
1

 Survey and performance evaluation of real-time
operating systems (RTOS) for small microcontrollers

Tran Nguyen Bao Anh*†, Su-Lim Tan†

*Renesas Technology Singapore, Singapore Engineering Centre, Singapore 098632
†School of Computer Engineering, Nanyang Technological University, Singapore 639708

Abstract— RTOS has gained popularity over the years in
microcontroller/processor-based embedded system design. In this
paper, we will discuss the important differences between RTOS and
generic OS, the advantages and disadvantages of using RTOS for
small microcontroller system development, and the benchmarking
methods used for RTOS. Several RTOSes are studied and compared
based upon numerous selection criteria, and four RTOSes are
selected for performance benchmarking on the same microcontroller
platform. For the purpose of performance benchmarking, a list of
benchmarking criteria which is aimed to be simple and representative
of typical RTOS usages are examined. The benchmarking results
show that there is no clear winner and each RTOS performed well on
certain criteria compared to others.
 Index Terms- kernel; operating system; real-time system;
RTOS; RTOS benchmarking

I. INTRODUCTION
EAL – time embedded systems are typically designed

for various purposes such as to control or to process data.
Characteristics of real-time system include meeting certain
deadlines at the right time. To achieve this purpose, real-time
operating systems (RTOS) are often used. An RTOS is a piece
of software with a set of APIs for users to develop
applications. Using an RTOS does not guarantee that the
system will always meet the deadlines, as it also depend on
how the overall system is designed and structured.

While RTOS for embedded systems were predominantly
employed in high-end microprocessors or microcontrollers
with 32-bit central processing unit (CPU), there is a growing
trend to provide these features in the mid-range (16-bit and 8-
bit) processor systems. In Section B, the use of RTOS for this
range of devices will be discussed in details.

An operating system (OS) is a piece of software that
manages the sharing of resources in a computer system. RTOS
is often differentiated from generic OS as it is specifically
designed for scheduling to achieve real-time responses.

A. Generic OS versus RTOS
RTOSes are typically differentiated from generic OSes in

the following:
Preemptive, priority-based scheduling: Scheduling
scheme refers to how the RTOS assigns CPU cycles to
tasks for execution. Scheduling scheme is important in

any OS as it affects how the various softwares are
executed. Most generic OSes are time-sharing systems
in which tasks are allocated the same amount of time
slices (e.g. round robin scheduling) for execution. In
RTOS, tasks are often assigned priorities and higher-
priority tasks can preempt lower-priority tasks during
execution (preemptive scheduling). There are also
RTOSes that adopt cooperative scheduling. Such
scheduling technique usually implies that the running
task has to explicitly invoke the scheduler to perform a
task switch.
Predictability in task synchronization: For generic
OS, task synchronization is unpredictable because the
OS can directly or indirectly introduce delays into the
application software. In RTOS, synchronization among
tasks (such as using semaphore, mailbox, message
queue, event flag, etc) must be time-predictable. The
system services must have known and expected
duration of execution time.
Deterministic behaviors: This can be considered as
the key difference between generic OS and RTOS. In
RTOS, task dispatch time, task switch latency, interrupt
latency must be time-predictable and be consistent even
when the number of tasks increases. On the other
hand, generic OS (mainly due to its time-sharing
approach) reduces the overall system responsiveness
and does not guarantee service call execution within
certain amount of time when the number of tasks
increases. Dynamic memory allocation (malloc() in C
language), though being widely supported in generic
OS, is not recommended in RTOS because the
behavior is unpredictable [1]. Instead, fixed-sized
memory allocation is provided in which only fixed-size
block of memory is allocated for every request.

B. RTOS for small scale-embedded systems
There are a number of variants of RTOSes available

nowadays; they ranged from commercial, proprietary, to open-
source RTOSes. For small-scaled embedded systems designed
using small microcontrollers (i.e. microcontrollers with
maximum ROM of 128Kbytes and maximum RAM of
4Kbytes [2]), there is a common perception that no RTOS is

R

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

2

needed. However, there are significant advantages to use an
RTOS for this range of devices [2, 3], such as:

Optimizing software development: Even in system
development using small microcontrollers, improving
software productivity is a critical issue due to time-to-
market pressure as well as shorten development cycle
[4]. Using an RTOS is one of the approaches that has
gained increasing popularity. As the code complexity
grows, an RTOS is an efficient tool to manage the
software, and to distribute the tasks among developers.
Using an RTOS will allow the entire software to be
partitioned into modular tasks that can be taken care of
by individual programmer. Moreover, low-level driver
development can be done by other developers.
Better and safer synchronization: In small embedded
system development without using any RTOS, global
variables are often used for synchronization and
communication among modules/functions. However,
especially in highly interrupt-driven system, using
global variables lead to bugs and software safety issues
[5]. These global variables are often shared and
accessed among the functions; hence there are high
chances of them being corrupted at any time during the
program execution. As the code begins to grow, these
bugs become hidden deeper and more difficult to be
uncovered. Consequently, development time can be
lengthened even for such small-scale system
development. With an RTOS in place, synchronization
is safely managed and tasks can pass messages or
synchronize with each other without any corruption
problems.
Resource management: Most RTOSes provide APIs
for developers to manage the system resources [5].
These include task management, memory pool
management, time management, interrupt management,
communication and synchronization methods. These
features provide the abstraction layer for developers to
freely structure the software, to achieve cleaner code
and to even quickly port across different hardware
platforms with little code modifications. Especially
with small system development - cost of hardware is of
critical constraint, and development time is usually
short.
Timing can be easily managed by RTOS: With time
management functions, software designers can achieve
task delay, timer handling or time-triggered processing
without resorting to understanding the underlying
hardware mechanisms. As compared with a small
system that does not use any RTOS, achieving timing
related features can be tricky as the software designer
needs to understand the underlying peripherals (such as
timers), how to use it, and how to link it with the top-
level application code. Any modification, such as to
lengthen the delay time would requires the developer to
examine the code and peripheral again to make changes
appropriately. When porting the software to another

platform employing a different microcontroller with a
different set of peripherals, these timing features need
to be rewritten again. Unless for special and critical
timing issue with unique hardware peripheral, using an
RTOS can helps to speed up the development time
significantly to tackle these timing issues.

In [3], an example is given to illustrate the importance of
RTOS in small system design – a printer system. Without
an RTOS, there is one single chunk of code to manage all
the activities, from paper feeding, user-input reading, to
printing control. By having an RTOS, individual task will
manage each of these activities. Except for passing of status
information, each task does not need to know much about
what other tasks are performing. Hence, having an RTOS in
place can help in partitioning the software in time domain
(tasks are running concurrently) and in terms of
functionalities (each task performs a specific operation).

Figure 1: RTOS usage, embedded market survey
(CMP, EE Times) 2004 [4]

RTOS usage is gaining popularity in the past few years as
clearly indicated in the CMP, EE Times embedded system
survey for 2004 - 2006 [4, 5, 6]. Figure 1 shows the embedded
market survey conducted by CMP, EE Times in 2004 on the
number of developers that have used and would consider
using RTOS in the current and next projects. The number of
developers who “have used” RTOS takes up more than 49%.
This percentage rises to 80.9% in the 2005 survey, and 71% in
the 2006 survey. The number of developers who “would
consider” to use RTOS in the next project in 2004 is 66.6%,
and in 2005 is 86%, which shows a steady trend towards
employing RTOS. Definitely, more and more developers and
designers are adopting RTOS in long run.

Table 1 indicates there is another trend in RTOS selection -
companies are moving towards open-source RTOS - from
16% in current projects to 19% in the next projects in 2006) or
commercial distribution of an open-source RTOS - from 12%
in current projects to 17% in the next projects in 2006.
Commercial OS and in-house OS, though currently being
extensively used, are declining - from 51% in current projects
to 47% in next projects in 2006 for the case of commercial
OS, and from 21% to 17% for the case of in-house OS. In the
latest 2007 survey [7], the percentage for commercial OS
drops further to 41%. Also according to the 2007 survey, the
key influencing factors in RTOS selection for commercial OS
are the quality and the availability of technical support. Hence

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

3

companies are willing to adopt commercial OS only when the
technical support provided is adequate. Otherwise, companies
may look for other more cost-effective choices.

Types of operating systems used
Current
project

Next
project

Commercial OS 51 % 47 %
Internally developed or in-house OS 21 % 17 %
Open-source OS without commercial support 16 % 19 %
Commercial distribution of an open-source OS 12 % 17 %
Table 1: Types of operating system used, embedded market survey

(CMP, EE Times) 2006 [5]

Having detailed about the advantages and trends of using
RTOS in general, there are certain disadvantages and concerns
associated with using RTOS for small microcontrollers.
Firstly, an RTOS takes up additional memory (ROM and
RAM), computational resources and consume extra power [8],
hence can the system absorb these overheads? For small
microcontrollers, it is important that the RTOS must be
compact in ROM and RAM requirements. There are various
RTOSes available for this segment of devices, and some are
flexible enough to be configured to have only those functions
and APIs required by the application [2, 9, 10, 11] so that the
code size can be reduced. In the latter sections, a more
detailed analysis will be done on the possible ROM and RAM
requirements of RTOSes. Besides memory footprint, an RTOS
also takes up additional CPU resource. Most RTOSes require
a periodic timer (OS ‘tick’) [12] to execute the scheduler and
other relevant system services. RTOS services such as task
synchronizations must have known execution time (e.g. how
much time does it takes for a task switch to occur). Depending
on these timing factors and by making use of the relevant
RTOS services, the system designer can decide and structure
the whole system. Hence it is essential to understand the
performance measurements and the benchmarking metrics
among the RTOSes.

C. RTOS benchmarking
There are different approaches towards RTOS

benchmarking: based on applications or based on the most
frequently used system services (fine-grained benchmarking)
[13]. As there are various types of applications with each
having very different requirements, benchmarking against any
generic applications will not be reflective of the RTOS
strengths and weaknesses.

There are various research publications related to
benchmarking method based on frequently used system
services. In [14], the Rhealstone benchmark is proposed with
the following measurement: task switch time, preemption
time, interrupt latency time, semaphore shuffling time,
deadlock breaking time, and datagram throughput time.
Rhealstone benchmark is not suitable for several reasons.
Firstly, very few RTOSes are capable of breaking deadlock
(which we will see later in the RTOSes survey). Datagram
throughput time is based on message passing by copying to a
memory area managed by the OS. However, not all RTOSes

use the same concept for message passing. Some RTOSes
pass messages by passing only the memory pointer, and hence
there is no need to use the special memory area managed by
the OS. This approach is also more suitable for small
microcontrollers because there is no extra memory for OS
internal use. Interrupt latency time as defined by Rhealstone is
purely dependent on the CPU architecture and is not
determined by the RTOS. Rhealstone, in general, are
“somewhat adhoc”, and do not cover other situations
commonly found in real-time applications [13].

In [13], some metrics are proposed (based on frequently
used system services): response to external event (interrupt),
inter-task synchronization and resource sharing, and inter-task
data transfer (message passing). Inter-task data transfer, as
explained previously, is also based on data copying into a
memory area managed by the OS, similar to the “datagram
throughput time” in Rhealstone benchmark. In the test for
“response to external event (interrupt)”, the interrupt handler
wakes up another task via a semaphore. Using a semaphore in
this case does not seem to be the best approach. Waking up
the task directly by using system service call (such as
sleep/wakeup service call) instead of going through a
semaphore is a better approach to reduce the overhead delay.

In [15], the metrics proposed are (based on frequently used
system services): tests for measuring the duration of message
transfer and the communication through a pipe, tests for
measuring the speed of task synchronization through proxy
and signal, and tests for measuring the duration of task
switching. These metrics are based only on the QNX
distributed RTOS platform, some concepts such as proxy and
signal do not exist on most RTOSes (as illustrated in the
RTOSes survey later).

In the next section, a list of RTOSes, including open-
source, commercial and research, will be discussed based on
their features and APIs. Those found to be unsuitable for
small microcontrollers will be eliminated. Finally, among
those selected, four of the more popular RTOSes will be
ported to a MCU (microcontroller) platform for benchmarking
(in terms of code size, RAM usage, and execution speed) and
evaluated against a list of proposed benchmarking metrics.

II. RTOS FEATURES AND API COMPARISON

A. Criteria for comparison
The objective of this section is to investigate RTOSes

available (open-source, commercial, and research) and
determine those that are suitable for small microcontrollers
only. Information is mainly based on documentations and
APIs available on websites. These RTOSes are: μITRON,
μTKernel, μC-OS/II, EmbOS, FreeRTOS, Salvo, TinyOS,
SharcOS, XMK OS, Echidna, eCOS, Erika, Hartik, KeilOS
and PortOS.

As described in [16], criteria used for selecting an RTOS
includes the following: language support, tool compatibility,
system service APIs, memory footprint (ROM and RAM
usage), performance, device drivers, OS-awareness debugging

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

4

tools, technical support, source/object code distribution,
licensing scheme and company reputation. Similarly, criteria
mentioned in [17] are: installation/configuration, RTOS
architecture, API richness, documentation and support, and
tools support. Embedded market surveys conducted by CMP,
EE Times in 2005 to 2007 [5, 6, 7] also concluded that the
priority of criteria for RTOS selection (see Figure 2), in which
real-time capability has taken the highest weighting.

Figure 2: Influential factors in operating system selection, embedded
market survey, CMP, EE Times 2005, 2006, and 2007 (N=441 is the

total number of people surveyed)

Based on the above, a list of criteria to compare among the
RTOSes is established. In the scope of this paper, it is not
feasible to take all the above criteria into considerations.
Criteria, such as “suppliers’ reputation” and “company
reputation” are subjective to each and individual company’s
judgments. “Overall cost” is project and application
dependent, and “royalty fee” is normally based on quantity,
even though RTOS vendors may use other business models to
charge their customers (such as per application, per product
model, or per MCU model, etc). “Memory footprint” (ROM
and RAM usage) may not always be available and it is highly
dependent upon the compiler settings as well as RTOS
configurations. For this paper, the following criteria will be
used for comparison:

Design objective: The origins of the RTOSes being
surveyed are different from one another, as some are
open-source, some are personal hobby-based, and some
are commercial. It is important to understand the
history and the background motivation that led to the
creation of each RTOS. A personal hobby-based RTOS
would be less likely to be as stable compared to a
popular open-source, or to a commercial RTOS.
Author: Similar to design objective, it is essential to
understand the author who originated the RTOS –

whether it was by a person, an organization, or a
company.
Scheduling scheme: RTOS scheduling approach will
be investigated to determine whether preemptive
scheduling, cooperative scheduling or other scheduling
scheme is used.
Real-time capability and performance: Real-time
capability is generally considered as a system
characteristic to describe whether the system is able to
meet the timing deadline. Using an RTOS in the system
takes up CPU cycles; however the RTOS must not
have indeterminist behaviors. The amount of CPU
cycles and time consumed by the RTOS for any service
call should be measurable and of low or acceptable
values to the system designers. Real-time capability
and performance information are not available for
some RTOSes. Even if these information are available,
they might be based on different hardware platforms.
In Section III, a selected list of RTOSes will be
benchmarked against one another on the same
hardware platform so that more comparative results can
be obtained.
Memory footprint: Besides CPU cycles, an RTOS
also occupies additional ROM and RAM spaces. This
could lead to larger ROM and RAM sizes for the entire
system. There is always a tradeoff between memory
footprint and the functionalities required from the
RTOS. To have more robust and reliable APIs,
probably more lines of code are needed. On the other
hand, basic and simple APIs will require only
minimum amount of code. Hence, it is important for
the designers to understand the features offered by the
RTOS with the corresponding memory footprint
requirement. This criterion will also be compared
among the selected RTOSes in Section III.
Language support: Programming language supported
by the RTOS.
System call/API richness: This criterion determines
how comprehensive the RTOS APIs are as compared
to the rest of the RTOSes. The total number of system
calls for each RTOS will be counted.
OS-awareness debugging support: This criterion
determines if the RTOS is being supported by any of
the Integrated Development Environment (IDE). OS-
awareness debugging [3] will ease the development
work as users can use these RTOS internal information
(e.g. task states, system states, semaphores, event flags)
provided by the IDE.
License type: This is to investigate how the RTOS is
distributed: free or fee-based for different purposes
such as educational or commercial.
Documentation: This criterion will focus on what type
of documentations are available for the RTOS (detail
APIs, simple tutorial, book or specification).

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

5

Design
objective Author Scheduling License type Documentation

System
call/API
richness

Language
supported

OS-awareness
support in IDE References

μITRON Commercial

Ken
Sakamura &

Tron
association

Priority-
based

preemptive
Fee-based

Open
specification and

user manual
93 C Supported by

Renesas IDE [2, 18]

μTKernel
Commercial/
Educational/

Research

T-Engine
forum

Priority-
based

preemptive

Free for
educational

and
commercial

Open
specification and

user manual
81 C Supported by

Renesas IDE [10]

μC-OS/II
Commercial/
Educational/

Research

Jean
Labrosse

Priority-
based

preemptive

Free for
educational Book by author 42 C Supported by IAR [9]

EmbOS Commercial Segger
Priority-

based
preemptive

Fee-based Online
document 56 C Supported by IAR [19]

Free-
RTOS Hobby Richard

Barry

Priority-
based

preemptive

Free for
educational

and
commercial

Online
document 27 C No support [11]

Salvo Commercial Pumpkin
Inc. Cooperative Fee-based Online

document 31 C No support [20, 21]

TinyOS Educational/
Research UC Berkeley Cooperative

Free for
educational

and
commercial

Tutorials - nesC No support [22, 23]

SharcOS Commercial
JDC

Electronics
SA

Priority-
based

preemptive
Fee-based User manual - C No support [24]

XMK OS Educational/
Research

Shift-right
Technologies

Priority-
based

preemptive

Free for
educational

and
commercial

Online
document

(incomplete)
- C No support [25]

Echidna Educational/
Research

Maryland
University

Priority-
based

preemptive

Free for
educational

and
commercial

Online
document

(incomplete)
18 C No support [26]

eCOS
Commercial/
Educational/

Research
eCosCentric

Priority-
based

preemptive

Free for
educational

and
commercial

Book and online
document - C No support [27]

Erika Educational/
Research

Universita di
Siena

Priority-
based

preemptive

Free for
educational

and
commercial

Online
document 19 C No support [28]

Hartik Educational/
Research

RETIS Lab
(Italy)

Priority-
based

preemptive

Free for
educational

and
commercial

Online
document 33 C No support [29]

KeilOS Commercial Keil
Priority-

based
preemptive

Fee-based Online
document - C Supported by Keil

IDE [30]

PortOS Research Software
Wireless

Priority-
based

preemptive
Fee-based Online

document - C No support [31]

Table 2: Basic features comparison of RTOSes for small microcontrollers

B. Comparison results
Table 2 shows the features comparison among the
RTOSes. From the table, it can be seen that:

Priority-based preemptive scheduling has been
adopted by majority of the RTOSes, except for
two RTOSes in the list (Salvo and TinyOS)
using cooperative scheduling.
Majority of RTOSes support C language, which
is the popular choice for embedded system
programming, especially in small system design
[32].
Only a few RTOSes have OS-awareness support
in IDE: μC-OS/II and EmbOS have plug-in
modules for IAR compiler; KeilOS is supported
by Keil compiler; μITRON and μTKernel are
supported by Renesas HEW compiler.

In the case of eCOS [27], a bootloader (known as
Redboot) of at least 64K ROM is required.
Redboot will boot up first and load programs
into the RAM via a user terminal (typically over
a serial port). Hence, eCOS requires much more
ROM and RAM spaces.
As far as documentations are concerned, some
RTOSes (KeilOS, PortOS and XMK) do not
have details of the APIs available. SharcOS is
based on μC-OS/II; hence it follows the same
APIs of μC-OS/II. For the above reasons, these
RTOSes will not be considered in the following
APIs comparison.
In the “system call & API richness” column,
those RTOSes that do not have details available
will be represented by a “-”.

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

6

Number of system API

0
2
4
6
8

10
12
14

uItron uTkernel uC-OS/II FreeRTOS Salvo Echidna emBos Erika Hartik

System management Interrupt management Task management
Task-dependent synchronization Semaphore Eventflag
Mailbox Data queue Mutex
Message buffer Fixed size memory pool Variable size memory pool
System time management Trace API

Figure 3: Number of system APIs for various RTOSes

 Figure 3 shows a comparison of the number of system
APIs available for each RTOS. Based on the RTOSes
common definitions, the APIs in Figure 3 are
categorized into:

System management: initialize OS,
start/shutdown OS, lock/unlock CPU, etc.
Interrupt management: entry/exit function,
begin/end critical section, etc.
Task management: create task, delete task, start
task, terminate task, etc.
Task-dependent synchronization: sleep task,
wakeup task, resume task, etc.
Communication and synchronization:
semaphore, data queue, event flag, mailbox,
mutex, message buffer.
Memory management: fixed size memory pool,
variable-size memory pool.
Time management: get system operating time,
OS timer, etc.
Trace API: hook routine into certain RTOS
functions such as scheduler.

μITRON, μTKernel, μC-OS/II and EmbOS support
comprehensive APIs for all the categories listed above.
Most commercial RTOSes are well-implemented, with
μITRON supporting all the categories except for trace
functions. EmbOS also supports most of the categories,

except for trace, system time management, system
management and message buffer. For each category, the
number of APIs for these four RTOSes also exceed
other RTOSes because they have been developed and
improved, and have been in the market for a relatively
long period.

As far as open-source RTOSes (such as FreeRTOS,
Echidna, Erika and Hartik) are concerned, most have
minimal implementation. These RTOSes are more
suitable for small system development. However, μC-
OS/II stands out to have more APIs available. μC-OS/II
originally was an open-source RTOS for personal and
educational purposes. Due to its stability and popularity,
it has been commercialized and is being widely used [8].
Among those open-source RTOSes surveyed, μC-OS/II
and μTKernel have the most number of APIs available.
μTKernel supports all categories, except for data queue.
It has almost the same number of APIs as the
commercial RTOS μITRON, as it is backed by T-
Engine Forum [33] led by Professor Ken Sakamura who
is also the designer of μITRON architecture. For the
above reasons, these four RTOSes: μITRON, μTKernel,
μC-OS/II and EmbOS will be focused for subsequent
comparison and benchmarking.

Besides those functions mentioned in Figure 3, the
following are also supported by some RTOSes:

Timeout: timeout is supported in some system

μITRON μTKernel μC-OS/II FreeRTOS Salvo Echidna EmbOS Erika Hartik

Number of system APIs

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

7

APIs. For example, a task can wait for a
semaphore for a maximum number of n
milliseconds. RTOSes such as μITRON and
μTKernel have mechanism to allow users to
specify the timeout in absolute values (typically
in milliseconds). Other RTOSes such as μC-
OS/II, FreeRTOS, Salvo and EmbOS can only
allow users to specify timeout values in terms of
the number of clock ticks.
Debug API: these are the APIs that allow user’s
application to retrieve information managed by
the kernel. Currently, only μTKernel supports
these APIs (e.g. get task register, set task
register).
Cyclic handler, alarm handler: cyclic handler
is a mechanism to indicate to the RTOS to
execute a function at a periodic interval while
alarm handler allows RTOS to execute a function
after a certain amount of time. These APIs are
currently available in μITRON and μTKernel.
Rendezvous: μITRON and μTKernel also
support rendezvous mechanism (similar to Ada
language [34] for real-time) for synchronization
and communication between tasks.

For μITRON and μTKernel, several APIs provide
better controllability and flexibility.

Parameters μC-OS/II EmbOS μTKernel μITRON
Name/

information
Extended information

Semaphore
name

- Tasks can be
queued in order of
FIFO or in order of

priority

- Tasks can be
queued in

order of FIFO
or in order of

priority
Attributes

- The first task in
queue has precedence

or task with fewer
request has
precedence

Initial Count
Initial

semaphore
count

Initial
semaphore

count
Initial semaphore

count

Initial
semaphore

count

Maximum
Count

Maximum
value of

semaphore
count

Table 3: Users controllable parameters for semaphore creation
in RTOSes

Based on Table 3, tasks in μC-OS/II and EmbOS are
queued in a FIFO (first in first out) buffer when waiting
for a semaphore, and developers are not allowed to
change the order. However, in μITRON and μTKernel,

developers can specify whether tasks are queued in
FIFO order or in priority order. This flexibility not only
applies to semaphore, but is also extended to other APIs
(including mailbox, message queue, memory pool and
event flag). To achieve such features in μITRON and
μTKernel, there are tradeoffs in memory footprint as
well as performance.

III. PERFORMANCE AND MEMORY FOOTPRINT
BENCHMARKING

A. Benchmarking methods
In this section, these RTOSes will be benchmarked:

μITRON, μTKernel, μC-OS/II and EmbOS. As
discussed in the previous section, the main reasons
these RTOSes were selected are:

Comprehensive and mature APIs.
Memory footprint and design concepts are
suitable for small microcontrollers.
These four RTOSes are made available on the
same platform for the purpose of benchmarking:
the Renesas M16C/62P starter kit with the HEW
IDE together with the NC30 toolchain [35] are
used. Details of the RTOSes ports on this
platform will be described in the next section.

For execution time measurements, oscilloscope and
logic analyzer have been used in combination with IO
port toggling to achieve the best accuracy (in terms of
micro-seconds).

(1) Ports of the RTOSes on the same M16C/62P
platform

This section describes the platform, the IDE and
toolchain (compiler, assembler, and linker) used. Also,
the differences of these RTOSes in implementation and
distribution form will be discussed. Hopefully, this will
helps the readers to understand and appreciate the
comparison results better in the later sections. The
following are information on the M16C/62P
microcontroller platform:

Microcontroller: Renesas M16C/62P 16-bit.
Operating frequency: 24MHz.
ROM: 512Kbytes.
RAM: 31Kbytes (no cache and MMU (memory
management unit)).
Interrupt mask level: 7 levels.

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

8

IDE: Renesas HEW version 4.03.00.001.
Toolchain: NC30 toolchain version 5.43.00.

The Renesas M16C/62P has a 16-bit CISC (complex
instruction set computer) architecture CPU with a total
of 91 instructions available. Most instructions take 2 to
3 clock cycles to complete. The MCU is designed with
a 4-stage instruction queue buffer [41] which is similar
to a simplified pipeline often used in larger 32-bit
processor.

To ensure all the RTOSes operate on the same
platform with the same timer resolution, the following
settings have been used:

The ‘OS tick’ resolution for all the RTOSes
above is taken from timer A0 [36] of the
microcontroller. Timer A0 is configured as a
periodic timer at 10ms.
Default settings of NC30 compiler have been
used for compiling the workspaces.
μC-OS/II: the whole original workspace and full
source code of the OS have been taken from
Micrium website [37]. Timer A0 was configured
for the OS, and the whole workspace was
compiled again with NC30 toolchain version
5.43.00.
μTKernel: the whole original workspace and full
source code of the OS have been taken from
superh-tkernel.org website [38], Timer A0 was
configured at 10ms.
EmbOS: the whole original workspace and
library files (.lib) of the OS have been taken
from Segger website [39]. Timer A0 was
configured for the OS and the whole workspace
was compiled with NC30 toolchain version
5.43.00 – except for the .lib files. The .lib files
might have been compiled in older toolchain or
with different optimization settings which is not
known to the author of this paper. This means
that for the case of EmbOS, the toolchain and
compiler settings might not be exactly the same
as μC-OS/II or μTKernel.
μITRON: the whole workspace, library files
(.lib) of the OS and timer A0 configuration have
been generated from the Renesas configuration
tool for μITRON [40]. The entire workspace was
compiled with NC30 toolchain version 5.43.00 –
except for the .lib files. This is similar to the case

of EmbOS because the OS is distributed in the
form of .lib files. Furthermore, the toolchain and
compiler settings that were used when generating
these .lib files might not be totally the same as
μC-OS/II or μTKernel.
The amount of stack per task is set to be the
same for all the RTOSes.
If a particular RTOS feature is not used (e.g.
semaphore, message queue), that feature is
disabled by C preprocessor for μC-OS/II and
μTKernel, or disable during linking for EmbOS.
However, for μITRON, unused features are still
included as the RTOS is provided in library
format and system calls are invoked via software
interrupts.

Table 4 shows the differences in implementation of
system service call and critical section of the RTOSes.

μC-OS/II μTKernel EmbOS μITRON
Service

call Direct call Using software
interrupt Direct call Using software

interrupt

Critical
section

Disable all
interrupts

Raise interrupt
mask level to

level 4

Not disable any
interrupt (based

on internal
variable)

Raise interrupt
mask level to

level 4

Table 4: System service call implementation and critical
section implementation

In μC-OS/II and EmbOS, whenever a system service
call is issued, the function is called directly from the
user task. The advantage is that the function is executed
immediately with minimal overhead time, while the
disadvantage is that the service call will use the current
task’s stack for execution. In μITRON and μTKernel,
whenever a system service call is issued, a non-
maskable software interrupt is raised (INT instruction in
M16C/62P [41]), hence the current execution context is
switch to the kernel space (i.e. separate stack) to
execute the service call. The advantage of using this
approach is that the service call will not use the current
task’s stack for execution, while the disadvantage is that
there will be an overhead time incur for every system
service call.

Table 4 also shows the different methods for critical
section implementation. μC-OS/II starts the critical
section by disabling all the interrupts, so no external
interrupt can be accepted. The advantage is that the
critical section part can execute safely from start to end
without any intervention, but this also implies that
highly important real-time interrupt will not be accepted

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

9

during this period. In μITRON and μTKernel, critical
section is implemented by raising the interrupt mask
level (for M16C/62P the interrupt mask level is set to 4,
but can be changed) so that highly critical interrupt can
still be accepted, as long as the interrupt handler does
not interfere with the RTOS internal variables. EmbOS
does not disable nor raise the interrupt mask level for
critical section. It still allows all interrupts to come in
but uses some internal variables to control the critical
section. This has the advantage that any interrupt can be
accepted and handled during the critical section;
however the disadvantage is that it requires additional
code to handle the internal variables of the critical
section.

(2) Benchmarking criteria
The proposed benchmarking criteria in this section

are aimed to be simple and easy to port to different
platforms. For each criterion, execution time
measurement together with memory footprint (ROM
and RAM) will be collected.

(a) Task switch time

Task switch time is the time taken by the RTOS to
transfer the current execution context from one task to
another task. The measurement method is explained in
Figure 4.

Task1: (higher priority)

Go to sleep

(B)

Task2:

(A)

Wakeup task1

Task switch time: time from (A) to (B)

Figure 4: Task switch time measurement

μC-OS/II μTKernel EmbOS μITRON
Pass

message API OSTaskSuspend() tk_slp_tsk() OS_Suspend() slp_tsk()

Retrieve
message API OSTaskResume() tk_wup_tsk() OS_Resume() wup_tsk()

Table 5: APIs used for task switch time benchmark

 There are two tasks: Task1 and Task2 with Task1
having higher priority. At the beginning, Task1 is first
executed, and it will go into sleep/inactive state. The
execution context is then switched over to Task2. Task2
will wake up/make active Task1, and right after waking
up, the execution context is switched over to Task1
because it has higher priority. Different RTOSes use

different terms to describe sleep/inactive and
ready/active states (such as μC-OS/II and EmbOS use
the term suspend, resume while μITRON and μTKernel
use the term sleep/wakeup). Table 5 shows the system
calls used in each RTOS.

(b) Get/Release semaphore time

Semaphore is commonly used for synchronization
primitive in RTOS [42]. For semaphore benchmarking,
the time taken by get and release semaphore service call
will be measured, and the time required to pass the
semaphore from one task to another task will also be
measured. Figure 5 illustrates the method used to
measure the get and release semaphore time.

Task1:

(A)

Get semaphore

(B)

Release semaphore

(C)

Time to get semaphore: (A) to (B)

Time to release semaphore: (B) to (C)

Figure 5: Get/Release semaphore time measurement

There is only one task (Task1) and one binary
semaphore (initialized to 1). Task1 will get the
semaphore and then it will release it. Different RTOSes
use different terms to describe the get/release of
semaphore. Table 6 shows the APIs used by each
RTOS.

μC-OS/II μTKernel EmbOS μITRON
Get semaphore

API OSSemPend() tk_wai_sem() OS_WaitCSema() wai_sem()

Release semaphore
API OSSemPost() tk_sig_sem() OS_SignalCSema() signal_sem()

Table 6: APIs used for semaphore benchmark

(c)Semaphore passing time

To measure the performance of semaphore passing,
the following measurement method as shown in Figure
6 is used.

Task1: (higher priority)

Get semaphore (put into wait list)

(B)

Task2:

(A)

Release semaphore

Time to pass semaphore from Task1 to Task2: (A) to (B)

Figure 6: Semaphore passing time measurement

There are two tasks: Task1 and Task2 with Task1

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

10

having higher priority, and a binary semaphore
(initialized to 0). At the beginning, Task1 is first
executed and it tries to get the semaphore. Since the
semaphore value is 0, Task1 will be put into a
sleep/inactive state, waiting for the semaphore to be
released. The current execution context will then be
switched to Task2 which will release the semaphore.
The semaphore, once released, will wake up Task1, and
the execution context will be switched over to Task1.

(d) Pass/Receive message time

Besides semaphore, message passing has become
more and more popular for synchronization purposes
[43]. In this measurement, message passing mechanism
based on memory pointer passing is used, i.e. not the
copying of message into an internal RTOS area because
not all RTOS support this approach. The measurement
method is explained in Figure 7.

Task1:

(A)

Pass message to the queue

(I.e. message is copied into the queue)

(B)

Retrieve message from the same queue

(C)

Time to put message onto queue: (A) to (B)

Time to retrieve message from queue: (B) to (C)

Figure 7: Pass/Retrieve message time measurement

There is only one task: Task1. Firstly, the task will
pass the message pointer (normally to an internal
message queue), and after that the task will retrieve the
same message pointer. Table 7 shows the APIs used in
each RTOS.

μC-OS/II μTKernel EmbOS μITRON
Pass message

API OSQPost() tk_snd_mbx() OS_Q_Put() snd_mbx()

Retrieve
message API OSQPend() tk_rcv_mbx() OS_Q_GetPtr() rcv_mbx()

Table 7: APIs used for message passing benchmark

(e)Inter-task message passing time

Figure 8 illustrates the method used to measure the
message passing time between tasks. There are two
tasks: Task1 and Task2 with Task1 having higher
priority. Task1 will be first executed, and it will try to
retrieve a message pointer from the queue. As there is
no message available yet, Task1 will be put into

sleep/inactive state, waiting for a new message. The
current execution context will be switched to Task2,
which will then put a new message onto the queue. The
new message will wake up Task1, and the execution
context will be switched over to Task1. The difference
between this measurement and the benchmark in the
previous section is that this method includes the
overhead time by RTOS to process the message queue
and to wake up the receiving task.

Task1: (higher priority)

Retrieve message from queue

(will be put into wait list)

(B)

Task2:

(A)

Put message onto queue

Time to pass message from task2 to task1: (A) to (B)

Figure 8: Message passing time measurement

(f) Fixed-size memory acquire/release time

In RTOS, only fixed-size dynamic memory allocation
should be used. The allocation and de-allocation time
must be deterministic. Figure 9 illustrates the method
used to measure the time to acquire and the time to
release a fixed-size memory block.

Task1:

(A)

Acquire fixed-size block

(B)

Release fixed-size block

(C)

Time to acquire memory block: (A) to (B)

Time to release memory block: (B) to (C)

Figure 9: Acquire/Release fixed-size memory time
measurement

There is only one task: Task1. Task1 first acquires a
fixed-size memory block (128 bytes), and then releases
the block. Table 8 shows the APIs used to
acquire/release memory block in each RTOS.

μC-OS/II μTKernel EmbOS μITRON
Acquire fixed-
size block API OSMemGet() tk_get_mpf() OS_MEMF_

Alloc() get_mpf()

Release fixed-
size block API OSMemPut() tk_rel_mpf() OS_MEMF_

Release() rel_mpf()

Table 8: APIs used for fixed-size memory benchmark

(g) Task activation from within interrupt handler time

An RTOS has to deal with external interrupts that
may be asserted at any time. Execution of interrupt
handler is normally kept as short as possible to avoid

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

11

affecting the system response. In the case where long
processing is required, the handler can activate another
task that will do the necessary processing. The time
from when the interrupt handler resumes the task till the
time when the task is executed is crucial to the system
design. The measurement setup is explained in Figure
10.

Task1: (higher priority)

Go to sleep

(B)

Task2:

Do some processing

…

Do some processing

Interrupt

Do some processing

(A)

Resume task1

Time from interrupt handler resuming task1 till Task1 is resumed: (A) to (B)

Figure 10: Task activation from interrupt handler time
measurement

 There are two tasks: Task1 and Task2 with Task1
having higher priority. Besides, an external interrupt
with proper handler is also set up. At the beginning,
Task1 is first executed. Task1 goes to sleep/inactive
state, and the execution context switches over to Task2.
Task2 simply does some processing continuously.
When an externally interrupt occurs, the interrupt
handler will be executed and it will resume Task1.
Execution context will be switched over to Task1. Table
9 shows the APIs used for each RTOS.

μC-OS/II μTKernel EmbOS μITRON
Go to sleep

API OSTaskSuspend() tk_slp_tsk() OS_Suspend() slp_tsk()

Resume from
interrupt API OSTaskResume() tk_wup_tsk() OS_Resume() iwup_tsk()

Table 9: APIs for task activation from within interrupt handler
benchmark

B. Benchmarking results
(1) Memory footprint

For each criterion, the benchmarking code is
compiled, and the ROM and RAM usage can be
obtained from the toolchain report. By averaging the
ROM information across all the test criteria, the average
ROM size can be obtained. Figure 11 shows the code
sizes for the 4 RTOSes when running the 7 benchmarks.
μTKernel can be seen to have a larger code size. This

is due to the flexibility and comprehensiveness support
in the APIs, as explained previously in Table 3.
μITRON and EmbOS, which are commercial RTOSes,
offer relatively compact code size. Nevertheless, all
these RTOSes can fit well into small microcontrollers of
limited ROM sizes.

Code size (ROM)

0

2000

4000

6000

8000

10000

12000

14000

ucos/ii utkernel embos uitron

by
te

s

Task sw itch time

Get & release semaphore (1 task)

Pass semaphore (from 1 to another task)

Pass & retrieve message to queue

Pass message (from 1 to another task)

Acquire & release fixed-size memory block

Task activation from interrupt

Figure 11: Code size comparison for 4 RTOSes

 Similar to the code size comparison, Figure 12 shows
the RAM information for the 4 RTOSes. μTKernel and
μITRON can be seen to have relatively lower RAM
usage, while μC-OS/II and EmbOS are slightly higher.
Depending on the requirement of each benchmark, we
set the number of tasks, stack size and number of RTOS
objects (e.g. semaphore, event flags) to be the same for
all RTOSes. The amount of RAM differences among
the RTOSes range between 7-10 bytes, which might be
due to internal implementations or due to method of
designing the APIs. In summary, the ROM and RAM
usage of all these RTOSes are well suited for small
microcontrollers. Based on Figure 11 and Figure 12,
μITRON has the most optimal usage in terms of both
ROM and RAM sizes.

RAM size

0

500

1000

1500

2000

2500

ucos/ii utkernel embos uitron

by
te

s

Task sw itch time

Get & release semaphore (1 task)

Pass semaphore (from 1 to another task)

Pass & retrieve message to queue

Pass message (from 1 to another task)

Acquire & release fixed-size memory block

Task activation from interrupt

Figure 12: Data size comparison for 4 RTOSes
μC-OS/II μTKernel EmbOS μITRON μC-OS/II μTKernel EmbOS μITRON

μC-OS/II μTKernel EmbOS μITRON

Code size (ROM)

Data size (RAM)

B
yt

es

B
yt

es

Task switch time
Get & release
semaphore (1 task)
Pass semaphore
(from 1 to another task)
Pass & retrieve
message to queue
Pass message
(from 1 to another task)
Acquire & release
fixed-size memory block
Task activation from
interrupt

Task switch time
Get & release
semaphore (1 task)
Pass semaphore
(from 1 to another task)
Pass & retrieve
message to queue
Pass message
(from 1 to another task)
Acquire & release
fixed-size memory block
Task activation from
interrupt

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

12

Figure 13: Execution time benchmark for four RTOSes

(2)Execution time
Figure 13 shows the measurement of execution time
among the RTOSes for different benchmark criteria. As
the only variation in the system is timer interrupt (for
OS tick), each benchmark was executed at least twice to
ensure consistent results. Nevertheless, for all
benchmarks, running once is enough to yield the correct
measurement. For the task activation from within
interrupt handler benchmark, there will be another
variation which is an external interrupt (besides the
timer interrupt for OS tick). When performing this
benchmark, the external interrupt may or may not be
asserted during the OS critical section (the duration
which OS disable interrupts). If it is asserted during the
critical section, the response time of the OS will be
slightly longer. Hence this measurement may not
include the worst case scenario.
μTKernel is shown to have the lowest task switching

time, followed by μITRON, μC-OS/II and EmbOS. On
the other hand, μC-OS/II semaphore acquire and
release time are the fastest. The fastest inter-task
semaphore passing is achieved by μITRON, while μC-
OS/II and μTKernel have better message passing and
message retrieval time as compared to μITRON and
EmbOS. As far as fixed-size memory is concerned, μC-
OS/II has the best execution time, followed by EmbOS,
μITRON and μTKernel. Finally, μTKernel has the best
performance time for task activation from interrupt

handler, followed by μC-OS/II, μITRON and EmbOS.
With the benchmarking results shown above, each

RTOS stands out to have its own strengths and
weaknesses. As far as open-source RTOS is concerned,
for a very small and compact ROM size RTOS, μC-
OS/II can be used. However, to have a more
comprehensive APIs support, μTKernel is
recommended (at the expense of a slightly higher ROM
footprint). On the other hand, to select a commercial
RTOS, either μITRON or EmbOS is recommended with
μITRON having slighter lower RAM footprint. Based
on all these benchmarked results, different performance
criteria can be compared to ensure that they meet the
time constraint requirements of the system when
selecting for a RTOS.

IV. CONCLUSION

RTOS is increasingly popular for deployment with
microcontroller-based embedded systems design. It can
helps to improve the development cycles, code
reusability, easy of coding as well as maintenance,
better resource and timing management even for small
microcontrollers. RTOS can be differentiated from
generic OS in terms of scheduling (priority-based),
predictability in inter-task synchronization, and
deterministic behaviors. In this paper, a list of RTOSes

μC-OS/II
μTKernel
EmbOS
μITRON

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

13

has been studied based on various selection criteria
targeting small microcontrollers with less than
128Kbytes of ROM and 4Kbytes of RAM.
Subsequently, four RTOSes were selected and
benchmarked by porting them onto the same
microcontroller platform. A list of benchmarking
criteria which is aimed to be simple, easy to be ported to
different platforms and representative of typical RTOS
usages were used. The benchmarking results show that
each RTOS has different strengths and weaknesses
without any clear emerging winner. With these detail
performance benchmarks, potential adopters of these
RTOSes can simplify their selection by examining their
specific application requirements.

REFERENCES
[1] D. Kalinsky, “Basic concepts of real-time operating systems”,

LinuxDevices magazine, Nov. 2003.
[2] K. Sakamura, H. Takada, “μITRON for small scale embedded

systems”, IEEE Micro, vol. 15, pp. 46–54, Dec. 1995.
[3] J. Ganssle, “The challenges of real-time programming”,

Embedded System Programming magazine, vol. 11, pp. 20–26,
Jul. 1997.

[4] CMP Media, “State of embedded market survey”, Embedded
System Design Magazine, 2004.

[5] CMP Media, “State of embedded market survey”, Embedded
System Design Magazine, 2006.

[6] CMP Media, “State of embedded market survey”, Embedded
System Design Magazine, 2005.

[7] CMP Media, “State of embedded market survey”, Embedded
System Design Magazine, 2007.

[8] K. Baynes, C. Collins, E. Filterman, B. Ganesh, P. Kohout,
C. Smit, T. Zhang, B. Jacob, “The performance and energy
consumption of embedded real-time operating systems”, IEEE
Transactions on Computers, vol. 52, pp. 1454–1469, 2003.

[9] J. J. Labrosse, “μC-OS/II the real-time kernel”, R & D Books,
(Miller Freeman, Inc.), Lawrence KS, 1999.

[10] T.-E. Forum, “μTKernel specification, 1.00.00”, T-Engine Forum,
Mar. 2007.

[11] R. Barry, “A portable, opensource mini real-time kernel”,
http://www.freertos.org, Oct. 2007.

[12] K. Curtis, “Doing embedded multitasking with small
microcontrollers, part 2”, Embedded System Design Magazine,
Dec. 2006.

[13] A. Martinez, J. F. Conde, A. Vina, “A comprehensive approach in
performance evaluation for modern real-time operating systems”,
Proceedings of the 22nd EUROMICRO Conference, pp. 61, 1996.

[14] R. P. Kar, K. Porter, “Rhealstone: A real-time benchmarking
proposal”, Dr. Dobb's Journal, Feb. 1989.

[15] K. M. Sacha, “Measuring the real-time operating system
performance”, Seventh Euromicro workshop on Real-time
systems proceedings, Odense, Denmark, pp. 34–40, Jun. 1995.

[16] G. Hawley, “Selecting a real-time operating system”, Embedded
System Design Magazine, 1999.

[17] M. Timmerman, L. Perneel, “Understanding RTOS technology
and markets”, Dedicated Systems RTOS Evaluation project

report, Sep. 2005.
[18] K. Sakamura, H. Takada, “μITRON 4.0 specifications”, TRON

Association, Japan, 2002.
[19] Segger, “EmbOS real-time operating system user & reference

guide”, Segger Microcontroller System GmbH, 2006.
[20] Pumpkin Inc, “Salvo user manual”, Pumpkin Inc., 2003.
[21] Pumpkin Inc, “Salvo, the RTOS that runs in tiny places”,

http://www.pumpkininc.com/, Oct. 2007.
[22] P. Levis, “TinyOS programming, revision 1.3”, TinyOS

Community Forum, 27 Oct 2006.
[23] U. Berkeley, “TinyOS, an open-source OS for the networked

sensor regime”, http://www.tinyos.net/, 2006.
[24] J. Electronic, “SharcOS user guide”, The SharcOS project, 2002.
[25] S. R. Technologies, “eXtreme Minimal Kernel, a free real-time

operating system for microcontrollers”, http://www.shift-
right.com/xmk/index.html, 2004.

[26] D. Stewart, “Echidna real-time operating system”,
http://www.glue.umd.edu/dstewart/serts/research/echidna/index.s
html.

[27] A. J. Massa, “Embedded software development with ECOS?”
Prentice Hall, Nov. 2002.

[28] P. Gai, D. Cantini, M. Cirinei, A. Macina, and A. Colantonio,
“Erika, embedded real-time kernel architecture - education user
manual”, Realtime System (RETIS) Lab, Scuola Superiore
Sant'Anna, Italy, 2004.

[29] G. C. Buttazzo, “Hartik: A hard real-time kernel for programming
robot tasks with explicit time constraints and guaranteed
execution”, Proceedings of the 1993 IEEE International
Conference on Robotics and Automation, Atlanta, Georgia, USA,
pp. 404–409, May 1993.

[30] Keil, “Keil real-time kernel and operating system”,
http://www.keil.com/rtos/, Mar. 2007.

[31] R. Chrabieh, “Operating system with priority functions and
priority objects”, TechOnline technical paper, Feb. 2005.

[32] R. Bannatyne, G. Viot, “Introduction to microcontrollers, part 2”,
Northcon98 Conference Proceedings, pp. 250–254, Oct. 1998.

[33] T-Engine, “T-Engine forum”, http://www.t-engine.org, Nov.
2007.

[34] B. Millard, D. Miller, C. Wu, “Support for ADA intertask
communication in a message-based distributed operating system”,
Computers and Communications Conference Proceedings, pp.
219–225, Mar. 1991.

[35] Renesas Technology Corp., “Renesas high-performance
embedded workshop (HEW)”,
http://www.renesas.com/fmwk.jsp?cnt=ide_hew_tools_product_l
anding.jsp&fp=/products/tools/ide/ide_hew/, 2007.

[36] Renesas Technology Corp., “M16c/62P group hardware manual”,
http://documentation.renesas.com/eng/products/mpumcu/rej09b01
85_16c62pthm.pdf, Jan. 2006.

[37] Micrium, “μC-OS/II ports for Renesas microcontrollers,”
http://www.micrium.com/renesas/index.html, Nov. 2007.

[38] Renesas Technology Corp., “μTKernel for M16C source code
and documentation”, http://www.superh-tkernel.org/
eng/download/misc/index.html, Nov. 2007.

[39] Segger, “EmbOS trial version for M16C6X (HEW 4.0 with NC30
version 4.00)”, http://www.segger.com/
downloadform_embos_m16c_nc30_v540.html, Nov. 2007.

[40] Renesas Technology Corp., “M3T-MR30/4 RTOS for M16c and
R8c families conforming to μITRON 4.0-specification”,
http://www.renesas.com/fmwk.jsp?cnt=m3t-
mr30_kernel.htm&fp=/products/tools/os_middleware/u_itron/m3t

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

14

_mr30/child_folder/&title=M3T-MR30%20Kernel, Nov. 2007.
[41] Renesas Technology Corp., “M16C/60, M16C/20, M16C/Tiny

series software manual”, http://documentation.renesas.com/
eng/products/mpumcu/rej09b0137_m16csm.pdf, Jan. 2004.

[42] I. Ripoll, P. Pisa, L. Abeni, P. Gai, A. Lanusse, S. Saez, “RTOS
state of the art analysis”, Technical report, Open Components for
Embedded Real-time Applications (OCERA) project, 2002.

[43] D. Kalinsky, “Asynchronous direct message passing rapidly gains
popularity”, Embedded Control Europe Magazine, Nov. 2004.

Digital Object Indentifier 10.1109/MM.2009.56 0272-1732/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

