The Real-Time Operating
System of MARS

A. Damm, J Keisinger,
W. Schwabl, and H. Kopetz

Institut fur Technische Informatik
Technische Universitat Wien
Treitlstrale 3/E182
A-1040 VWien
Austria

ABSTRACT

This paper gives a short overview of the architecture of the
distributed real-time system MARS (MAintainable Real-Time Sys-
tem) and describes the design and implementation of its operat-
ing system. The main purpose of the MARS kernel is to achieve a
timely execution of hard real-time tasks and to provide an
efficient communication mechanism suitable for distributed

real-time systems.

Edited by:
Johannes Reisinger
<reising@vmars.uucp>

Vienna, 1988-10-13

141

1. Introduction

A system that has to respond to external and internal stimuli within a
specified interval of time is called a real-time system. Depending on the
consequences of missing a deadline, soft and hard real-time systerns are dis-
tinguished. Whereas in soft real-time systems the averages of the response
times are of importance, in hard real-time systems the maximum response
time must be guaranteed in ail anticipated operating conditions.

The design goal of a real-time system for process-control is not (only)
high performance but determinism and predictability of the system behavior
even under peak load. The operating system has to assure that the timing
constraints specified during the design are kept at run-time. It has to be
supported by tools for the creation and evaluation (dependability, timing,
etc.) of the design of a real-time system.

In the world of hard real-time systems it is possible to distinguish
between event driven and periodic (time driven) systems. In an event driven
system the system's activities are initiated by external events. In order to
avoid the loss of events, event based systems must exercise explicit flow-
control over the message source. Since it is in general not possible to exer-
cise such an explicit flow-control over the controlled object, we decided to
follow the second approach, that is a periodic system.

In a periodic system implicit flow control is exercised by the cycle times
of the computational processes. It is thus possible to design a system for the
specified peak-load and to use messages which contain state observations.

Since we could not find a real time operating system which supports our
design methodology, we were forced to design and implement our own operat-
ing system.

This paper is organized as follows. First, an overview of our real-time
system architecture, the MARS System [1], is given. In section three
hardware and software structure of MARS components are described. In the
main part of the paper, the design and implementation of the operating sys-
tem kernel is discussed. The support of the kernel by system tasks is
presented in section five. Section six outlines the communication primitives
provided to the application programmer. Finally, the most important and
innovative aspects of the MARS operating system are summarized.

2. The Architecture of MARS

MARS is a fault-tolerant distributed real-time system architecture for
process control applications [1]. It is intended to be used in industrial real-
time systems (e.g. a rolling mill, railway control systems, etc.) where hard
deadlines are imposed by the controlled environment.

142

One characteristic feature of MARS distinguishing it from other distri-
buted systems (e.g. the V system [2], Accent [3], Chorus [4]) is the completely
deterministic behavior of the system even under peak load conditions, i.e.
when all possible stimuli occur with their maximum specified frequency. It is
one of the basic concepts in MARS to design hard real-time systems for peak
load conditions. To achieve this determinism, MARS is strictly time driven and
periodic.

MARS uses a transaction model to describe the activities of a real-time
system. A transaction is a sequence of interrelated actions transferring the
system from one consistent state to another. Viewed on a lower level, an
action itself may be a transaction constituted of more primitive actions. A
transaction is triggered by a stimulus and produces a response. If the
corresponding response has to be generated within a given interval after the
transaction's stimulus, the transaction is called a real-time transaction.

A MARS configuration consists of a set of clusters with a high inner con-
nectivity. Each cluster is composed of several components interconnected by
a synchronous real-time bus, the so called MARS-bus. A component is a self-
contained computer, including the application software. It 1is a
hardware /software unit of given functionality and performance [5]. A set of
real-time tasks and an identical copy of the MARS operating system kernel
are executed on each component. A typical target system for MARS is out-
lined in fig. 2.1.

Communication among tasks and components is realized by the
exchange of state-messages (see also section 4.1) with a validity time. As
soon as the validity time of a state-message expires, the message is discarded
by the operating system. This measure is taken because the validity of real-
time information depends on its correctness not only in the value domain but
also in the time domain [6]. State-messages are the only means of communi-
cation between hard real time tasks in MARS.

All MARS components have access to a common global time base, the sys-
tem time, with known synchronization accuracy. The system time is provided
by the architecture and achieved cooperatively by the operating system (syn-
chronization task) and a VLSI clock synchronization unit (CSU) [7]. It is used
for reasoning on the validity of real-time information, for error-detection, for
controlling the access to the real-time bus, and to discard redundant infor-
mation.

The fault-tolerance of MARS is based on self-checking components run-
ning in active redundancy and the multiple sending of messages on the real-
time bus. A high error-detection coverage is achieved by the use of software
error-detection mechanisms at the operating system level and hardware
mechanisms inherent in the processor. MARS-components fail silently, i.e.
they either operate as intended or do not produce any results.

143

MARS (cluster h

Target System l

real-time bus

(cluster h I 1
“ea component ®

[T ~ J

real-time bus intercluster

[I | interface
4 ™\
L component
_J/

|
D"—\ sensors/ real—-time bus

L l
actuators

M

o 8 gﬂugt@f)

non real-time bus

Fig. 2.1: MARS Target System

Maintainability and extensibility of MARS are based on the clustering of
components. Redundant components may be removed from a running cluster
(e.g. for repair) and reintegrated later. Moreover, existing components can be
expanded into a cluster by converting the component in the original cluster
into an interface component showing the same 1/0 behavior as the old com-
ponent but forwarding all messages to the new cluster. The new cluster can
be designed independently from the rest of the system as long as the 1/0
characteristics of the interface component remain unchanged.

A more detailed description of MARS can be found in the literature
[1,5,6,7].

3. Structure of a MARS Component

A MARS component is a functional hardware/software unit. Clusters are
built of a set of homogeneous components simplifying maintenance and the
replacement of faulty components. Figure 3.1 outlines hard- and software of
the current MARS prototype component.

The hardware of the experimental MARS component is a slightly modified
standard single-board computer originally designed as an intelligent com-
munication controller in a UNIX machine. It consists of a Motorola 68000 CPU
(10 MHz) with access to 512 kB of RAM and is provided with a Local Area

144

Network Controller for Ethernet (LANCE), the Clock Synchronization Unit
(CSU) [7], a custom designed chip, two RS-232 interfaces, and one Small Com-

puter System Interface (SCSI).

{ N
L] 1 [
Soft Real-Time ~Ti
‘ Tasks j L Hard Real-Time Tasks j
Appl. etc. Appl. etc. Protocol Clock
Task Task Conv. Sync.
(System Tasks)
T 1
- Messages
| Kernel
Scheduling
MC 68000 LANCE csu
FHITTTT
r
- 512 kB RAM Hardware
P Pidd
k J
MARS Bus

Figure 3.1: Hardware and Software Structure
of the Current MARS Component

The software residing in a MARS component can be split into the follow-
ing three classes:

(1) Operating System Kernel:
The kernel consists of the entire code running in supervisor mode on the

CPU. Its primary goals are resource management (CPU, memory, bus,
etc.) and hardware transparency.

145

(2) Hard Real-Time Tasks (HRT-Tasks):

HRT-tasks are cyclic tasks receiving, processing, and sending messages.
Receiving a message may be interpreted as the stimulus, sending a mes-
sage as the response of the task. Each instance of a task has to be com-
pleted before a given deadline. Reaction time and latency of HRT-tasks
are deterministic and specified during the design of the system. Most
HRT-tasks are application tasks, but some of them are system tasks per-
forming specific, hardware independent functions of the operating sys-
tem, e.g. time synchronization, protocol conversions, etc.

(3) Soft Real-Time Tasks (SKET-Tasks):
All tasks which are not subject to strict deadlines are called soft real-
time tasks. Usually a SRT-task is an acyclic task utilizing the idle time of
the CPU in low load situations.

All syntactic hardware details are hidden within the kernel. Application
tasks and system tasks access the kernel only by means of defined system
calls [8]. Kernel data cannot be accessed directly. Most of the code of the
operating system, except some parts of the kernel, is implemented in the pro-
gramming language C. Porting MARS to a new hardware requires the specific
parts of the kernel to be adapted, but the functionality of the system calls
remains unchanged.

4. Operating System Kernel

The MARS operating system kernel has been designed from scratch, since
presently no comparable kernel exists that meets our requirements in pred-
ictability and flexibility. As a consequence of the totally new kernel design, we
were free to implement each part of the kernel (message passing, interrupt
handling, scheduling, etc.) without any restrictions, such as those caused by
the adaptation of an existing operating system.

4.1. Message Passing
State-Messages

A uniform message passing mechanism is applied for communication
among tasks, components, clusters, and peripherals. Messages are identified
by a clusterwide unique name referring to the semantic contents and the
data type of the message. All messages are sent as periodic state-messages.
State-messages are used to exchange information about the state of the
environment or about an internal state as it has been observed at a given
point in time and is assumed to hold for a certain interval of time. State-
messages are not consumed when read, i.e. a state-message can be read an
arbitrary number of times by an arbitrary number of tasks. One message of a
sequence of messages carrying the same name is an instance of a message.
Only one instance of a given message can be valid at a time.

146

Structure of a Message

MARS messages have a constant length, a standard header, and a stan-
dard trailer. Besides the LAN dependend standard header (destination
address, source address, etc.), additional information such as the name of the
message and several time fields are contained in the header. The time fields
include the validity time and the observation time of the information con-
tained in the message [9] as well as the send and receive time stamped into
the message by the CSU upon physically sending or receiving the message.
The trailer basically contains a checksum. The structure of the user-data is
defined by the application programmer. Its size is predefined since MARS mes-
sages have a constant length. All objects for message passing adhere to this
common structure, the MARS message structure. Data from peripheral dev-
ices such as sensors or actuators have to be converted to the fixed message
format in an appropriate interface.

Buffer Management and Implicit Flow-Control

Because of the state-semantics of MARS-messages, the number of mes-
sage buffers required is static and an implicit flow-control is achieved. Each
time a new version of a message is received, the previous message will be
overwritten and the state described in the message is updated. The total
number of message-buffers required in the component can be calculated
from the number of messages to be received in the component and the sum of
the internal buffers required by each task.

The buffer management is carried out by the operating system kernel.
There is no time consuming copying of messages between the kernel's and the
task's message buffers (and vice versa). Only a pointer to the message is
delivered upon reception of a message. Since messages describe real-time
entities that cannot be altered by tasks, messages are kept in read-only
buffers of the operating system, where they can be read by several tasks
simultaneously. The number of message buffers owned by each task is deter-
mined at compile time. By convention, each task has to allocate the maximum
number of buffers it needs during its initialization phase. If a system-call
consumes a buffer (e.g. sending of a message), it always returns a new buffer
to the task that is used exclusively by this task (i.e. it is not read-only and
may be used for sending another message); if a system-call returns a pointer
to a buffer (e.g. receiving of a message), the task has to return an old or
unused buffer to the buffer manager (upon receiving a message, the returned
buffer usually is the older version of the state-message to be received). This
concept allows to statically and even automatically compute the number of
buffers required by each component.

The message exchange itself is asynchronous, i.e. sender and receiver do
not have to wait for each other. Nevertheless, the time when a message is
sent is predefined by a pre run-time scheduler. Consequently, sender and
receiver are synchronized. In MARS, there is no need for explicit low control.

147

If the sender is activated more frequently than the receiver, the state is
updated faster than read, but no buffer overflow will occur because the latest
instance of a state-message replaces the previous one with the same name.

TDMA and Message Scheduling

MARS messages have to be sent via the Ethernet for communication
between components. The LAN-controller on each board is primarily designed
for use with a CSMA/CD protocol which does not qualify for the MARS system
due to its unpredictable message delay. Thus, a TDMA-protocol (Time Division
Multiple Access) is used to provide a collision-free access to the Ethernet
even under peak-load conditions.

Since the clocks in the MARS components are synchronized (as described
in section 5.1), the overhead of the TDMA-protocol is very low. The space
between two slots need to be no longer than the synchronization precision of
about 10 microseconds. The disadvantage of the TDMA-protocol is its
inflexibility resulting in inefficiency under low-load conditions, because the
sending capacity of a component cannot exceed a fixed limit (approximately
the network capacity divided by the number of components in the cluster)
even if no other component in the cluster has to send messages. But the
major design principle of MARS is reliability and predictability even under
peak-load conditions which TDMA satisfies best.

Slot of Slot of Slot of Slot of Slot of
Comp. 0 Comp. 1 Comp. 2 Comp. 3 Comp. 0
W@I % //A“ 77
0 4 8

\

V12 e 20 Time (in ms)

MARS-Messages (and the redundant messages)

Figure 4.1: Timing of the MARS-Bus
(for a cluster consisting of four components)

To make the reliability of the message transfer comparable to the relia-
bility of a MARS component, each MARS-message is sent twice (Figure 4.1).

In MARS two classes of messages are distinguished. HRT-messages are
statically scheduled. At most one HRT-message is assigned to each TDMA-slot.
A HRT message can only be sent in the slot reserved for it. If a HRT-message
is not available at the slot it should be sent or the slot is unused by design,
then this slot may be used by a SRT-message. SRT-messages are not
guaranteed to be sent before any deadline. They are used to transmit asyn-
chronous data, for example the core image of a new component, or archival
data that should be stored on a disk outside the real-time cluster.

148

Error-Detection in the Time Domain

HRT-tasks are periodic tasks communicating exclusively by the exchange
of periodic messages. The periodicity of the messages and the message
scheduling allow the receiver to detect communication errors and component
failures in the time domain by the absence of messages that should have been
sent at specified times.

Time Stamping

Each MARS-message received via the Ethernet, contains two data-fields
for the sending and receiving time-stamps. The CSU allows a very precise
time-stamping mechanism (with an accuracy of about three microseconds).
This accuracy is achieved by a close cooperation between the CSU and the
LANCE.

sending component receiving component
) CSfJ sending receiving
local time § time stamp \ CSU - — — — —% time stamp
\
/0 Page I/O Page
RAM RAM
interrupt
message message
[
\\ |
' i ’
DM
A DMA
memory Memory
LANCE LANCE

Z//

\MARS TUB U S

Figure 4.2: Time Stamp Mechanism in MARS

Figure 4.2 schematically shows the time-stamp mechanism for messages
in MARS. Whenever a message should be sent it is placed in a buffer by the
CPU and the LANCE is started. The LANCE transmits the data to the MARS bus
using DMA after access to the bus has been granted. The LANCE is capable of
packaging several memory fragments continuously into one message. The last
fragment of each message is a memory mapped real-time register of the CSU
which is accessed exactly at the time of sending. At the receiver, the LANCE

149

issues an interrupt immediately after a message has arrived. This interrupt is
directed to the CSU for the generation of the receiver time-stamp. At the
next clock-interrupt both time-stamps (sender time-stamp and receiver
time-stamp) are copied to the message header. The time-stamps are used
especially for clock synchronization.

4.2. Interrupt handling

MARS is designed to meet real-time deadlines even under anticipated
high load conditions. This goal is achieved by a consequent realization of a
strictly periodic and deterministic system behavior within all levels of
software. Thus, only one interrupt, the periodic clock interrupt, is allowed.
The interaction with peripheral devices is not interrupt-driven but realized by
polling.

The interrupt handler is split into two sections activated with different
frequencies. The first section (written in assembler for efficiency reasons) is
carried out every millisecond. The second section (written in C) is executed
every eight milliseconds, immediately following the first part of the interrupt
(the first and the second section will be referred to as the minor and the
major interrupt handlers in this paper). The minor interrupt handler may
suspend any system-call, therefore this routine must be carefully coded. The
major interrupt handler must not suspend any system-call, i.e. its activation
will be delayed until the end of the system-call and handled immediatley after
the termination of the call.

The concept of two synchronous interrupt handlers activated with
different frequencies offers the possibility to split a device driver into two
parts, on the one hand the time-critical part (mainly for polling the
hardware), and on the other hand a part, which updates the system data
structures upon sending or receiving data from the time-critical part of a
device handler. This technique improves also the consistency between
MARS-components (especially redundant components), since state-changes of
messages are only performed in the major interrupt handler, which is syn-
chronized throughout the system.

4.3. Task Scheduling

In the MARS-System, a static scheduling approach is pursued [10,1]. The
scheduling is performed ofl-line considering the maximum execution times of
tasks, their cooperation by message exchange, as well as the assignment of
messages to TDMA-slots. Tables, produced by the off-line scheduler, are linked
to the core-image of each individual component. Dynamic task scheduling
can be avoided because MARS is strictly periodic, the activation sequence of
MARS tasks is predefined, and tasks need not be generated dynamically. This
approach minimizes the runtime overhead for making scheduling decisions.

The scheduling lists generated by the pre-runtime scheduler determine

150

the points in time when task-switches are required. Start- and endpoints of
tasks are recorded in the lists. Upon reaching a start-point, the correspond-
ing task is activated. Each task has to release the CPU by itself (using the
system call suspend) before the global time reaches the end-point specified
for this activation of the task in the scheduling list otherwise an error (time-
limit exceeded) will be detected by the kernel. Alarm-tasks deviate from this
scheduling mechanism. They are not periodically activated but only by an
explicit scheduling switch as described later.

Task scheduling is performed by the major interrupt handler (every 8
ms) according to the scheduling tables calculated by the pre-runtime
scheduler. At the beginning of the execution of the major interrupt handler
all registers of the task currently running are saved on the task's system
stack (no matter wether scheduling decisions will be made). Therefore, a task
switch is performed by simply changing the task pointer to the task descrip-
tor of the new task making it to the current task. At the end of the major
interrupt handler, the registers of the current task are restored.

Suspension of a Task

A task may release the CPU with the system call suspend [8] either until
the next invocation of the major interrupt handler or until the task’s next
start-point in the scheduling list depending on the parameter of suspend.
Releasing the CPU until the next invocation of the major interrupt handler is
useful when a task is waiting for the arrival of a message because a new mes-
sage can be recognized by the kernel only in the major interrupt handler.
Releasing the CPU until the next start-point signals the kernel that the cal-
ling task has finished all calculations to be carried out since its last activa-
tion. The kernel can then use the time until the activation of the next HRT-
task to execute SRT-tasks.

Scheduling Switch

Task scheduling can be adapted to different situations in spite of the
fact that scheduling is static in MARS. During the design-phase, the develop-
ers of MARS-applications may plan different task sets to be active in different
phases of system operation. Separate schedules can be provided for startup,
alarm handling, and several states of the application. The nature of startup,
alarm handling, and a few other tasks is acyclic, thus it has to be possible to
combine cyclic and noncyclic schedules in the same application.

The change between two schedules may be caused either by an explicit
system-call (sswifch) in an application task or by the reception of a message
associated with a scheduling switch. The message-list in each component con-
tains an indication whether the reception of a message triggers a scheduling
switch or not.

Two types of scheduling switches can be distinguished. When performing

151

a consistent scheduling switch, each task is guaranteed to remain in a con-
sistent state with the environment and the other tasks. Because of this
requirement, a consistent switch may be performed only at predefined points
in time determined during the design-stage. The other switch, namely the
immediate, cannot preserve consistency, but it guarantees that switching will
be performed as soon as possible, i.e. at the next invocation of the major
interrupt handler. Therefore, the maximum delay of an immediate switch is
limited to eight milliseconds. The immediate switch should only be used in
emergency cases, where a fast response to a possibly catastrophic situation is
necessary.

4.4. Device Drivers

Allowing each device to interrupt the CPU at will leads to an unpredict-
able CPU load during run-time. A priority scheme for interrupts gives advan-
tage to high priority devices while low priority devices might starve for CPU
causing missed deadlines in consequence. Such priority interrupt mechan-
isms are not suitable for MARS.

Consequently, in MARS all interrupts to the CPU are disabled except for
the clock interrupt from the CSU. Because the interrupts from other peri-
pheral devices, even from the local network controller, are disabled these
devices have to be polled periodically within the clock interrupt handler.

A device driver in MARS consists of one or more low-level parts and one
or more high-level parts. The activities of all low-level drivers are initiated by
the clock interrupt routine. The low-level parts can only perform small and
frequent actions which must not block in their execution. Most actions of the
low-level drivers are performing device polling. The high-level parts consist of
the device specific code executed within a system call. Most high-level drivers
report or set device specific parameters, e.g. the type field of an Ethernet
message or the baud rate of an RS-232 line.

5. System Tasks

Operating system functions that do not have to be realized within the
kernel are implemented in so-called system tasks. The clock synchronization
task is described as an example of a system task in the following section.
Other system tasks are concerned with the initialization of the components
and the cold-start of a cluster.

56.1. Clock Synchronization

Real-time data often correspond to physical quantities, e.g. tempera-
ture, volume, speed, etc., and their dependencies might be modeled with
differential equations. Real-time data may refer to specified points in world
time, e.g. a start occurs at 03:15:20 pm UTC. Any computer control system
must be related to the controlled objects of the “real world”, and so

152

especially the fundamental measure “time' needs to be calibrated.

In MARS, the International Atomic Time TAI [11], has been chosen as a
reference. TAl is a strictly chronoscopic time measure and does not suffer
from switching seconds due to irregularities in the rotation of the earth. It
differs a known integral number of seconds from the world time UTC (e.g. in
spring 1988: TAl - UTC = +24.0 s).

Computer clocks are based on simple quartz oscillators with a typical
drift rate of 107 --- 1078, Free running computer clocks diverge tenths of
microseconds each second. A periodic clock synchronization is needed to
adjust computer clocks to each other and to world time.

Internal Synchronization

In MARS, time synchronization is based on message exchange to avoid
special hardware links for time signal propagation. The measurement error
in reading the time of one component by another component is called read-
ing error. Without any hardware support the reading error for time in mes-
sages is 1 ms or more depending on protocol complexity and interrupt
latency. Due to the special VLSI chip CSU (Clock Synchronization Unit) [7]
with a clock resolution of 1 us and its cooperation with the network con-
troller chip LANCE, the reading error is reduced to 4 us in MARS.

Each component records the time differences to the other components
periodically. Based on this information a correction term for the local clock
is calculated with the Fault-Tolerant Average Algorithm (FTA) [12,13]. In FTA,
an ensemble of N clocks may include up to & faulty clocks. The local clock
differences d; are sorted by value. The k& lowest and the k highest values are
discarded. The arithmetic average of the remaining values is the new correc-
tion value ¢ for the local clock:

N=k
T N- 2"’ kgxd

If the drift rate of a quartz is less than 5%107% and the resynchronization
interval is 1 s, then the internal synchronization tolerating a single byzantine
clock fault in an ensemble of more than four clocks is always better than 30
us [7]. The experimental evaluation has shown, that even in case of antici-
pated faults the deviation of good clocks does not exceed 6 us [14].

External Synchronization

The ensemble of local clocks is kept together by internal synchroniza-
tion. The calibration with world time is done by external synchronization.
Long wave radio signals provide an economic access to the UTC time stan-
dard. Since the seconds of UTC and TAI are phase synchronous and the time
difference of UTC and TAI are published in advance by the BIH any UTC

153

source can be used as a source for TAL

Special signal modulation and signal processing techniques [15] allow the
receipt of standard time with an absolute precision better than 100 us.

Each MARS cluster contains a component with access to a time standard,
to measure the deviation between the MARS system-time and the world time.
An appropriate rate correction value is broadcast eflecting the speed of all
internal clocks, independently of corrections by the internal clock synchroni-
zation.

Time Adjustment

The time correction must not change the chronoscopic behavior of the
local system clocks. An instantaneous change of the local clock would lead to
errors in running measurements and would disturb the periodic schedules.
Thus a continuous time adjustment is supported by the CSU chip.

The local time correction value can be split into three terms:

- the constant, known quartz drift of the individual component,
- the correction term due to the internal synchronization algorithm,
- and the drift of the clock ensemble to world time.

The CSU chip has a rate correction and state correction register. The
state correction register is cleared by the CSU after the correction has been
applied while the rate correction register remains constant until a new value
is inserted. The known quartz drift of an individual component is the initial
value for the rate register. The internal time synchronization affects only the
state register. The observed drift to world time is added to the rate registers
of all CSUs in all components.

The CSU chip derives its time values from a 10 MHz quartz. The continu-
ous time adjustment is achieved by inserting or suppressing some cycles
spread over a second. These ‘corrected” cycles are the basis for the system
clock, the time stamp mechanism with the LANCE (see also figure 4.2), and
the periodic CPU clock interrupt. So, all observable time values in a com-
ponent are kept calibrated.

6. C/MARS Language Constructs

The C programming language (used to implement MARS tasks) is
enhanced by additional language constructs to provide primitives enabling
the application programmer to implement cooperating real-time tasks. The
MARS kernel offers predictability, maintainability, and fault-tolerance. The

. Bureau International de I'Heure

154

high-level C/MARS language [16] interfaces these features to an easy to use
but nevertheless powerful communication mechanism for distributed pro-
grams. C/MARS language constructs are available for communication and the
support of the execution-time analysis of the real-time tasks required to
achieve a guaranteed response time of HRT-tasks. In the following only the
language constructs for communication are described briefly. The execution
time analysis will be discussed in a following paper.

The INPUT statement can be composed of a number of INPUT-constructs
specifying the receipt of one message. INPUT-constructs can be combined by
OR- and AND-operators allowing alternate inputs and the acceptance of more
than one message at the same time.

A FILTER-construct can optionally be added to each INPUT-construct.
The receipt of a message can then be made dependent on the fulfillment of a
condition implemented in a filter function specified in the FILTER-construct.
The contents of a newly arrived message can be such a condition (e.g. the
message is accepted only if the temperature described in the message is
above a certain value).

Additionally, a timeout can be specified to limit the time the application
task is waiting for a message to arrive. The timeout may be set to zero mak-
ing the INPUT-statement non-blocking. Optionally, a separate block of state-
ments can be defined that is executed upon the occurrence of an error dur-
ing the execution of the INPUT-statement.

The second C/MARS language construct for communication is the non-
blocking OUTPUT statement. An identical OUTPUT statement is used regard-
less whether the message is passed internally or transmission takes place
using the MARS-bus, the parallel port, or the serial port. The destination of a
message is specified during the design depending on the allocation of the
application tasks to the components of a cluster. No receiver is specified by
the sending task.

The OUTPUT statement allows the specification of a validity time and an
observation time. The message is valid from the point of observation until the
validity time given as an absolute point in time. Executing an INPUT state-
ment on a message of which the validity time has already expired has the
same result as if no message were available.

7. Summary

The MARS project is concerned with the development of a distributed
fault-tolerant real-time system that meets given requirements of reliability
and timeliness by design. The main principles of MARS have been described
briefly and the operating system of the current MARS prototype has been dis-
cussed in more detail in this paper.

155

The MARS operating system fully supports the architecture of MARS and
guarantees the meeting of the timing requirements of the application, even in
peak load situations. Hard real-time tasks are scheduled by a time-rigid
scheduling policy minimizing the dynamic scheduling overhead and guaran-
teeing that hard real-time tasks are completed within their deadlines under
all foreseen circumstances.

The communication system is based on an eflicient implementation of
the state-message mechanism solving flow-control problems implicitly. TDMA
is used as a medium access protocol to the local area network connecting
MARS components in a cluster to provide a collision free access and to allow
the specification of an upper bound on the communication delay.

The availability of a synchronized system time with a bounded maximum
deviation is an important prerequisite for building a distributed real-time
system. In MARS, a continuous correction of the local times in a cluster is
achieved by the cooperation of a VLSI clock synchronization chip and the
clock synchronization task.

Based on the implementation of the MARS operating system, an experi-
mental system of 16 components has been established. It will serve as a
testbed for experiments in the areas of real-time and fault-tolerant systems.
Currently the implementation of a membership protocol is investigated.

8. References

1. H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft, and R.
Zainlinger, *Distributed Fault-Tolerant Real-Time Systems: The MARS
Approach,” accepted for publication in IEEE Micro, (Feb. 1989).

2. D. R. Cheriton, "The V Kernel: A Software Base for Distributed Systems,”
IEEE Software, vol. 1, no. 2, pp. 19-42, (Apr. 1984).

3. R. Fitzgerald and R. F. Rashid, “The Integration of Virtual Memory
Management and Interprocess Communication in Accent,” ACM Transac-
tions on Computer Systems, vol. 4, no. 2, pp. 147-177, (May 19886).

4. H. Zimmermann, J. S. Banino, A. Caristan, M. Guillemont, and G. Morisset,
“Basic Concepts for the Support of Distributed Systems: The Chorus
Approach,” Proc. @2nd Conf. on Distributed Computing Systems, pp. 60-
66, Paris, (Apr. 1981).

5. H. Kopetz and W. Merker, “The Architecture of MARS,” 18th Fault-
Tolerant Computing Symposium, pp. 274-279, Ann Arbor, Michigan, (June
1985).

6. H. Kopetz, ‘“Design Principles for Fault-Tolerant Real-Time Systems,"”
19th Howaii Conference, vol. II, pp. 53-62, (19886).

156

7.

10.

11.

12.

13.

14.

15.

16.

H. Kopetz and W. Ochsenreiter, '*Clock Synchronization in Distributed
Real-Time Systems," IEEE Transactions on Computers, vol. 36, no. 8, pp.
933-940, (Aug. 1987).

W. Schwabl, "MARS System Calls,” Research Report 2/88, Institut fur
Technische Informatik, Technische Universitat Wien, Vienna, Austria
(May 1988).

H. Kopetz and K. Kim, “Consistency Constraints in Distributed Real-Time
Systems," Proc. of the 8th IFAC DCCS Workshop, (to be published by Per-
gamon Press in 1989), Switzerland, (Sept. 1988).

C. Koza, "Scheduling of Hard Real-Time Tasks in the Fault-Tolerant Dis-
tributed Real-Time System MARS,"” Proc. 4th IEEE Workshop on Real-Time
Operating Systems, pp. 31-36, Cambridge, Massachusetts, (July 1987).

G. Becker, *Die Sekunde,” PTB-Mitteilungen, vol. 85, pp. 14-28,
Physikalisch-Technische Bundesanstalt, Braunschweig, BRD, (Jan. 1975).

D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, “Reaching
Approximate Agreement in the Presence of Faults,” Proc. Third Symp.
Reliability in Distributed Software & Database Systems, pp. 145-154,
(Oct. 1983).

J. Lundelius and N. Lynch, “A New Fault-Tolerant Algorithm for Clock
Synchronization,” Proc. Third ACM SIGACT-SIGOPS Symp. Principles of
Distributed Computing, pp. 75-88, Vancouver, Canada, (Aug. 1984).

W. Schwabl, "Der Einflu zufalliger und systematischer Fehler auf die
Uhrensynchronisation in verteilten Echtzeitsystemen,” Dissertation,
Technisch-Naturwissenschaftliche Fakultat, Technische Universitat Wien,
Vienna, Austria (Oct. 1988).

P. Hetzel, “Zeititbertragung auf Langwelle durch amplitudenmodulierte
Zeitsignale und pseudozuféllige Umtastung der Tragerphase,” Disserta-
tion, Fakultat Fertigungstechnik, Universitat Stuttgart, BRD (Jul. 1987).

M. Pfitgl, A. Damm, and W. Schwabl, "Interprocess Communication in
MARS,” Research Report 6/88 (accepted at: ITG/GI Conference on Com-
munication in Distributed Systems, Stuttgart, Feb. 1989), Institut fur
Technische Informatik, Technische Universitat Wien, Vienna, Austria
(June 1988).

157

