
Reconfigurable Microkernel-based RTOS:
Mechanisms and Methods for Run-Time Reconfiguration ∗

Marcelo Götz and Florian Dittmann
Heinz Nixdorf Institute
University of Paderborn

Fuerstenallee 11, 33102 Paderborn, Germany
{mgoetz, roichen}@upb.de

Abstract

The requirements of high computational performance
and flexibility of the contemporary embedded systems are
continuously increasing. Moreover, a single architecture
must be able to support different applications with dynami-
cal requirements (changing environments). Reconfigurable
computing based on hybrid architectures, comprising gen-
eral purpose processor (CPU) and Field Programmable
Gate Array (FPGA), is very attractive because it can pro-
vide high computational performance as well as flexibility
to support the requirements of today’s embedded systems.
An operating system (OS), which is desired to provide sup-
port for such systems, has to use the available resources
in an optimal way (competing with the applications), since
embedded system architectures are usually lacking in re-
sources. In this paper, we present our approach towards a
reconfigurable RTOS that is able to distribute itself over a
hybrid architecture (comprising FPGA and CPU). We will
describe the main concepts and methods used to achieve the
desired RTOS. Moreover, we present some preliminary eval-
uation results which show the realizability of our approach.

1. Introduction

Operating Systems (OS) ease the application design and
help to properly tackle the underlying architecture of a sys-
tem [5]. Evaluating the reasons for using an OS regarding
Systems-on-Chip (SoC), we find strong support for apply-
ing an OS to SoCs. However, the embedded system nature

∗This work was developed in the course of the Special Research Ini-
tiative 614 - Self-optimizing Concepts and Structures in Mechanical En-
gineering - University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft. It was also partially sup-
ported by DFG SPP 1148.

of SoCs is usually characterized by a limited availability of
resources. Thus, a complete OS that supports all occurring
application requirements is usually difficult to instantiate.
Moreover, due to changing application requirements, an ef-
ficient usage of the available resources (shared between OS
and application) is necessary. Here, reconfigurable comput-
ing comes in and provides a sophisticated architecture for
OS requirements of a SoC.

Run-time reconfigurable architectures are becoming
very attractive to compose run-time platforms for today’s
embedded systems. For instance, in modern Field Pro-
grammable Gate Arrays (FPGAs), the availability of a gen-
eral purpose processor (GPP) surrounded by a large field of
reconfigurable hardware offers the possibility for a sophis-
ticated SoC concept. Moreover, the capability of such de-
vices to be on-the-fly partially reprogrammed allows to dy-
namically adapt not only the software but also the hardware
to the current system requirements, performing a Reconfig-
urable SoC (RSoC). The resulting system is one that can
provide high performance by implementing custom hard-
ware functions in the FPGA and still be flexible by repro-
gramming the FPGA and/or using a microprocessor (hybrid
architecture).

Embedded systems often need to cope with different
kinds of application, which may enter or leave the system
over time. Additionally, each application may have differ-
ent resource requirements during its operation. The Fig-
ure 1 shows such a scenario. For instance, imagine a Per-
sonal Data Assistant (PDA) where a movie is being played
at full screen. Specific services are required from the ap-
plication to achieve a predefined Quality-of-Service (QoS)
(e. g., memory bandwidth to read the movie data, decoder
performance, driver for display device). The user may, in
an arbitrary point of time, open a new application (e. g., an
e-mail client) and also choose to keep the movie running
in a smaller screen. In this situation, the movie applica-
tion will run in a different mode having, therefore, different

1-4244-0690-0/06/$20.00 ©2006 IEEE.

APPLICATION 1,m

APPLICATION 1,2

APPLICATION 1,1

APPLICATION 2,m

APPLICATION 2,2

APPLICATION 2,1

APPLICATION n,m

APPLICATION n,2

APPLICATION n,1

OS API

SW HW

Reconfigurable OS OS services

Figure 1. System overview

requirements (e. g., lower bit-rate decoder, small bandwidth
memory access). Moreover, new resources may be provided
to the new application.

In the scope of our ongoing research we are develop-
ing a run-time reconfigurable Real-Time Operating Sys-
tem (RTOS). We propose to reconfigure our OS online to
provide the necessary services for the current application
needs. Therefore, the system continuously analyzes the ap-
plication requirements and decides on which execution do-
main (CPU or FPGA) the required RTOS components will
be placed. Additionally, whenever the OS components are
not placed in an optimal way (due to the application dy-
namics), a reconfiguration of the OS is necessary. Thus,
techniques for a deterministic system reconfiguration need
to be used in order to avoid the violation of the timeliness
of the real-time running applications.

In this paper we will present the main aspects of our OS,
focusing on the mechanisms used to handle the OS service
allocation and reconfiguration at run-time. The remaining
of the paper is organized as follows. After the analysis of
the state-of-the-art in Section 2, we give an overview of the
whole system in Section 3. The Section 4 gives the neces-
sary model and notations used in Sections 5 and 6, which
discuss the service allocation and the service reconfigura-
tion, respectively. We provide the results of our experiments
in Section 7 and give the conclusions in Section 8.

2. Related Work

Implementing OS services in hardware is a well re-
searched field. Several works in the literature, e. g., [12],
[11], [10], [13] and [14], show that hardware implemen-
tation may significantly improve performance and deter-
minism of RTOS functionalities. The overhead imposed
by the operating system, which is carefully considered in
embedded systems design due to usual lack of resources,
is considerably decreased by having RTOS services imple-

mented in hardware. However, up to now all approaches
have been based on implementations that are static in na-
ture, that means, they do not change at run-time even when
application requirements may change significantly.

Reconfigurable hardware/software based architectures
are very attractive for implementation of run-time reconfig-
urable embedded systems. The hardware/software alloca-
tion of system components to dynamically reconfigurable
embedded systems allows for customization of their re-
sources during run-time to meet the demands of executing
applications, as can be seen in [9].

An example of this trend is the Operating System for Re-
configurable Systems (OS4RS) [16]. This work proposes an
operating system for a heterogeneous RSoC. It aims to pro-
vide an on-the-fly reallocation of specific application tasks
over a hybrid architecture, depending on the computational
requirements and on the QoS expected from the application.
Nevertheless, the RTOS itself is still static. Moreover, the
time needed for reconfiguration is barely an issue in the de-
sign.

Additional research efforts spent in the field of reconfig-
urable computing are only focusing on the application level,
leaving to the RTOS the responsibility to provide the nec-
essary mechanisms and run-time support. The works pre-
sented in [17] and [15] are some examples of RTOS services
to support the (re)location, scheduling and placement of ap-
plication tasks on an architecture composed by an FPGA
with or without a CPU. In our proposal, we expand those
concepts and propose new ones to be applied on the RTOS
level. Thus, not only the application but also the RTOS it-
self may be reconfigured on a hybrid architecture in order
to make a better usage of the available resources in a flexi-
ble manner. Moreover, according to our knowledge there is
very little work dealing with on-line migration of processes
between hardware and software execution environments.

3. System Overview

3.1. Hardware Architecture

The core of our architecture is a Virtex-II Pro fabric,
which can be partially reconfigured at run-time and pro-
vides additionally a hardcore embedded processor. In Fig-
ure 2(a) we show the embedded system architecture in more
details. The reconfigurable part of the FPGA is divided into
n slots. Each slot provides an OS service framework (Fig-
ure 2(b)). The local memory is used to support the commu-
nication between local components and the global shared
memory is used to perform the communication with com-
ponents running on the CPU. The local controller is used to
manage the access to the local memory and the global con-
troller, which together with its counterpart in software, per-
forms the communication infrastructure mentioned in Sec-

S1 SnS1
Shared

Memory

Global

CTRL

LOCAL BUS

(Busmacros)

MEMORY
CPU

RTR

FPGA

(a) Architecture overviwe

Local

Mem.

OS

Service

CTRL

Local Bus

Slot n

(b) OS service slot template

Figure 2. System architecture

tion 3.2. The slots are connected using Busmacros. In order
to program the FPGA slots, the reconfiguration port is used,
which may be local (by using the ICAP Xilinx entity) or an
external Run-Time Reconfiguration (RTR) controller.

3.2. Abstract View

Our RTOS is composed of a set of services that may run
either on the CPU or on the FPGA. Therefore, the reconfig-
urable services are provided in two versions of implemen-
tation: software and hardware. In our approach, most of
the application tasks run on the CPU and only application
critical tasks use FPGA resources.

The target RTOS architecture follows the microkernel
concept, where application and operating system services
are seen as components running on top of a small layer
which provides basic functionalities. The Figure 3 shows
our architecture abstractly. Additionally, the communica-
tion infrastructure layer provides the necessary support to

OS/

HW

Communication Layer

OS/

SW

OS/

SW
APP/

SW

APP/

SW

Interface

OS/

HW

Interface

Figure 3. Proposed microkernel based archi-
tecture.

allow the communication among components running over
the hybrid architecture in an efficient manner.

Without loss of generality, we assume that over the hy-
brid architecture the OS services are seen as components,
which use system resources (FPGA area, CPU workload
and communication bandwidth). This view is enforced by
the usage of the microkernel architecture model.

4. Model and Problem Formulation

The problem of assigning RTOS components to the two
execution environments can be seen as a typical assignment
problem. Therefore, we decided to model the problem using
Binary Integer Programming (BIP) [18]. A set of available
services is represented as S = {si,j}, where every service i

has its implementation for CPU (j = 1) or FPGA (j = 2).
Every component has an estimated cost ci,j , which repre-
sents the percentage of resource from the execution envi-
ronment used by this component. On the FPGA it repre-
sents the circuit area needed by the component, and on the
CPU it represents the processor workload used by it.

The assignment of a component to either CPU or FPGA
is represented by the variable xi,j . We say that xi,j = 1, if
the component i is assigned to the execution environment j,
and xi,j = 0 otherwise.

Due to the application dynamism, the assignment deci-
sion needs to be checked continuously. This implies that a
set of RTOS components needs to be relocated (reconfig-
ured) by means of migration. In other words, a service may
migrate from software to hardware or vice-versa. Addition-
ally, services may be replaced by new ones (in order to use
less/more resources). In this case, a reconfiguration of a
service in the same execution environment occurs (hereafter
also called migration).

In a typical embedded real-time system, the application
may be modeled as a set of periodic activities. Sporadic
tasks can also be modeled as periodic ones through the as-
sumptions that their minimum interarrival time being the

Table 1. Service definition related to its peri-
odic execution

Parameter Description

Esw,i Execution time of a service i in software
Ehw,i Execution time of a service i in hardware
Pi Period of a service i

Di, di,k Relative and absolute deadlines
of a service i

ai,k, si,k, fi,k Arrival, starting and finishing time
of a service i

period. Hence, we assume the applications as being a set of
periodic tasks and that the OS services required present an
periodic behavior.

Let us define a set S that represents the OS services:
S = {si, i = 1, ..., n}. Hereafter, we will use compo-
nent and service as interchangeable terms. In relation to its
periodic execution, each service si ∈ S is characterized by
the parameters shown in Table 1, where k denotes the kth
instance of a process i.

Additionally, every service i running in software utilizes
some processor load which is defined as: Ui =

Esw,i

Pi
=

ci,1. Similarly, for every service i running in hardware,
some percentage of the FPGA area is used: Ai = ci,2.

5. OS Service Allocation

A heuristic algorithm presented in [7] and improved in
[8] determines the allocation OS components. It decides
at run-time where to place each OS component taking into
consideration its current cost and the remaining available
system resources. Here, the resources are FPGA area (for
components being located in hardware) and CPU proces-
sor utilization (for components being located in software).
Thus, the system has to locate the RTOS components in
a limited FPGA area (Amax) and limited CPU processor
workload (Umax).

Every component i has an estimated cost ci,j , which rep-
resents the percentage of resource from the execution envi-
ronment used by this component. On the FPGA (j = 2) it
represents the circuit area needed by the component and on
the CPU (j = 1) it represents the processor load used by
it. The heuristic mentioned above minimizes an objective
cost function (Equation 1) subject to the system resource
constraints (Equations 2 and 3).

min{
2∑

j=1

n∑

i=1

ci,jxi,j} (1)

U =
n∑

i=1

xi,1ci,1 ≤ Umax (2)

A =
n∑

i=1

xi,2ci,2 ≤ Amax (3)

Besides these constraints, an additional one is defined
in order to maintain a balanced resource utilization: B =
|w1U − w2A| ≤ δ. Where δ is the maximum allowed un-
balanced resource utilization between CPU and FPGA. We
also consider that a component i can be assigned just to one
of the execution environments. Thus,

∑
2

j=1
xi,j = 1 for

every i = 1, ..., n. The weights w1 and w2 are used to prop-
erly compare the resource utilization between two different
execution environments. The solution of this BIP are the as-
signment variables xi,j , which we define as being a specific
system configuration: Γ = {xi,j}.

The allocation algorithm is composed of two phases.
First, starting from an empty CPU and FPGA utilization,
the components having the smallest costs are selected first
and placed on either CPU or FPGA, trying to keep the re-
source utilization between these two execution domains the
same. In the second phase (based on Kernighan-Lin [4]),
the allocation is refined by changing the previous location
of a component pair (each one locate in different execution
domain). This last phase is used in order to improve the
balance of resources used and to achieve the constraint δ.

Due to the application dynamism, the assignment deci-
sion needs to be checked continuously. Whenever the spec-
ified constraint δ is no longer fulfilled, a system reconfig-
uration takes place. This implies that a set of RTOS com-
ponents needs to be relocated (reconfigured) by means of
migration. In other words, a service may migrate from soft-
ware to hardware or vice-versa.

6. OS Service Reconfiguration

As is has been said in the Section 4, the application re-
quirements are considered to change over system life time.
These modifications are represented by changes of the com-
ponent costs ci,j . This leads to the fact that a certain sys-
tem configuration Γ may no longer be valid after application
changes. Therefore, a continuously evaluation of the com-
ponents partitioning is necessary. Whenever the systems
reaches an unbalanced situation (|w1U − w2A| > δ), the
RTOS components should be reallocated in order to bring
the system again in the desired configuration.

In this case, a subset SR of the current active service set
S will suffer a reconfiguration (hereafter called migration):
SR = {s�

i , i = 1, ...,m}, where SR ⊆ S and m ≤ n.
From this point, we have to solve two problems:

• the order in which the components will be reconfig-
ured;

• the reconfiguration from each component itself.

Both cases will be treated in the following subsections.

6.1. OS Components Scheduling

Defining T S and T H as the services running in soft-
ware and hardware, respectively, after one migration we
will have: T S∗ and T H∗. Thus, if for every component
migration the following conditions are fulfilled, the schedu-
lability of the tasks are guaranteed:

∑

i∈T S∗

Ui ≤ Umax ;
∑

i∈T H∗

Ai ≤ Amax (4)

In order to find a feasible schedule for every task migra-
tion, the service subset SR (defined in Section 6) needs to
be previously sorted in a proper order. In other words, the
sorting of services that will suffer a reconfiguration charac-
terizes a schedule problem under resources constraints.

In order to tackle this problem in a proper manner, we
separate the components that will undergo a migration in
their own execution environment from the ones that will
change it. Given the set SR, three new subsets are defined:

SRa Services that will be migrated in software;

SRb Services that will be migrated in hardware;

SRc Services that will be migrated between hardware and
software.

The services from subset SRa will be scheduled first if
they will represent a reduction in the final CPU workload,
otherwise, they will be scheduled at the end. The same is
done with the components from SRb concerning the final
FPGA area. Therefore, our proposed approach is reduced
by finding a schedule for the service set SRc.

If |SRc| = x, the feasible solutions Sf is a subset of
the x! possible schedule solutions (permutations of compo-
nents in SRc). To solve this problem, Bratley’s algorithm
[1] could be applied, in which the search space for a valid
schedule is reduced. Nevertheless, the worst-case complex-
ity of the algorithm is still O(x · x!), as we have to analyze
x! paths of length x. For this reason, we propose a heuristic
algorithm to solve the component reconfiguration schedule.

The basic idea of our heuristic algorithm is the use of the
component costs (ci,j) as a criteria for searching a solution
in the tree of all possible schedules. Looking at the compo-
nents that need to leave the CPU, the strategy is the follow-
ing: try to migrate the component with the highest software
cost and with the smallest hardware cost first. Thus, the
total software resources used tend to decrease quickly and,

in the same way, the total hardware resources used tend to
increase slowly. Similarly, the same strategy is applied to
the components that need to leave the FPGA. Consequently,
two partial schedules PSa and PSb are generated using the
strategy explained above.

Let Sa = {sa1, ..., sap} and Sb = {sb1, ..., sbq} be
the components that need to leave the CPU and FPGA, re-
spectively, so that Sa ∪ Sb = SRc and Sa ∩ Sb = ∅.
Let Ia = {i1, ..., ip} be the index array that represents Sa

sorted by decreasing software costs, so that {ci1,1 ≥ ci2,1 ≥
... ≥ cip,1}. Similarly, Ja = {j1, ..., jp} is defined as the
index array that represents Sa sorted by increasing hard-
ware costs: {cj1,2 ≤ cj2,2 ≤ ... ≤ cjp,2}.

The algorithm starts comparing the first two components
of Ia and Ja (k = 1). If no match (same index in both
arrays) is found, it expands the search (k = 2) on the first
two components of Ia and Ja (total of four components).
Hence, the search is done gradually until a match is found.
If this is the case, the index is removed from both arrays,
the schedule is updated and the search restarts on the re-
maining arrays. Note that a match is always found, since
the same elements from Ia is also presented in Ib. Hence,
the algorithm will always terminate.

It can be seen that for every k value the algorithm cal-
culates, in the worst-case, 2k − 1 comparisons. Thus, for a
worst-case scenario when searching for a match, where the
search is done over the whole array (k = |Ia| = |Sa|), the
total number of comparisons will be 1+3+5+ ...+(2p−
1) =

∑p

i=1
(2i − 1) = p2 (which is the maximum number

of combinations that can be done between two arrays of size
p). Therefore, the complete partial schedule algorithm has
a complexity of O((n− 1)n2), since for every index match
found, the search will be applied again on a reduced index
array.

If Ib and Jb are defined as the index arrays that repre-
sent Sb sorted by decreasing hardware costs and sorted by
increasing software costs, respectively, we apply the same
partial algorithm using these two index arrays to get PSb.

The final schedule is found by merging the partial sched-
ules in an interleaving manner. The components from the
partial schedules PSa and PSb are selected in an alternat-
ing manner. The number of components selected from each
partial schedule at each step is proportional to their sizes
(|PSa| and |PSb|).

6.2. OS Component Reconfiguration

To handle the reconfiguration of each single OS com-
ponent in a deterministic way, we propose to model these
reconfiguration activities as aperiodic jobs and therefore a
server for aperiodic jobs is applied. As the arrival of these
reconfiguration activities is not known a priori, they can be
seen as aperiodic jobs.

Let us represent these reconfiguration activities as a set
J of aperiodic jobs: J = {Ji(J

a
i , Jb

i), i = 1, ...,m}. In
real-time scheduling theory, when real-time periodic tasks
and non (or firm) real-time aperiodic tasks need to be sched-
uled together, a server for aperiodic tasks is generally used.
The basic idea of this approach is to include a new periodic
task into the system, which will be responsible for carry-
ing out the aperiodic jobs without causing a periodic task
to miss its deadline. A more comprehensive and detailed
explanation of this idea is given in [3].

Among different types of servers, we focus our analysis
on the Total Bandwidth Server (TBS) [3] due to the follow-
ing reasons:

• We are currently using Earliest Deadline First (EDF)
as our schedule policy;

• Under EDF, it is one of the most efficient service mech-
anism in terms of performance/cost ratio [2].

According to the literature, the TBS assigns a deadline
for an aperiodic task k arriving in the system at time ak in
the following manner:

dk = max(ak, dk−1) +
Ck

Us

(5)

Where dk−1 represents the deadline of the aperiodic job
that has arrived before job k; Us is the server bandwidth
and Ck is the execution time requested by the aperiodic job.
Deadline dk−1 is 0 if k is the first one, or if all pending ape-
riodic jobs have arrived before k has already been finished.

Since we consider the behavior of a service execution as
being periodic (see Table 1), we constraint the migration ac-
tivity (the periodic job) to be carried out between two con-
secutive instances of a service. Thereby, we avoid the pre-
emption of a service during its execution in one execution
domain and the resume of this service in the other execu-
tion domain. Moreover, we reduce significantly the amount
of context data migration between execution domains. In
order to clarify this situation, in Figure 4 a scenario is pre-
sented where an OS service is migrated from software to
hardware.

Assuming this constraint, we adjust the arrival of a mi-
gration job to the arrival of a service instance and the dead-
line for this job to the beginning of the service execution
(start time). These adjustments and the execution time of a
migration job are then applied in the Equation 5 (TBS dead-
line assignment rule). Hence, we now can derive the min-
imal server bandwidth necessary to migrate an OS service
respecting the constraint explained above. For each possi-
ble migration case a minimal server bandwidth was derived
and the results can be seen in [6] and will not be treated in
the scope of this work.

Service i

in SW

Server
In SW

Service i

in HW

k k+1i,k+1

b,i b,i

Jb,i

Figure 4. Scenario where a service migrates
from software to hardware

7. Experimental Results

For system evaluation of the run-time assignment prob-
lem, we made some simulations using the MATLAB tool.
We generated a number of 100 different systems having
randomly costs: 1% ≤ ci,1 ≤ 15% and 5% ≤ ci,2 ≤
25%; and fixed size: n = 20 components. The maxi-
mum FPGA resource was defined to be 100% (Amax =
100), as well as for the CPU (Umax = 100). The com-
ponents assignment were calculated for every system us-
ing the 0-1 Integer Programming (optimal solution) and
the heuristic algorithm (first and second one). The av-
erage value of total cost (U + A) and the absolute dif-
ference cost (|w1U − w2A|) were compared for differ-
ent values of δ (the resource usage balancing restriction):
(0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50 and 60).

The solutions provided by the first heuristic algorithm
were very similar to the optimal one, if the δ constraint has
values around (δ ≈ 10%), concerning the fulfillment of this
constraint (see Figure 5, Heuristic-1). The smaller the δ the
poor the results given by the first heuristic algorithm. This
was expected to be so, since the first algorithm does not
consider the balancing restriction.

The application of the second algorithm over the solu-
tion provided by the first one delivers a better balancing B.
However, an increase in the total cost assignment was ver-
ified for the cases where the second algorithm achieved an
improvement in the balancing B (δ <≈ 10%). Neverthe-
less, the total cost assignment achieved by this heuristic al-
gorithm were quite satisfactory: maximum of 15% bigger if
compared with the optimal case (see Figure 6, Heuristic-2).

The scheduling of OS components was also evaluated.
Therefore, two consecutive system generated randomly for
the previous analysis was considered to be a system pair to
representing the current and new system configuration. To
evaluate the efficiency of the heuristic algorithm, all pos-
sible feasible solutions were also generated by calculating
all possible permutations of the reconfigurable components.
Due to computation complexity restriction, the size of the

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

δ

|U
−

A
|

Unbalance

Optimal
Heuristic−1
Heuristic−2

Figure 5. Unbalance average for different δ

constraints.

0 10 20 30 40 50 60
100

110

120

130

140

150

160

170

180

190

200

δ

U
+

A

Total Cost Estimation

Optimal
Heuristic−1
Heuristic−2

Figure 6. Total cost assignment average for
different δ constraints.

systems generated was limited to 8, which may produce a
maximum of 8! possible solutions.

Starting from U = A = 100% and systems having cost
average of 10%, the system did have 99.9 times at least one
feasible solution. From this amount of cases, the algorithm
could find a solution in almost all cases: 98.9%.

The dashed line at Figure 7 shows the percentage of
cases (average values) where at least one feasible solution
was found. The solid line shows the percentage of cases
where the heuristic did find a feasible solution from the fea-
sible ones. From Figure 7 it can be seen that the smaller
the U and A constraints became the poorer the efficiency of
the heuristic algorithm was. Nevertheless, the efficiency of
the heuristic algorithm decreases very much slower than the
number of cases where any feasible solution exists.

5060708090100
0

10

20

30

40

50

60

70

80

90

100

U and A constraints

P
er

ce
nt

ag
e

Feasible sol. found by heuristic over the feasible ones
At least one feasible solution

Figure 7. Heuristic Algorithm Evaluation

8. Conclusions and Future Work

Based on the need for OSs for SoCs and the contem-
porary capabilities of reconfigurable devices, we presented
our concepts and methods used to build a run-time recon-
figurable RTOS for SoC in this paper. The RTOS is able
to reconfigure itself over a hybrid architecture comprising
a CPU and a FPGA. Additionally to the allocation and mi-
gration concepts used, we also presented the hardware ar-
chitecture on which the RTOS and the applications run.

The RTOS is component based, where each component
represents a service used by the application. As fundamen-
tal requirement for RTOS reconfiguration, we presented and
evaluated a heuristic algorithm, which is used to allocate the
OS components over the hybrid architecture. Additionally,
we proposed the application of a server technique (from
real-time scheduling theory) to schedule the reconfiguration
(migration) activities in a deterministic manner. Therefore,
we also proposed a heuristic algorithm to sort the reconfig-
uration activities in a proper order.

Currently, we are porting some specific services of an OS
(e. g., encryption and a stack protocol of a communication
channel) to our architecture. We plan to run and evaluate
some prototyping scenarios on the architecture. Moreover,
techniques for a precisely measurement of the components
costs at run-time are being developed.

References

[1] P. Bratley, M. Florian, and P. Robillard. Scheduling with
Earliest Start and Due Date Constraints. Naval Research
Logistics Quarterly, pages 511–519, December 1971.

[2] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day.
Real-Time Systems, 29(1):5–26, 2005.

[3] G. C. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications, Second
Edition. Springer, 2006.

[4] P. Eles, K. Kuchcinski, and Z. Peng. System Synthesis
with VHDL: A Transformational Approach, chapter 4, pages
114–119. Kluwer Academic Publishers, 1998.

[5] F. Engel, I. Kuz, S. M. Petters, and S. Ruocco. Operat-
ing Systems on SoCs: A Good Idea? In Embedded Real-
Time Systems Implementation (ERTSI) Workshop, Lisbon,
Porgutal, December 2004.

[6] M. Götz, F. Dittmann, and C. E. Pereira. Deterministic
Mechanism for Run-time Reconfiguration Activities in an
RTOS. In of the 4th International IEEE Conference on In-
dustrial Informatics - INDIN, Singapore, 2006.

[7] M. Götz, A. Rettberg, and C. E. Pereira. Towards Run-time
Partitioning of a Real Time Operating System for Recon-
figurable Systems on Chip. In Proceedings of International
Embedded Systems Symposium 2005 - IESS, Manaus, Brazil,
August 2005.

[8] M. Götz, A. Rettberg, and C. E. Pereira. Communication-
Aware Component Allocation Algorithm for a Hybrid Ar-
chitecture. In Proceedings of 5th IFIP Working Conference
on Distributed and Parallel Embedded Systems - DIPES
2006, October 2006.

[9] J. Harkin, T. M. McGinnity, and L. P. Maguire. Modeling
and optimizing run-time reconfiguration using evolutionary
computation. Transactions on Embedded Computing Sys-
tems, 3(4):661–685, 2004.

[10] P. Kohout, B. Ganesh, and B. Jacob. Hardware Support for
Real-time Operating Systems. In International Symposium
on Systems Synthesis, pages 45–51, 2003.

[11] P. Kuacharoen, M. Shalan, and V. Mooney. A Configurable
Hardware Scheduler for Real-Time Systems. In ERSA, June
2003.

[12] J. Lee, V. J. M. III, K. Ingstrm, A. Daleby, T. Klevin, and
L. Lindh. A Comparison of the RTU Hardware RTOS with a
Hardware/Software RTOS. In ASP-DAC2003, page 6, 2003.
Japan.

[13] J. Lee, K. Ryu, and V. J. M. III. A Framework for Auto-
matic Generation of Configuration Files for a Custom Hard-
ware/Software RTOS. In ERSA, June 2002.

[14] L. Lindh and F. Stanischewski. FASTCHART - A Fast Time
Deterministic CPU and Hardware Based Real-Time-Kernel.
In EUROMICRO’91, pages 12–19, 1991. Paris, France.

[15] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde,
and R. Lauwereins. Infrastructure for Design and Manage-
ment of Relocatable Tasks in a Heterogeneous Reconfig-
urable System-on-Chip. In DATE, 2003.

[16] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauw-
ereins. Designing an Operating System for a Heterogeneous
Reconfigurable SoC. In International Symposium on Par-
allel and Distributed Processing - IPDPS. IEEE Computer
Society, 2003.

[17] G. Wigley and D. Kearney. The Development of an Operat-
ing System for Reconfigurable Computing. In IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
- FCCM, pages 249–250, April 2001.

[18] L. A. Wolsey. Integer Programming. Wiley-Interscience,
1998.

