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Testing large and complex software is an inherently difficult process that must be as 
systematic as possible to provide adequate reliability and quality assurance. This is 
particularly true for a complex real-time operating system, in which an ad hoc testing 
approach would certainly fail to afA+m the quality and correctness of the requirements 
specification, design, and implementation. We discuss applying systematic strategies to the 
testing of real-time operating system RTOS under development in the Esprit III project 8906 
OWCLEAR. 

oftware testing is one of the most sig- 
nificant activities in the software life 
cycle and must affirm the quality of 
requirements specification, design, 

and implementation. A company developing soft- 
ware spends about 40 percent of a project’s cost 
on testing activities.’ In exceptional cases, such as 
safety-critical real-time software, the testing phase 
may cost from three to five times as much as any 
other phase of the software life cycle. Usually, test- 
ing begins early in the development process, as 
test planning and specification overlap, to a cer- 
tain degree, with requirements specification. 

Testing activities demonstrate that software is 
consistent with its specifications. Therefore, as 
test results accumulate, evidence indicating the 
level of software quality and reliability emerges. 
In particular, if testing often detects important 
errors, the software’s quality and reliability are 
probably inadequate and further testing is 
required. On the other hand, if the discovered 
errors are minor and easily correctable, then 
either the level of software quality and reliabili- 
ty is acceptable, or the executed tests are inade- 
quate to reveal software errors. Testing can never 
assure that a program is correct because unde- 
tected errors may exist even after the most exten- 
sive testing. Therefore, the common view that a 
successful test is one that reveals no errors is 
incorrect, as the following general testing goals 

Testing is the process of executing a pro- 
gram with the intent of finding errors. 
A good test case has a high probability of 
finding an undiscovered error. 
A successful test uncovers an undiscovered 
error. 

Aspects of general testing strategies and tech- 
niques also apply to real-time software. 
However, additional requirements and difficul- 
ties characterize an effective testing process for 
real-time software, especially real-time operat- 
ing systems (RTOSs), for several reasons:*.: 

The software contains several modules and 
decision statements. 
Many modules use the same resources 
simultaneously. 
The same sequence of test cases may pro- 
duce different outputs, depending on when 
the test is performed. 
System errors may be time dependent, only 
arising when the system and controlled 
environment are in a particular state that 
may be impossible to reproduce. 
Finally, reliability, schedule, and perfor- 
mance requirements are usually more criti- 
cal than those for non-real-time software. 

This article focuses on a well-established 
methodology to test the functional behavior of 
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an actual RTOS. The system is being developed as part of 
the ESPRIT 111 project 8906 OMI/CLEAR (Open 
Microprocessor Systems Initiative/Components and Libraries 
for Embedded Applications in Real-time).6 CLEAR RTOS is a 
scalable executive for embedded applications. It supports 
multiple configuration levels (from hardware and basic VO 
services to higher level ones) to establish the correct balance 
between efficiency (performance/size) and required services. 

The strategy followed for testing CLEAR RTOS is systematic 
and includes individual function, module, and bottom-up 
integration testing, using both black-box and white-box dis- 
ciplines. We chose this approach because not all modules are 
available from the beginning of testing activities. A systemat- 
ic way to determine test cases satisfies the requirement for 
low redundancy (in test cases selection) and high reliability 
(in test results). In addition, this method incorporates often- 
used coverage criteria and software complexity metrics. 

Issues related to RTOS timing behavior (schedule analy- 
sis and performance testing) are beyond the scope of this 
article. However, Gerogiannis and Tsoukarellas discuss such 
issues.’ 

Software testing techniques 
We base testing specification on methods that guide testers 

to follow a systematic approach. These methods provide cri- 
teria for determining appropriate test cases, to ensure test 
completeness and guarantee a high probability of discover- 
ing software errors. Using these methods, we derive test 
cases from specifications or by code examination. The test 
methods corresponding to these approaches are known as 
black- and white-box testing (see the box, next page). 

Software testing strategies 
A strategy for software testing incorporates a set of activ- 

ities organized into a well-planned sequence of steps that 
finally affirms software quality. The initial important deci- 
sion in the process is determining who will perform testing. 
Pressmarl’ discusses the various inherent problems associ- 
ated with allowing software developers to test the product. 

From a psychological point of view, software analysis, 
design (along with coding) are constructive tasks. 
However, when testing commences there is a subtle, 
yet definite, attempt to ‘break what the software engi- 
neer has built. From the point of view of the builder, 
testing can be considered destructive. So, the builder 
designs tests that will demonstrate that the program 
works. The role of an independent test group (ITG) is 
to remove the inherent problems associated with let- 
ting the builder test his own product. However, the 
developer and the ITG have to work closely through- 
out a software project to ensure that thorough tests 
will be conducted. 

These problems motivated the strategy adopted in the 
OMKLEAR project, in which two independent groups per- 
form development and test. The groups cooperate closely 
to achieve a highquality final product. In general, the 
OMVCLEAR project’s testing strategy consists of three phas- 
es: individual function, module, and integration testing! 

Individual function testing. This strategy focuses on 
each individual function. Testing a function in an isolated 
manner means that we do not attribute operations performed 
by calling other functions to the function under test. In this 
case, the description of the calling function should identlfy 
the called functions. In the beginnirg, we apply the black- 
box technique to test each function’s interface according to 
the corresponding inpuUoutput specifications. Afterwards, 
we apply the white-box method to test the paths in the func- 
tion’s source code. During this phase, drivers and/or stubs 
may have to be constructed for each individual function test. 
A driver accepts the test case data as input and passes it to 
the function. A stub, which we place in the code because 
some functions are not yet available, simulates functions that 
are immediately subsequent (lower level) in the control flow 
to the tested function. 

Module testing. Next, we combine the already tested 
functions to compose modules (tightly coupled functions), 
using either the top-down or bottom-up method. These two 
approaches (described in the following Integration testing 
section) apply to module testing if we exchange the term 
function for module, and module synthesis for integration 
process. That is, the integration of functions into modules is 
similar in concept to the integration of modules into larger 
ones to construct the entire program. 

In module, and subsequently, integration testing, we use 
the black-box technique because the main purpose of mod- 
ule and integration testing is to uncover interfacing errors.’ 
In addition, the code to be tested tends to be very large as 
we form and integrate modules, so white-box testing 
becomes extremely complicated. 

The essential difference between testing the individual 
function and testing the module of a function that calls other 
functions is that in the first strategy, testing extends only to 
the calls to other functions; it does not account for the oper- 
ation of those functions. On the other hand, the second strat- 
egy checks the module as a whole, all the way to the 
operations performed by the called functions. 
Integration testing. Third, we integrate the already test- 

ed modules into larger ones. There are two approaches to 
merging modules during this phase: nonincremental and 
incremental. 

The nonincremental or “big bang” approach tests a pro- 
gram by testing modules independently and then combines 
all the modules together to test the program as a whole. This 
approach does not facilitate revisions since we cannot easi- 
ly isolate errors. 
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Black-box (Functional) testing does not consider the 
internal structure and behavior of the prosramp but exam- 
ines only its input-output behavior. Black-box testing 
methods are based on the functional requirements speci- 
fication of the software and determine whether the soft- 
ware behaves as specitled. We construct test &ta fiom the 
specifications and, in general, there are three methods for 
deriving the appropriate test cases. 

The equivalence partitioning method divides the input 
space of a program into equivalence classes to minimize 
the number of possible test cases. Test cases are consid- 
ered adequate even when choosing only one value from 
each class, since all the values of a class exercise the same 
hnctionalities and are considered equivalent. A good test 
case reveals a class of errors that might otherwise require 
execution of many cases before observing the general 
error. Therefore, this method achieves a low level of d u n -  
dancy in test case selection. 

Boundary value analysis complements equivalence parti- 
tioning and leads to the selection of test cases that exarise 
boundary values; that is, values on and near the boundaries 
of input equivalence classes. h many cases. these values are 
responsible for emneow program behavior. 

Random testing selects test cades either randomly or by 
sampling the distribution of all possible input values. It is 
usually used during the final testing stages. 

White-box (structural) testing examines the program 
structure and derives test cases from program logic.’ We 
observe the procedural detail closely and test logd+aths 
(decisions and loops, for example) throughout the sdiwmz. 
Unlike black-box testing, which identifies mostly interfirr 
errors, white-box testing produces test cases that guaranoe 

traversal of all independent paths within a module at 
least once; 
exercise of all logical decisions on their true and false 
sides; 
execution of all lqps at their boundaries and within 
their operational bounds; and 
exercise of internal data structures. 

The flow graph’” is a common graphical representation 
of the control flow. A flow graph consists of nodes repre- 
senting one or more program statcmentd that execute in 
sequences and arcs (called edges) that repexmt the flow 
of control. These edges are analogous to flow chart 111~ws. 

A flow graph depicfs all theoretically possible paths in the 
program, even if some of them cannot be traversed 
b u s e  of the specific combinations of conditions in the 
p ” ’ s  decision statements. 

A flow graph consists of a single start node and one or 
more end nodes. Any other node lies on at least one path 
between the start node and at least one end node. A flow 
graph Mers from a standard low-level flowchart in that it 
emphasizes decision and branch statements as the graph 
nodes--the critical points in a program’s control logic. 

White-box testing determines a h t e  number of paths 
(white-bax test cases). Aftetwards, the successful execution 
of h s e  paths accordmg to the appropriate test inputs d 
c~mrtheflaw graph. It is important to detffmine the degree 
of gnph coverage that ahcts the global testing coverage. 
Whitebox testing “ d o l o g y  consists of four phases. 

First, we construct the flow graph directly from the 
s~llce code. secorpd, we’select a finite set of paths of the 
flow graph according to one or more coverage criteria. The 
most common ones (hwn the weakest to the strongest) are 

Statement coverage requires all statements in the 
graph to be execut$ at least once. 

* Node coverage requires the test to encounter all deci- 
sion node entry points. 
Branch coverage requires the t e s  to encounter all exit 
branches of each decision node. This criterion is con- 
sidered to provide the lowest acceptable confidence 
level for the white-box approach. It includes the pre- 
vious two criteria, since it reqyires executing every 
statement and encountering every node by exercis- 
ing each branch in a program. 
Path coverage requires all possible paths to be exe- 
cuted. This is the strongest but least practical criteri- 
on since the combination of all indi+idual paths 
increases exponentially with the number of decision 
statements. In addition, infinite loops make the num- 
ber of possible paths unbounded, so the method con- 
siders equivalent all paths that differ only in the 
number of loops. 

Third, we generate test cases. This is the most compIi- 
cat& phase and concerns the determination of the test 
inputs that awe execution ofthe previously selected paths. 
~ast, we execute the program using the test cases‘- com- 
pare the actual output to the expected (specified) output. 

The incremental approach tests a module in combination an approach emphasizes testing the interfaces among the 
with the set of previously tested ones. This constructs and combined modules. The main incremental-integration 
tests the final program incrementally and systematically. Such approaches are top down and bottom up. 



Top down. We integrate modules by moving downward 
through the control hierarchy, beginning with the main con- 
trol module (main program). The integration process takes 
five steps: 

1. We use the main control module as a test driver and 
substitute stubs for all modules directly subordinate to 
the main control module. 

2. Depending on the integration approach selected (that is, 
depth or breadth first), we replace subordinate stubs 
one at a time with actual modules. 

3. We conduct testing. 
4. After completing each set of tests, a real module replaces 

another stub. 
5 .  Testing continues with regression testing (that is, con- 

ducting all or some of the previous tests) to ensure that 
the testing process has not introduced new errors. 

The process continues from step 2 until we have built the 
entire program structure. This strategy should be used with 
top-down design. Strict top-down testing can be difficult 
because it may be virtually impossible to produce a program 
stub that accurately simulates a complex function. 

Bottom up. This method involves testing modules starting 
at the lower levels of modules and moving upward in the 
hierarchy. As we integrate modules from the bottom up, pro- 
cessing required for modules subordinate to a given level is 
always available, eliminating the need for stubs. On the other 
hand, we must construct drivers to present lower level mod- 
ules with appropriate input. Bottom-up integration calls for , 

1. combining low-level modules into clusters that perform 

2. writing a driver to coordinate test case input and output; 
3. conducting cluster testing; and 
4. removing the drivers and then moving upward in the 

a specific software subfunction; 

program structure (by combining clusters). 

The advantages of top-down testing constitute the disad- 
vantages of bottom-up testing and vice versa. In general, the 
lack of stubs in bottom-up testing makes test case design 
easier. 

We discuss other aspects of real-time software testing in the 
Host, target, and behavioral testing box. 

CLEAR RTOS description 
To describe the basic characteristics of CLEAR RTOS,6 we 

first logically divide the system into two parts: 

The high-level part is independent of underlying hard- 
ware and consists of two layers (system calls, which are 
accessible by the user, and internal functions). 
Applications may interact with RTOS through different 

Host, target and bahavioral testing 
Usually. real-time software testing involves host and 

target computem." The latter is the real-time system con- 
trolling the activities of an ongoing process, while the 
former constructs programs for the target and is usual- 
ly a commercially available computer. Such a computer 
usually contains a cross compiler and/or cross assem- 
bler, a linking loader for the target, and an instruction 
level simulator. The characteristic phases of typical real- 
time software testing are host and target testing. 

ules. Most of the techniques we b e  for testing on a host 
computer are the same as for non-real-time applications. 
The full system is rarelytestedon the host, as wecandis- 
cover only logical, and not timing, errors. An instruction 
level simulator may detect some target-dependent errors 
and errors in support software (for example, in the com- 
piler t a r g e t d e  generator or assembler) on the host. 

In target testing, we conduct individual function test- 
ing first, followed by module and integration testing, 
which is sometimes performed using an environment 
simulator to drive the target computer. An environment 
simulator is an automated replication of the external sys- 
tem world and is of most use Ih testing real-time appli- 
cations in which a specific environment exists and has 
been specified. 

A commonly used practice in testing a real-time sys- 
tem is to examine the system's reaction to a single event 
(behavioral testmg). Mer testing a slngle execution path, 
we can then introduce multiple events of the same dass 
without introducing events of any other class. The 
process continues to test a single class at a time, and 
then progresses to more than one class of events occur- 
ring simultaneously, in random order and with random 
frequency. At this stage, we should introduce new event 
tests gradually so that we may localize system errors. 

Host testing's goal is to meal  error^ in software mod- 

-_ ~~ ~ 

profiles, according to specific required services and size 
limitations. These profiles are the basic system and 
Posix-compliant profiles.12 (Posix refers to IEEE Std 
1003.1, Portable Operating System Interface for 
Computer Environments.) 
The common, low-level part consists of hardware- 
dependent functions on which we can implement the 
high-level machine-independent ones as a library. 

This scheme allows RTOS to run over a variety of processors 
as only the common low-level functions have to be ported to 
each target. Example processos are the m 6 ,  ARM (Advanced 
RISC Machines) Limited's general-purpose, 32-bit RISC micrc- 
processor, and SGS-Thomson's Sl-9, a 8416-bit microcontroller. 
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The architecture of the OMVCLEAR real-time libraries sup- 
ports two execution modes: urcer modeswhich does not 
allow access to the hardware, protected memory areas, or 
registers; and system or supervisor mode, which the system 
uses to perform all crucial operations. In the double-execu- 
tion mode, tasks are only allowed to access the system in a 
controlled way through a system call, which involves a trap, 
a change in the processor’s priority, and a stack switch. This 
method increases system security but affects execution 
speed. On the other hand, application programmers may 
select a single-mode scheme in which all parts of the appli- 
cation (even system-independent ones) execute in system 
mode. 

Finally, RTOS offers a variety of services for scheduling 
(including conventional, real-time, priority-based, and pre- 
emptive scheduling algorithms such as FIFO, round robin, 
and rate monotonic), task management, synchronization 
(using semaphores or events), memory management, inter- 
task communication (via signals or ports), input/output, and 
interrupt handling, to name a few. 

Each group of services supports different configuration 
levels, which allows the user to customize services and avoid 
wasting space and time, as the system does not allocate 
memory or link code for unwanted resources. For example, 
if an application does not require buffer pools, selecting the 
corresponding configuration level and rebuilding the system 
will exclude all code related to buffer pools. Users can fol- 
low the same procedure to select scheduling services; five 
configuration levels are available: 

Explicit scheduling-The running task explicitly reacti- 
vates another task. This option does not support the sys- 
tem clock. 
Priority scheduling-The scheduler works on a priori- 
ty basis, handling tasks residing in multiple priority 
queues, and is activated by explicit calls to resume and 
suspend. This option also does not support the system 
clock. 
Complete scheduler-This option supports a complete 
time slicing and round-robin scheme. 
Special behaviors--Users can dynamically define sched- 
uling policies, even on a per-task basis (preemption can 
be disabled, for example). 
Task accounting-An accounting mechanism traces the 
number of times a task has been scheduled and the 
number of clock ticks it has been running 

RTOS testing methodology 
Our methodology uses the single-mode scheme to allow 

direct access to the whole system. Tests cover the basic sys- 
tem and common low-level functions on both the ARM6 and 
a DOS-based host computer (using the emulator from the 

JumpStart development environment). We have also tested 
the Posix functions on a DOS-based host wider simukttion, 
as the ST9 was unavailable at the time of test. As a result, we 
have not tested certain Posix and common low-level func- 
tions specific to the ST9. 

The checklists we produced contain explicit references to 
different configuration levels and options with different 
expected program behaviors only when the specifications 
contain such references. In all other cases, we selected the 
most complete system configuration to test all of the source 
code applicable to the ARM6 target processor. In the source- 
code listings for the white-box tests; boxes enclose sections 
of code corresponding to a particular configuration option. 

The strategy for testing CLEAR RTOS includes individual 
(unit) function testing, as well as incremental bottom-up 
module and integration testing. We first identlfy all func- 
tionalities from the specifications and form checklists,b.8 then 
classlfy each function and consequ.ently all its functionalities 
into one of the following functional areas: system manage- 
ment, scheduler, task management, interrupts, memory 
management, semaphores (Posix mutual-exclusion mecha- 
nisms), message queues (Posix mailboxes), input/output, 
time management, signals, or events. 

Module and integration testing~follows test case design 
and the individual testing of each function. Every module is 
integrated into the system when ready. Meanwhile, a mod- 
ule’s functionalities (if needed) are temporarily replaced by 
an appropriate stub or driver to ensure correct coordination 
among modules. Our method adopts an incremental bot- 
tom-up approach because the development is bottom-up, 
from low- to high-level parts, and testing and development 
activities must proceed, to a certain degree, in parallel. This 
strategy makes test case design easier and finds errors in crit- 
ical modules earlier. 

We have not considered the pure top-down approach suit- 
able since our project’s timing constraints require proving 
the feasibility and practicality of the most critical modules 
(the scheduler, for example) early. Sometimes, a lower level 
module is not available when we are testing higher level 
ones that need it. This is why we use a modified bottom-up 
technique, when deemed necessary, to minimize delays. 

Our method treats every function of RTOS as a black box. 
Thus, its aims,are to construct tests for each independent enti- 
ty according to its specifications and determine whether the 
inputloutput behavior of each function meets its specifica- 
tions. Black-box testing alludes to tests we conduct at each 
function interface, and demonstrates that all functions are 
operational (meaning that input is pioperly accepted, and 
output, both in the form of actual returned values and side 
effects, is produced correctly). A point of interest in black- 
box tests of individual functions is that many RTOS functions 
perform certain operations not by themselves, but by calling 
other functions. This stems from the highly modular nature 
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of RTOS, which is necessary to provide added flexibility and 
suppofi for multiple targets. As a result, we have to enhance 
the aforementioned generic definition of a function’s inter- 
face to address this type of function. So, the presence of func- 
tion calls in black-box individual function tests is justified. 

For white-box testing, we selected the branch coverage 
criterion to handle the size and complexity of RTOS. Ideally, 
we would use the white-box approach to test both individ- 
ual functions and modules. However, as modules get more 
complex, white-box testing becomes impractical because it 
requires defining all logical paths inside each function, exer- 
cising them, and evaluating the results. So the white-box 
technique is only for the individual function tests of all basic 
system, Posix, and common low-level functions (except 
those coded in assembly language). 

We perform the test of each individual function or mod- 
ule both positively (testing on normal inputs) and negative- 
ly (testing the system’s reaction to abnormal inputs). 
Furthermore, if we can identify input cases not reported in 
the specifications, we design unspecified test cases. 

For unspecified test cases, we should make a distinction 
between system calls and internal (kernel) functions, as there 
is a different approach between the design and testing points 
of view. Although it may be a design decision that RTOS per- 
forms no parameter checking for internal functions, it is impor- 
tant for testing to remain consistent and exercise every function 
using incorrect input, including functions that the user may 
not directly call. It is safer to check each function indepen- 
dently, without making any assumptions as to whether it is 
called by another function with correct or incorrect parame- 
ters. Bearing this in mind, the unspecified test cases for inter- 
nal functions do not infer an omission by the design group, 
but only reflect a design decision. Therefore, we should dis- 

Table 1. Checklist for sys-create-semaphore function. 

Functionality Description 

1 If count is illegal, set error-number to  
BAD-ARGUMENT-1 and return 
SY STE M-E RRO R . 

Get the index of the first free entry. If no 
semaphore is currently available, set 
error-number to  
NO-MORE-SEMAPHORES and return 
SYSTEM-ERROR. * 

Save the index of the next free semaphore. 
Initialize the semaphore counter with count. 
Mark the semaphore table entry as used by 

2 

3 
4 
5 

a user semaphore and return its 
identification number. 

tinguish these two categories of unspecified test cases. 
Thus, a carefully selected and systematic combination of 

black- and white-box testing maximizes test coverage while 
keeping test complexity at an acceptable level. 

,* 

Examples of individual function testing 
We present examples of both black- and white-box indi- 

vidual function tests of the same function (sys-create-sem- 
aphore). These examples show that the methods discussed 
earlier are not alternative ones, but investigate different 
aspects of the tested function. 

Black-box testing. To test each function, we construct a 
checklist and test specification table (see examples in Tables 
1 and 2). The checklist contains the function operation, iden- 

Table 2. Black-box test specification table for sys-create-semaphore function. 

Tested 
functionallties Given input Type Expected output Actual output OWnot OK 

1 Count = -32768/-1 N SYSTEM-ERROR SYSTEM-ERROR OK 
(error-number should . (error-number has changed 
change to to  BAD-ARGUMENT-1) 
BAD-ARGUMENT-1 ) SYSTEM-ERROR 

2 Count = 0/32767 N SYSTEM-ERROR (error-number has changed OK 
(no free semaphore slots) (error-number should to  

change to  NO-MORE-SEMAPHORES) 
NO-MORE-SEMAPHORES) 5 

4 Count = 0/32767 P Semaphore-id (created semaphore’s counter OK 
5 (free semaphore slots, (created semaphore’s counter has been set to 0/32767; 

the semaphore has been 
marked as user semaphore) 

first free semaphore id = 5) should be set to count; the 
semaphore should be 
marked as user semaphore) 
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tification, arguments, return value, and a table of function- 
alities (functionality numbers and descriptions). The test 
specification table lists tested functionalities, given input, 
type (positive, negative, or unspecified), expected output, 
real output, OK or not OK. 

An actual test, which is represented by a row in the test spec- 
ification table, proceeds as follows: We examine the function’s 
operation with the given input. Whatever is found in paren- 
theses in the given input column corresponds not to an actu- 
al argument of the function, but to either a variable or a 

set-error(BAD-ARGUMENT-1); 
return SYSTEM-ERROR; 

int sys-create-semaphore(int count) 
f 

2 

set-error(N0-MORESEMAPHORES); 
return SYSTEM-ERROR; 

4 

semaphores [index].counter = count; 
semaphores [indexlstate = USER-SEMAPHORE; 
return index; 

I 

Figure 1. Source code for sys-create-semaphore. 

condition that affects the functionalities under test. Thus, its 
definition is necessary for test execution. The equivalence- 
partitioning approach has identified two equivalence class- 
es for the input argument count, one in which count is 
greater or equal to zero and one in which it is negative. Since 
count is an integer (and represented by 2 bytes), the first 
equivalence class ranges from 0 to 32,767 and the second 
from -32,768 to -1. In these ranges, we selected the two 
boundary values (instead of using random ones) to account 
for the boundary value analysis complement to the equiva- 
lence-partitioning approach. 

The expected-output column presents the expected results 
of the function’s execution with the given input. These results 
consist of the function’s return values (if any) plus certain 
actions (enclosed in parentheses) that have taken effect. The 
table does not present variables appearing inside the func- 
tion’s code because the black-box approach does not con- 
sider them. However, a variable. altered by side effects, 
according to the specifications, may appear in parentheses 
(as it is not an actual return value). The examples in Tables 
1 and 2 show that black-box testing cannot check the third 
functionality “save the index of the next free semaphore,” 
since variables inside the function code are not monitored. 

Function sys-create-semaphore creates a semaphore. The 
argument count represents the semaphore counter, and the 
function returns either the semaphore identification number 
or SYSTEM-ERROR if the creation fails. 

White-box testing. In white-box testing, the only differ- 
ence in the structure of the test specification table is in the first 
column, now called tested paths because the focus is on exer- 
cising control-flow paths instead of specific functionalities. In 
addition. the contents of such a table differ because we must 

1 
I 

return SYSTEM-ERROR; 

4 

set-enor (NO-MORE-SEMAPHORES); 
return SYSTEM-ERROR; 

firs-semaphore = semaphores[index].counter; 
semaphores[index].counter = count; 
semaphores[index].state = USER-SEMAPHORE; 
return index; 

Figure 2. Flow graph for sys-create-semaphore. 

observe all variables inside the func- 
tion’s code and the table must present 
their values. From the function’s 
source code (Figure 1) we construct 
the corresponding flow graph (Figure 
2). Next, we select the test paths 
according to the branch coverage cri- 
terion. In this simple example, the 
selected paths are actually all possi- 
ble ones. We monitored the execu- 
tion of the function on the test cases 
using the ARM6 debugger to deter- 
mine the exact path traversed. 

We used the McCabe metric v 
(cyclomatic measure) to determine 
RTOS complexity and consequently 
the complexity of testing? The metric’s 
formisv(f3 = d+ 1, where Fisthe p n  
gram’s flow graph and dis the number 
of binary decision nodes in F. This 
measure is an upper bound on the 
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I Table 3. White-box test specification table for sysrreate-semaphore function. 
~ 

Tested 
paths Given input Type Expected output Actual output OWnot OK 

1-2 Count = -3276W-1 N SYSTEM-ERROR 
(*error-pointer t 
BAD-ARGUMENT-1 ) 

(*error-pointer t 
NO-MORE-SEMAPHORES) 

1-3-4-5 Count = 1132767 N SYSTEM-ERROR 
(no free semaphore slots) 

1-3-5 Count = 1132767 P Semaphore-id 
(free semaphore slots; (semaphores[5].counter t 
first free semaphore id = 5) 1132767) 

(first-semaphore t 6) 
(semaphores [5].state t 

USER-SEMAPHORE) 

SYSTEM-ERROR OK 
(*error-pointer = 
BAD-ARGUMENT-1) 

(*error-pointer = 
NO-MORE-SEMAPHORES) 

SYSTEM-ERROR OK 

5 OK 
(semaphores [5].counter = 

(first-semaphore = 6) 
(semaphores [5].state = 

USER-SEMAPHORE) 

1132767) 

number of paths (that is, white-box 
test cases) and satisfies the branch 
coverage criterion. The cyclomatic 
complexity metric of the following 
example, according to the above def- 
inition, is v ( F )  = 3. So, the maximum 
number of paths to examine is 3. 

Table 3 demonstrates that white- 
box testing provides different results 
for variables inside each function, 
such as the variable first-semaphore, 
which corresponds to the third func- 
tionality of the Table 1 checklist. 

We perform module and integration 
testing in an analogous way using the 
black-box technique. Although the 
tables are larger, the test table structure 
remains the same, since each module 
consists of several functions. We con- 
sider functions to form a level when 
called by other functions. An RTOS 
characteristic that affects module and 
integration testing is that even the 
largest modules are not more than four 
levels deep, while most of them are 
only two to three levels deep. In fact, 

sys-suspendtask0 

sys-signal-semaphore() 

sys-suspend-task() 

Suspended-wait 

sys-signal-semaphore() 

sys-suspendtask() 

sys-resume-task() 

4 
sys-suspend-task() sys-resume-task() 

s ys-sleep-tas k() 
w a k e s 0  

Figure 3. Task state diagram. 

functions that call other functions form all of the modules. As a 
result, the module test of the function at the top of a module 
may appear, at first, quite similar to the function’s individual test. 
As we discussed earlier, this is not true. 

Behavioral testing example 
In a typical class of events, a new task with a higher pri- 

ority (task 2) may preempt an earlier one (task 1). It does 

not matter what the specific tasks are or their priorities, as 
long as task 2’s priority is greater than task 1’s. This is because 
all these events belong to the same class. 

Figure 3 shows the possible states of a task in RTOS, as 
well as the system calls used for the transitions between 
states. We describe the expected behavior of RTOS as a con- 
sequence of this event in Figure 4 (next page). We must intro- 
duce the event to test whether RTOS reacts as expected and 



Table 4. Results of CLEAR RTOS software tests. 
~ ~ ~ _ _ _  

Basic Posix Low- 
Tests system support level Total 

All functions 
OK 60 
Not OK 10 
Total 70 

Black-box functionalities 
OK 209 
Not OK 6(1P, 5N) 
Total 21 5 

Black-box test cases 
OK 227 (94P, 133N) 
Not OK 6(1P, 5N) 
Total 233 

White-box functionalities 
OK 382 
Not OK 16(11P,5N) 
Total 398 

White-box test cases 
OK 243(126P, 117N) 
Not OK 16(11P, 5N) 
Total 259 

24 17 101 
21 2 33 
45 19 134 

85 18 312 
48 (9P, 39N) 2 (2P) 56 (12P, 44N) 
133 20 368 

86(58P, 28N) 18(18P) 331 (170P, 161N) 
52 (12P, 40N) 2 (2P) 60 (15P, 45N) 
138 20 391 

I 

158 17 557 
lO(9P, 1N) 1 (IP) 27(21P,6N) 
168 18 584 

115(76P,39N) 12(12P) 370(126P, 50N) 
12(llP, 1N) 1 (1P) 29(23P,6N) 
127 13 399 

mind that all errors are not of the 
same importance. The following 
tables and graphs present the cumu- 
lative results of testing for the total 
number of functions, functionalities, 
and paths tested. Of the functions we 
tested, 18 percent were low-level 
functions, 30 percent Posix support, 
and 52 percent basic system. Table 4 
presents the results of RTOS testing. 

Figure 5a shows the testing results 
for the number of tested functions. 
We considered a function not OK 
even when one of its functionalities 
or paths is not performed correctly. 

Figure 5b presents the results of 
testing black-box functionalities. The 
functionality types (positive or neg- 
ative) are' in parentheses. 

Figure 5c presents the outcome of 
black-box test cases. These results 
are not the same as in Figure 5b, as 
we test certain black-box functional- 
ities in more than one test case. 

Figure 5d presents the results of 
testing white-box functionalities. 
These functionalities differ from 
black-box ones in that they consid- 
er the internal operation of each 
function and thus are more detailed 
and greater in number. 

Finally, Figure 5e shows the results 
of executing white-box test cases, in 
which each test case corresponds to 
a different path. The test cases must 
exercise at least all the paths'accord- 
ing to the selected coverage criterion 
(branch coverage), and in simple 
cases we selected all possible paths, 
according to the most-complete path 
coverage criterion. 

In individual function testing, the 
average value of the McCabe metric 
we have encountered is about 5, 
while its maximum value is 10. 
These values reveal only part of the 
effort devoted to testing activities, 

then use the U 6  debugger to monitor the actual behavior 
of RTOS, as in white-box testing. 

Results 
The test result assessment provides evidence of the soft- 

ware's quality and reliability. Of course, we should bear in 

and we must consider the total si& of the tested code (in 
this example, 720 Kbytes of C source code). 

In general, discovering few errors does not imply inade- 
quate testing, but just that CLEAR RTOS runtime is very sta- 
ble. This is especially true of its basic system profile, because 
we can identfy most of the discovered errors as specification 
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rather than inipleinentation error. 
Nor does this fact imply that the 

Posix code is of lower quality. We 
tested early versions of Posix func- 
tions, and certain argument checks. 
although specified, had not been 
implemented.'1 The low percentage of 
erroneous white-box test cases 
(Figure Se) supports the quality of 
Posix code. White-box test cases are 
tiased on coded operations rather 
than on those that are specified hut 
unimplemented. In addition. the code 
structure was not final l~ecause there 
is the option of omitting certain func- 
tions to save space. 

TESTING RTOS is an ongoing 
activity, and we will present a more 
complete evaluation soon. Until now. 
experience from the application of 
our testing methodology confirms 
some general assertions: 

An independent group should 
perform testing since it is not 
easy for the development group 
to perform objective and highly 
error-revealing tests. 
A method should use both black- 
and arhite-box techniques, at 
least in the unit testing phase. 
since they reveal different kinds 
o f  errors. 
We should give special emphasis 
to selecting the appropriate cov- 
erage criterion. which assures an 

Basic 
system 

Posix 
support 

Low level - 
No. of functions (percentage) 

(4 

Basic 
system 

Posix 
support 

P= Low level 

NO. of functionalities 
(b) (percentage) 

Basic 
system 

Posix 
support 

Low level 

NO. of functionalities 
(d) (percentage) 

E 
E 

Basic 
system 

POSIX 
support 

Low level 

No. of test cases (percentage) 
(a 

Basic 
system 

Posix 
support 

Low level 92 

No. of test cases (percentage) 
(4 

Figure 5. Graphical representation of results in Table 4: all functions (a), btack- 
box functionalities (b), black-box test cases (c), white-box functionalities (d) , and 
white-box test cases (e). 

adequate confidence l e ~ ~ l  while limiting testing effort 
to an acceptable level. 
Following an incremental tmtton-up integration stfate- 
gy is best. since the deveIopment phase is also Imttoni- 
up and proceeds in parallel with testing. 
A test strategy also requires behavioral testing to exmi- 
ine a real-time operating system's reaction to events 
from as many event classes as possible. 

projects in Lvhich several partners rely on each other's results 
and time constraints are strict. P 

Acknowledgments 

Commission of the European Union. 
This project received 50 percent o f  its funds from the 

References 
Finally. following a systernatic testing approach not only 

ensures a predefined reliability level, but also permits the 
best possible organization of work from the project man- 
agement point of view. This is particularly important for large 

1 R.S. Pressman, Software Engineering: A Practitioner's Approach, 
McGraw-Hill, New York, 1992 

2. R S. Freedman, "Testability of Software Components," I€€€ 
Trans. Software Eng., Vol. 17, No. 6, June 1991, pp. 553-564. 

U-At-I 
DUE TO LACK OF CONTRAST, GRAPHS DID NOT REPRODUCE WELL. 

GRAPHS FOLLOW SAME SEQUENCE AS LEGEND October 1995 59 



3. G.J. Myers, TbeArtof Software Testing, John Wiley & Sons, New 
York, 1979. 

4. I. Sommerville, Software Engineering, Addison-Wesley, Reading, 
Mass., 1992 

5. 1.A Wise, V D. Hopkin, and P. Stager, eds., "Verification and 
Validation of Complex Systems: Human Factor Issues," NATO AS1 
Series F, Vol. 110. Springer-Verlag, Berlin, 1993. 

6. C. Farris and P. Petit, "Final Specification for the Real Time 
Runtime Support for Deeply Embedded Applications," Esprit 
Project 8906-OMIKLEAR, Tech. Report 4.1.2-01, Etnoteam 
S p A., Milan, Italy, Dec. 30, 1994. 

7. V.C. Gerogiannis and M.A. Tsoukarellas, "SAT-A Schedulability 
Analysis Tool for Real-Time Applications," Proc. Seventh 
Euromicro Workshop on Real-Time Systems, IEEE Computer 
Society Press, Los Alamitos, Calif, 1995, pp. 155-1 59. 

8 R.A. DeMillo et al., Software Testing and Evaluation, Kostis D. Economides is currently with 
Benjamin/Cummings Publishing Company, Reading, Mass., 1987. Advanced Informatics Ltd., where he is 

9. J.P. Myers, Jr., "The Complexity of Software Testing," Software responsible fo rbe  Esprit I11 OMI/CLEAR 
Engineering J., Jan 1992, pp. 13-24. project's testing activities. His current 

10. V.C. Gerogiannis, K.D. Economides, and M.A. Tsoukarellas, research interests include software test- 
"Runtime Validation Report," Esprit Project 8906-OMVCLEAR, ing, broadband networks, and network- 
Tech. Report 6.1.1 -01, Advanced Informatics Ltd., Patras, Greece, ing interconnectivity. 
June 29, 1995. Economides graduated from thqJJniversity of Patras, with 
R.L. Glass, "Real-Time: The Lost World of Software Debugging 
and Testing," Comm ACM, Vol 23, No. 5, May 1980, pp. 264- 
271. 

1 2. /E€€ Std 1003 1 b- 1993, Standards for Information Tecbnology- 
Portable Operating System Interface (POsixkPart I :  Application 
Program Interface (APl) [C Language]-Amendment' Realtime 
Extensions, IEEE, Piscataway, N.J., 1993 

Vasllps C. Gtpo$lbaLds is a PhD student 
at W U m  &f W a n d  also works 
for Advanced I-* SLtd. Specifica- 
tion mechanism for real-time systems, 
real-time scheduling, and software test- 
ing are his special interests. 

Gerogiannis holds an MS in computer 
nformatics from the University of Patras. 

11 a BS in computer engineering and informatics. 

Direct questions concerning this article to Manthos A. 
Tsoukarellas, Advanced Informatics Ltd., 35 Gounari Ave., 
26221 Patras, Greece; manthos@advinfo.pat.forthnet.gr. 

Manthos A. Tsoukarellas is a professor 
of informatics at the Patras and Mesologi 
Technological Education Institute in 
Greece. He is also founder, president, and 
executive director of Advanced Ipformat- 
ics Ltd. His research interests include the 
monitoring and performance evaluation 

of real-time systems. 
Tsoukarellas served as an evaluator of the Esprit propos- 

als for the European Commission and has been involved in 
several Esprit projects. 

Reader Interest Survey 
Indicate your interest in this article by circling the appropriate 
number on the Reader Service Card. 

Low 165 Medium 166 High 167 


