4 × 1, and 4 × 2 with 4, 4, and 8 cores, respectively. We

use HotSpot 4.1 simulator [36] to obtain the RC thermal model for the above

platforms. The flowchart of the simulation is in Figure 2. Specifically, we use

the thermal configuration for chip specs, heat sink specs, and head spreader

specs in the simulator. We consider a core as a block for heat generation and

26

4 × 1 2 × 2
Width Height Left (x) Bottom (y) Left(x) Bottom (y)

Core 1 0.006 0.006 0 0 0 0
Core 2 0.006 0.006 0.008 0 0.008 0
Core 3 0.006 0.006 0.016 0 0 0.007
Core 4 0.006 0.006 0.024 0 0.008 0.007

4 × 2
Width Height Left (x) Bottom (y)

Core 1 0.003 0.006 0 0
Core 2 0.003 0.006 0.004 0.000
Core 3 0.003 0.006 0.000 0.007
Core 4 0.003 0.006 0.004 0.007
Core 5 0.003 0.006 0.0085 0.000
Core 6 0.003 0.006 0.0085 0.000
Core 7 0.003 0.006 0.0125 0.007
Core 8 0.003 0.006 0.0125 0.007

Table 1: Platforms in the simulations (units: meter)

dissipation by using coarse-grained specs. The details of the platforms are

illustrated in Table 1.

The power consumption function at the nominal speed snom on absolute

temperature Θℓ is assumed 30s3
nom + 6.9685 + 0.01Θℓ Watt. That is, we

assume Ω + δΘa = 10 Watt.

We use synthetic sporadic real-time tasks for evaluating the performance,

in which the deadline of a task is earlier than its period. We consider different

workloads for global edf scheduling and global dm scheduling. For global

edf scheduling, on a given platform, the peak temperature of a speed assign-

ment for Algorithm Balanced or Algorithm PTO depends on two parameters

load(T, N) and δmax only. Therefore, we perform evaluations for different

27

values on load(T, N) and δmax, which covers for both implicit-deadline and

constrained-deadline systems. We denote load(T,N)
snom

as workload at nominal

speed in the resulting figures. For global dm scheduling, we generate tasks

with specified
∑

τi∈T ui. The deadline di of a task τi is a random variable in

[100, 400], and the minimum inter-arrival separation parameter pi is di for

implicit-deadline systems or is a random variable in [di, 1.2di] for constrained-

deadline systems.

5.2. Simulation Results

Figure 3 presents the peak temperature of the resulting speed assignments

of Algorithm Balanced and Algorithm PTO for edf scheduling when δmax is

no more than the average workload on the M cores, i.e., δmax ≤ load(T,N)
M

.

Figures 3(a), 3(c), and 3(e) are the results of feasible speed scheduling, while

Figures 3(b), 3(d), and 3(f) are for preferred speeds. When the workload

is low, the difference between the evaluated algorithms is not too much be-

cause the power consumptions on the cores are not very high. However,

when the workload is higher, a good speed assignment can significantly re-

duce the peak temperature, as shown in Figure 3(e). Similarly, when the

workload is low, speeding up from the preferred speeds does not increase

the resulting peak temperature very much, since the increase of the power

consumption is quite limited. When the workload is higher, speedup factor

β could significantly increase the power consumption, and leads to larger

peak temperature difference between the preferred speeds and the resulting

feasible speed scheduling.

The temperature improvement of Algorithm PTO, compared to Algo-

rithm Balanced, is highly dependent on the simulated platforms, in which

28

 40

 50

 60

 70

 80

 90

 100

 110

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Workload at Nominal Speed

Load-2x2

PTO
Balanced

(a) Peak temperature of feasible speed
scheduling on platform 2 × 2

 42

 44

 46

 48

 50

 52

 54

 56

 58

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Workload at Nominal Speed

Lower-2x2

PTO
Balanced

(b) Peak temperature of preferred speed-
son platform 2 × 2

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Workload at Nominal Speed

Load-4x1

PTO
Balanced

(c) Peak temperature of feasible speed
schedulingon platform 4 × 1

 40

 42

 44

 46

 48

 50

 52

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Workload at Nominal Speed

Lower-4x1

PTO
Balanced

(d) Peak temperature of preferred speeds
on platform 4 × 1

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Workload at Nominal Speed

Load-4x2

PTO
Balanced

(e) Peak temperature of feasible speed
schedulingon platform 4 × 2

 56

 56.5

 57

 57.5

 58

 58.5

 59

 59.5

 60

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Workload at Nominal Speed

Lower-4x2

PTO
Balanced

(f) Peak temperature of preferred speed-
son platform 4 × 2

Figure 3: Simulation results for edf scheduling when δmax ≤ load(T,N)
M

.

29

the improvement is at most 3.5◦C for platform 2× 2 in Figure 3(a), at most

5◦C for platform 4 × 1 in Figure 3(c), and at most 22◦C for platform 4 × 2

in Figure 3(e).

If δmax is larger than the average workload on the M cores, i.e., δmax >

load(T,N)
M

, we always have to find a core to assign with speed δmax. The per-

formance of the algorithms highly depends on the value of δmax. Figures 4,

5, and 6 illustrate the evaluation results for different values of δmax for edf

scheduling. For such cases, Algorithm Balanced could be better than Algo-

rithm PTO for some cases, especially when δmax

load(T,N)
is large. This is because

the peak temperature is (almost) dominated by the core with preferred speed

δmax. When we choose the preferred speeds, we try to optimize the speeds

for the other cores. However, this affects the derivation of the speedup factor

very much. For such a case, compared to the balanced speeds, the improve-

ment on the peak temperature is quite limited by using the optimal preferred

speeds. As shown in Figures 4(b), 4(d), 4(f), 5(b), 5(d), 5(f), 6(b), 6(d), and

6(f), the speedup factor matters. When the speedup factor of Algorithm

PTO is less than that of Algorithm Balanced, the resulting peak temper-

ature is less than Algorithm PTO. However, when the speedup factor of

Algorithm PTO is larger than that of Algorithm Balanced, Algorithm PTO

might be worst than Algorithm Balanced. Therefore, when δmax > load(T,N)
M

,

if δmax

load(T,N)
is relatively large, Algorithm Balanced could be better. This

depends on how to minimize the speedup factor.

Figure 7 and Figure 8 show the evaluation results of dm scheduling for

implicit-deadline and constrained-deadline systems when δmax is 0.4snom. The

peak temperature is larger than global edf scheduling, since the factor β is

30

 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-2x2-0.3

PTO
Balanced

(a) δmax = 0.3snom

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-2x2-0.3

PTO
Balanced

(b) δmax = 0.3snom

 70

 80

 90

 100

 110

 120

 130

 140

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-2x2-0.5

PTO
Balanced

(c) δmax = 0.5snom

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-2x2-0.5

PTO
Balanced

(d) δmax = 0.5snom

 90

 100

 110

 120

 130

 140

 150

 160

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-2x2-0.6

PTO
Balanced

(e) δmax = 0.6snom

 1.95
 2

 2.05
 2.1

 2.15
 2.2

 2.25
 2.3

 2.35
 2.4

 2.45

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-2x2-0.6

PTO
Balanced

(f) δmax = 0.6snom

Figure 4: Simulation results of edf scheduling for platform with layout 2 × 2.

in general larger. For dm scheduling, Algorithm Balanced and Algorithm

PTO have similar performance.

31

 50

 55

 60

 65

 70

 75

 80

 85

 90

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-4x1-0.3

PTO
Balanced

(a) δmax = 0.3snom

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-4x1-0.3

PTO
Balanced

(b) δmax = 0.3snom

 60

 70

 80

 90

 100

 110

 120

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-4x1-0.5

PTO
Balanced

(c) δmax = 0.5snom

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-4x1-0.5

PTO
Balanced

(d) δmax = 0.5snom

 80

 90

 100

 110

 120

 130

 140

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-4x1-0.6

PTO
Balanced

(e) δmax = 0.6snom

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-4x1-0.6

PTO
Balanced

(f) δmax = 0.6snom

Figure 5: Simulation results of edf scheduling for platform with layout 4 × 1.

6. Conclusion

Thermal constraints are becoming increasingly severe for many systems as

chip density increases and the size of the system decreases. Heat dissipation

32

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-4x2-0.3

PTO
Balanced

(a) δmax = 0.3snom

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-4x2-0.3

PTO
Balanced

(b) δmax = 0.3snom

 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-4x2-0.4

PTO
Balanced

(c) δmax = 0.4snom

 2.2
 2.3
 2.4
 2.5
 2.6
 2.7
 2.8
 2.9

 3
 3.1
 3.2

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-4x2-0.4

PTO
Balanced

(d) δmax = 0.4snom

 105

 110

 115

 120

 125

 130

 135

 140

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Pe
ak

 te
m

pe
ra

tu
re

 (
o C

)

Workload at Nominal Speed

Load-4x2-0.5

PTO
Balanced

(e) δmax = 0.5snom

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee

du
p

Fa
ct

or
 β

Workload at Nominal Speed

speedup-4x2-0.5

PTO
Balanced

(f) δmax = 0.5snom

Figure 6: Simulation results of edf scheduling for platform with layout 4 × 2.

in multicore platforms further complicates satisfying thermal constraints due

to the transfer of heat between cores on the same chip. In order to respect

these constraints, system designers may scale-back the power-consumption to

33

 80

 100

 120

 140

 160

 180

 200

 220

 1 1.2 1.4 1.6 1.8 2 2.2

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Total utilization at nominal speed

Load-2x2

PTO
Balanced

(a) implicit deadline

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 1 1.2 1.4 1.6 1.8 2 2.2

Sp
ee

du
p

Fa
ct

or
 β

Total utilization at nominal speed

Speedup-2x2

PTO
Balanced

(b) implicit deadline

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1 1.2 1.4 1.6 1.8 2 2.2

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Total utilization at nominal speed

Load-2x2

PTO
Balanced

(c) constrained deadline

 3.1
 3.15

 3.2
 3.25

 3.3
 3.35

 3.4
 3.45

 3.5
 3.55

 3.6

 1 1.2 1.4 1.6 1.8 2 2.2

Sp
ee

du
p

Fa
ct

or
 β

Total utilization at nominal speed

Speedup-2x2

PTO
Balanced

(d) constrained deadline

Figure 7: Simulation results of dm scheduling for the platform with layout 2 × 2
when δmax = 0.4snom.

reduce the peak temperature of the system. However, in real-time, thermal-

aware systems the system designer must simultaneously ensure that temporal

constraints are still satisfied. The focus of our current research is to address

the challenge of minimizing the peak-temperature for a multicore platform

scheduled by a multiprocessor real-time scheduling algorithm.

In this paper, we focused upon global scheduling of sporadic task sys-

tems according to either the edf or dm scheduling algorithms. Under this

setting, we proposed an approach which first derives the preferred speeds

of the cores by using necessary conditions for multiprocessor schedulability.

34

 60

 80

 100

 120

 140

 160

 180

 200

 1 1.2 1.4 1.6 1.8 2 2.2

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Total utilization at nominal speed

Load-4x1

PTO
Balanced

(a) implicit deadline

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 1 1.2 1.4 1.6 1.8 2 2.2

Sp
ee

du
p

Fa
ct

or
 β

Total utilization at nominal speed

Speedup-4x1

PTO
Balanced

(b) implicit deadline

 80

 100

 120

 140

 160

 180

 200

 220

 1 1.2 1.4 1.6 1.8 2 2.2

A
ve

ra
ge

 p
ea

k
te

m
pe

ra
tu

re
 (

o C
)

Total utilization at nominal speed

Load-4x1

PTO
Balanced

(c) constrained deadline

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 1 1.2 1.4 1.6 1.8 2 2.2

Sp
ee

du
p

Fa
ct

or
 β

Total utilization at nominal speed

Speedup-4x1

PTO
Balanced

(d) constrained deadline

Figure 8: Simulation results of dm scheduling for the platform with layout 4 × 1
when δmax = 0.4snom.

The resulting platform executing at the preferred speeds may be viewed as a

uniform multiprocessor platform. We applied known schedulability tests to

correctly scale the speed of the preferred speeds to ensure the schedulability

of the task system. We showed that our approach is effective via simulations

over synthetically generated task systems. Our current approach statically

determines the speed of each processor prior to system execution. Future

research will investigate whether further temperature reduction is possible in

multicore platforms when each core may vary its speed over time.

35

Acknowledgment

This work is sponsored in part by a Wayne State University Faculty Re-

search Award, Rackham Faculty Research Grant at the University of Michi-

gan, NSF CAREER Grant No. CNS-0746906, Taiwan National Science

Council NSC-096-2917-I-564-121, and the European Community’s Seventh

Framework Programme FP7/2007-2013 project Predator (Grant 216008).

Appendix A. Solving SYSTEM([A], ~B, ~P , T, r)

By ignoring the constraint δmax(T, N) ≤ sr and assuming Core q has the

highest temperature among all cores, the following relaxation will result in a

lower bound of the original optimization:

minimize
∑M+~

ℓ=1 −Vq,ℓ(αsγ
ℓ + Bℓ)

subject to load(T, N) ≤
∑M

ℓ=1 sℓ,

sℓ ≥ 0, 1 ≤ ℓ ≤ M + ~.

(A.1)

Then, the above equation can be solved by applying the Lagrange Multiplier

Method in O(M), i.e.,

−αVq,1s
γ−1
1 = −αVq,ℓs

γ−1
ℓ .

Hence,

sq,1 =
U

∑M
ℓ=1(

Vq,1

Vq,ℓ
)

1
γ−1

, sq,ℓ = sq,1(
Vq,1

Vq,ℓ

)
1

γ−1 ,

where sq,ℓ is the speed of Core ℓ under the assumption that Core q is with the

highest temperature among all cores, which might not be true. Therefore,

Θ∗
r,0 = max

q=1,2,...,M

{∑M+~

ℓ=1
−Vq,ℓ(αsγ

q,ℓ + Bℓ)
}

36

is a lower bound of SYSTEM([A], ~B, ~P ,T, r).

Next, starting from Θ∗
r,0, we approach the optimal solution of SYSTEM([A], ~B, ~P ,T, r)

step by step. That is, for the k-th step, we will derive a new lower bound

Θ∗
r,k based on Θ∗

r,k−1. Specifically, at the k-th step, we first minimize the

following unconstrained non-linear programming by applying the sequential

quadratic programming method:

M+~∑

j=1

[

max

{

0,
M+~∑

ℓ=1

−Vj,ℓ(αsγ
ℓ + Bℓ) − Θ∗

r,k−1

}]2

(A.2)

+ǫ1 [max {0, δmax(T, N) − sr}]
2 (A.3)

+ǫ2

[

load(T, N) −
M∑

ℓ=1

sℓ

]2

, (A.4)

where ǫ1 and ǫ2 are defined positive constants related to the rate of conver-

gence from Θ∗
r,k−1 to Θ∗

r,k. In general, the constants ǫ1 and ǫ2 should be set

as large numbers for deriving precise results. Suppose that the optimal so-

lution of (A.2) is Υr,k. Then, we can set Θ∗
r,k as Θ∗

r,k−1 + (
Υr,k

M
)

1
2 . The above

procedure repeats until (
Υr,k

M
)

1
2 is a small number. As shown in [35], the

resulting speed assignment with the converged Θ∗
r,k is the optimal solution

of SYSTEM([A], ~B, ~P ,T, r), when ǫ1 and ǫ2 are large numbers.

Appendix B. Proof of Theorem 1

Let M be the platform defined by processor speeds s1, s2, . . . , sM . By

Lemma 5, if T is schedulable (either edf or dm) upon M then load(T, i) ≤

load(T, N) ≤
∑M

ℓ=1 sℓ = SM(M) and δmax(T, i) ≤ δmax(T, N) ≤ maxM
ℓ=1{sπ(ℓ)}

for all i = 1, . . . , N . Thus, by the first and second constraints of SYSTEM([A], ~B, ~P ,T, r),

37

the set

{M|s1, s2, . . . , sM

are feasible values of SYSTEM([A], ~B, ~P ,T, r)}

must contain the set of all processors M with sr ≥ δmax(T, N) where T

is globally schedulable upon M. Thus, the union of all feasible values of

s1, s2, . . . , sM for SYSTEM([A], ~B, ~P ,T, r) over r = 1, . . . , M must contain

the set of all M-processor platforms upon which T is globally schedulable.

It follows that Θ∗
min is a lower bound on the peak temperature.

Appendix C. Proof of Theorem 4

The satisfaction of Lemma 3 is sufficient for T to be A-schedulable upon

platform β · Mmin. That is, we will show the following condition holds for

i = N when S is edf; for S equal to dm, the condition must hold for all

i = 1, . . . , N .

φS load(T, i) ≤ µ(β ·Mmin,T, i)

−ν(β · Mmin,T, i)δmax(T, i)

⇐

since
⌈

µ(β·Mmin,T,i)
β·sπ(M)

⌉
− 1

≥ ν(β ·Mmin,T, i)

38

φS load(T, i) ≤ µ(β · Mmin,T, i)

−
(⌈

µ(β·Mmin,T,i)
β·sπ(M)

⌉
− 1

)
δmax(T, i)

⇐ (since for all α, ⌈α⌉ − 1 ≤ α)

φS load(T, i) ≤ µ(β · Mmin,T, i)

−
(

µ(β·Mmin,T,i)
β·sπ(M)

)
δmax(T, i)

≡

φS load(T, i) ≤ µ(β · Mmin,T, i)
(
1 − δmax(T,i)

β·sπ(M)

)

≡ (by the definition of µ)

φS load(T, i) ≤ [SM(β · Mmin) − λ(β · Mmin)δmax(T, i)]

×
(
1 − δmax(T,i)

β·sπ(M)

)

≡ (by Lemmas 6)

φS load(T, i) ≤ (β · SM(Mmin) − λ(Mmin)δmax(T, i))

×
(
1 − δmax(T,i)

β·sπ(M)

)

⇐

(

constraints (load(T, i) ≤ SM(Mmin))

∧
(
δmax(T, i) ≤ sπ(1) of SYSTEM

))

φSSM(Mmin) ≤
(
β · SM(Mmin) − λ(Mmin)sπ(1)

)

×
(
1 −

sπ(1)

β·sπ(M)

)

≡

sπ(M)SM(Mmin)β
2 − [(sπ(1) + φSsπ(M))SM(Mmin)

+λ(Mmin)sπ(1)sπ(M)]β + λ(Mmin)s
2
π(1) ≥ 0.

39

Using standard techniques for solving quadratic equations, we obtain βS

equal to the solution of the final inequality above.

Appendix D. Proof of Theorem 5

According to Theorem 1, a lower-bound on the peak temperature of such

an M-core system that can schedule T. Observe that in (23), −Vj,ℓ is a

positive constant. Thus, by increasing any sj by βS will increase the peak

temperature by at most a factor of βγ
S .

Appendix E. Proof of Lemma 7

Given T, M, and β ≥ 1, let ℓ equal ν(β ·M,T, i). We will consider two

cases:

If 0 ≤ ℓ < M − 1, then the definition of ν implies,

Sℓ(β · M) < µ(β · M,T, i) ≤ Sℓ+1(β · M)

⇒ β · Sℓ(M) < β · SM(M) − λ(M)δmax(T, i) ≤ β · Sℓ+1(M)

⇒ λ(M)δmax(T,i)
SM (M)−Sℓ(M)

< β ≤ λ(M)δmax(T,i)
SM (M)−Sℓ+1(M)

The final implication implies the lemma by substituting Γ into the right-hand

side of both inequalities above.

If ℓ = M − 1, then the definition of ν implies SM−1(β · M) < µ(β ·

M,T, i). By the same implications above, we have β > λ(M)δmax(T,i)
SM (M)−SM−1(M)

.

Thus, Γ(M,T, M − 1, i) < β ≤ ∞, and the lemma follows.

40

References

[1] Y.-W. Wu, C.-L. Yang, P.-H. Yuh, Y.-W. Chang, Joint exploration of

architectural and physical design spaces with thermal consideration, in:

International Symposium on Low Power Electronics and Design, 2005.

[2] N. Bansal, K. Pruhs, Speed scaling to manage temperature, in: Sympo-

sium on Theoretical Aspects of Computer Science, 2005.

[3] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,

D. Tarjan, Temperature-aware microarchitecture, in: International

Symposium on Computer Architecture, 2003.

[4] M. Huang, J. Renau, S.-M. Yoo, J. Torrellas, A Framework for Dy-

namic Energy Efficiency and Temperature Management, in: Interna-

tional Symposium on Microarchitecture, 2000.

[5] D. Brooks, M. Martonosi, Dynamic thermal management for high-

performance microprocessors, in: International Symposium on High-

Performance Computer Architecture, 2001.

[6] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU

energy, in: Symposium on Foundations of Computer Science, 1995.

[7] R. Jejurikar, C. Pereira, R. Gupta, Leakage aware dynamic voltage scal-

ing for real-time embedded systems, in: the Design Automation Confer-

ence, 2004.

[8] S. Wang, R. Bettati, Reactive speed control in temperature-constrained

41

real-time systems, in: Euromicro Conference on Real-Time Systems,

2006.

[9] S. Wang, R. Bettati, Reactive speed control in temperature-constrained

real-time systems, Real-Time Systems Journal 39 (1-3) (2008) 658–671.

[10] S. Wang, R. Bettati, Delay analysis in temperature-constrained hard

real-time systems with general task arrivals, in: IEEE Real-Time Sys-

tems Symposium, 2006.

[11] J.-J. Chen, S. Wang, L. Thiele, Proactive speed scheduling for frame-

based real-time tasks under thermal constraints, in: IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2009.

[12] N. Bansal, T. Kimbrel, K. Pruhs, Dynamic speed scaling to manage

energy and temperature, in: Symposium on Foundations of Computer

Science, 2004.

[13] S. Zhang, K. S. Chatha, Approximation algorithm for the temperature-

aware scheduling problem, in: International Conference on Computer-

Aided Design, 2007.

[14] J.-J. Chen, C.-M. Hung, T.-W. Kuo, On the minimization of the instan-

taneous temperature for periodic real-time tasks, in: IEEE Real-Time

and Embedded Technology and Applications Symposium, 2007.

[15] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. T. Kandemir, M. J. Irwin,

Thermal-aware task allocation and scheduling for embedded systems.,

in: ACM/IEEE Conference of Design, Automation, and Test in Europe,

2005.

42

[16] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, G. D.

Micheli, Temperature-aware processor frequency assignment for mp-

socs using convex optimization, in: IEEE/ACM international con-

ference on Hardware/software codesign and system synthesis, 2007.

doi:http://doi.acm.org/10.1145/1289816.1289845.

[17] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, G. D.

Micheli, Temperature control of high-performance multi-core platforms

using convex optimization, in: DATE, 2008, pp. 110–115.

[18] M. Kadin, S. Reda, Frequency planning for multi-core processors under

thermal constraints, in: ISLPED, 2008, pp. 213–216.

[19] H. Aydin, Q. Yang, Energy-aware partitioning for multiprocessor real-

time systems, in: 17th International Parallel and Distributed Processing

Symposium, 2003.

[20] T. Chantem, R. P. Dick, X. S. Hu, Temperature-aware scheduling and

assignment for hard real-time applications on MPSoCs, in: Design, Au-

tomation and Test in Europe, 2008.

[21] J. E. Sergent, A. Krum, Thermal Management Handbook, McGraw-Hill,

1998.

[22] H. Aydin, V. Devadas, D. Zhu, System-level energy management for

periodic real-time tasks., in: the 27th IEEE Real-Time Systems Sym-

posium, 2006.

[23] R. Xu, D. Zhu, C. Rusu, R. Melhem, D. Moss, Energy efficient policies

43

for embedded clusters, in: ACM SIGPLAN/SIGBED Conference on

Languages, Compilers, and Tools for Embedded Systems, 2005.

[24] W. Liao, L. He, K. M. Lepak, Temperature and supply voltage aware

performance and power modeling at microarchitecture level, IEEE

Trans. on CAD of Integrated Circuits and Systems 24 (7) (2005) 1042–

1053.

[25] Y. Liu, R. P. Dick, L. Shang, H. Yang, Accurate temperature-dependent

integrated circuit leakage power estimation is easy, in: DATE, 2007, pp.

1526–1531.

[26] A. K. Mok, Fundamental design problems of distributed systems for

the hard-real-time environment, Ph.D. thesis, Laboratory for Computer

Science, Massachusetts Institute of Technology, available as Technical

Report No. MIT/LCS/TR-297 (1983).

[27] S. Baruah, A. Mok, L. Rosier, Preemptively scheduling hard-real-time

sporadic tasks on one processor, in: Proceedings of the 11th Real-Time

Systems Symposium, IEEE Computer Society Press, Orlando, Florida,

1990, pp. 182–190.

[28] N. Fisher, T. Baker, S. Baruah, Algorithms for determining the demand-

based load of a sporadic task system, in: Proceedings of the International

Conference on Real-time Computing Systems and Applications, IEEE

Computer Society Press, Sydney, Australia, 2006.

[29] S. H. Funk, EDF scheduling on heterogeneous multiprocessors, Ph.D.

44

thesis, Department of Computer Science, The University of North Car-

olina at Chapel Hill (2004).

[30] S. Funk, J. Goossens, S. Baruah, On-line scheduling on uniform multi-

processors, in: Proceedings of the IEEE Real-Time Systems Symposium,

IEEE Computer Society Press, 2001, pp. 183–192.

[31] S. Baruah, J. Goossens, Rate-monotonic scheduling on uniform multi-

processors, IEEE Transactions on Computers 52 (7) (2003) 966–970.

[32] S. Baruah, J. Goossens, The edf scheduling of sporadic task systems

on uniform multiprocessors, in: IEEE Real-Time Systems Symposium,

2008.

[33] S. Baruah, J. Goossens, Deadline monotonic scheduling on uniform

multiprocessors, in: International Conference on Principles of Dis-

tristributed Systems (OPODIS), 2008.

[34] S.-Y. Chen, C.-W. Hsueh, Optimal dynamic-priority real-time schedul-

ing algorithms for uniform multiprocessors, Proceedings of the IEEE

Real-Time Systems Symposium (2008) 147–156.

[35] S. R. K. Dutta, M. Vidyasagar, New algorithms for constrained minimax

optimization, Journal Mathematical Programming (1) (1977) 140–155.

[36] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,

M. R. Stan, Hotspot: A compact thermal modeling methodology for

early-stage vlsi design, IEEE Trans. VLSI Syst. 14 (5) (2006) 501–513.

45

