
Optimizing Quality of Service in Real-Time Systems under
Energy Constraints∗

Ríad Nassiffe
Department of Automation and

Systems Engineering
Federal University of Santa

Catarina
Florianópolis, SC 88040-900,

Brazil
riad@das.ufsc.br

Eduardo Camponogara
Department of Automation and

Systems Engineering
Federal University of Santa

Catarina
Florianópolis, SC 88040-900,

Brazil
camponog@das.ufsc.br

George Lima
Computer Science

Department
Federal University of Bahia
Salvador, BA 40170-110,

Brazil
gmlima@ufba.br

ABSTRACT
Embedded real-time systems powered by batteries require
suitable support for energy-savings at the operating system
level. Mechanisms to do so must take into consideration
not only energy constraints but also schedulability since, in
this kind of system, tasks must execute within predefined
time windows. On top of that, it is desired that application
quality of service (QoS) is optimized.

In this paper we present a framework capable of maximizing
application QoS subject to both schedulability and energy
constraints. It is assumed that application tasks may have
multiple operating modes, each of which exhibiting a specific
QoS level when running at a specific processor operating
frequency. Although the formulated problem is NP-Hard,
experimental analysis has shown that the derived heuris-
tic to solve it achieves very good approximation results and
presents low running time.

Categories and Subject Descriptors
H.4.1 [Operating Systems]: Process Management—En-
ergy Save and Scheduling

General Terms
Algorithms, Optimization, Performance

Keywords
Real-Time, Energy savings

1. INTRODUCTION
Both the computing power and complexity of real-time em-
bedded systems have grown considerably in the past few
years. Nowadays mobile phones have become more like hand

∗This work was supported in part by CNPq.

held computers, with several multimedia-like tools capable
of executing 3D graphical applications, such as the NVIDIA
embedded processor Tegra APX Series. This trend can be
noticed in several other devices, including sensors, smart
cameras, or autonomous robots. Since such devices are of-
ten powered by batteries, there must be mechanisms to pro-
vide energy-savings, which are usually implemented at the
operating system level.

Providing energy-savings for real-time embedded systems
requires sophisticated solutions when compared to general
purpose operating systems in which it may be enough to
manage underlying hardware power-saving functionalities.
For example, components such as monitor, hard driver or
communication devices can be turned-off or put in sleep
states during (or after some) inactivity periods. Upon some
predefined wake-up events, such devices are put in the oper-
ational mode again. This is done without any explicit time
requirements, though. Because of this, such a simple ap-
proach does not suffice when it comes to real-time systems
whose tasks are specified to execute within predefined time
windows in a predictable fashion, that is system schedula-
bility must be guaranteed.

The usual approach to dealing with energy-savings in real-
time embedded systems is to adapt real-time scheduling al-
gorithms so that it is possible to take advantage of idle pro-
cessing time to reduce processor voltage/frequency. In other
words, the goal is tominimize energy consumption subject to
system schedulability. This approach may not suffice when
quality of service (QoS) guarantees must be ensured since
energy savings may compromise QoS beyond what is toler-
ated. Indeed, as reported by Rusu et al. [28, 27], there are
applications that require maximizing QoS subject to both
schedulability and energy constraints. This is the problem
we address in this paper.

Another common requirement of new real-time embedded
systems is the need of dynamically adjustment due to ex-
ternal sensory data or low-level architecture features, which
has been recently pointed out [6]. In particular, reconfig-
urable systems can be structured as having different modes
of operation. For example, the computer vision subsystem
of a robot may experience different operating modes due
to environment changes. Light conditions, obstacles, vision

82

Copyright is held by the author/owner(s).

angle, modifications in the robot goals during its lifetime,
and other unpredictable environmental characteristics may
be modeled by different operating modes. In this context,
support for switching from one operating mode to another
is needed at the scheduling level.

In this paper we describe a mechanism capable of dynami-
cally reconfiguringmulti-mode applications considering both
schedulability and energy constraints. It is assumed that
there may be one or more operating modes associated with
each task in the system. Each mode in turn is associated
with a benefit value, which represents the corresponding QoS
level defined by application designers. The goal is to deter-
mine at run-time which configuration of the system gives the
maximum aggregate benefit value subject to schedulability
and energy constraints. As this optimization problem is NP-
Hard, an efficient polynomial time heuristic is derived. Sim-
ulation results indicate that the derived heuristic achieves
very good solutions as compared to the optimum.

The remainder of this paper is structured as follows. Related
work is summarized in Section 2. The model for energy con-
sumption considered in this work and the technical notation
are presented in Section 3. The proposed approach is de-
scribed in Section 4 and is assessed by simulation in Section
5. Conclusions are drawn in Section 6.

2. RELATED WORK
Dynamic Voltage Scaling (DVS) is an important and com-
monly used mechanism to provide energy savings in com-
puter systems. It works by scaling down the processor volt-
age/frequency. DVS schemes for real-time systems take ad-
vantage of information on the system slack/idle times. Off-
line schemes use information on the difference between task
worst-case computation times and deadlines (e.g. [32, 26,
14, 31]) while on-line schemes are based on monitoring the
actual task execution times (e.g. [29, 15, 34, 36, 22]) and
so are usually more effective. In either case, most devel-
oped techniques to date focus on the problem of minimizing
the processor energy consumption subject to timing con-
straints. Unlike these approaches, we focus on taking QoS
requirements into consideration. Although recent work on
DVS has been taken specific QoS aspects into account, such
as fault tolerance [35], few of them deal with QoS in general.

The problem addressed here is similar to the one solved by
Rusu et al. [28, 27]. They also describe an on-line approach
to maximizing the system benefit subject to both energy
and timing constraints. Nonetheless, they assume an overly
restrictive task model, according to which all tasks share the
same deadline. Another approach to maximizing QoS under
both schedulability and energy constraints has been devised
for the Imprecise-Computationmodel [33]. The authors pro-
vide an algorithm to distribute slack between tasks using
a best-effort heuristic. Differently from these approaches,
our solution is able to give guarantees for energy-savings
by solving an optimization problem without imposing extra
restrictions on the task model.

The optimization problem addressed in this paper is de-
signed for adaptive systems comprised by a set of tasks,
each of which having multiple modes of operation. The goal
is to find at run-time a system configuration that maximizes

QoS so that the system can adapt itself to possible changes
in the application requirements or its environment. There
have been several solutions to this problem. For example,
Lima et al. [18] have considered selecting task modes so that
aperiodic requests can be accommodated, leading to grace-
ful transient degradation. Jehuda and Israeli [13] have de-
scribed a multi-layer reconfiguration framework. The ap-
proach by Lee et al. [17, 16] has been designed to maximize
the system benefit taking into consideration that applica-
tions specify a minimum QoS requirement for the needed
computation resources. Efficient approximation algorithms
to maximizing QoS ensuring deterministic [8] or probabilis-
tic schedulability [7] guarantees have also been given. None
of these results, however, take into consideration energy-
saving constraints.

3. MODEL AND NOTATION
3.1 Power Model and Energy Management
We assume a single processor system capable of operating
at different frequency/voltage levels, which can be selected
at run-time. The set of allowed frequencies is denoted by
F . Without loss of generality, we assume that the set F is
normalized, namely ∀f ∈ F , 0 < f ≤ 1. For example, if
the processor can operate at 0.8GHz, 1.6GHz, or 2.8GHz,
F = {0.25, 0.5, 1}.

In certain embedded systems, the processor can consume less
energy than other devices such as wireless communication
cards and hard disks. To this end, this paper uses DVS
combined with the Dynamic Power Model (DPM) proposed
by Zhu et al. [35] to control processor frequency/voltage
and manage system power consumption more realistically.
Formally, the system power P consumed by some task is
expressed as

P = PS + (PD + P I)h (1)

where: PS is the static power necessary to maintain the
system devices on sleep mode, which can be disconsidered
from the energy model for not being subject to dynamic ad-
justments; the binary term h models the operating (h = 1)
and sleep (h = 0) system modes; and the terms PD and P I

represent the frequency-dependent and frequency-independ-
ent active power modes, respectively. The former changes
as a function of the processor operating voltage/frequency,
while the latter does not since it corresponds to the active
power consumed by off-chip components (I/O devices, mem-
ory, etc.) used by the task.

Further, PD is defined as:

PD = CV 2f (2)

where C is the processor capacitance and V is the processor
voltage for a specific operating frequency f . According to
[35] the operating frequency should decrease linearly with
the reduction of processor voltage.

3.2 Task model
We assume a real-time system comprised of n independent
tasks. Tasks may have more than one operating mode. An
operating mode of a task is associated with a release fre-
quency and/or a worst-case execution time. Different op-
erating modes of a task provide different QoS levels. For

83

example, a task running at a low/high frequency may give
low/high QoS. Further, the application may have distinct
versions (implementations) of a task, each of which asso-
ciated with some QoS level. More costly versions may be
designed to provide high QoS and can be activated when sys-
tem resources are underutilized. We stress that there is no
restriction regarding the way task modes are implemented,
which is an issue related to the application.

We assume that the level of QoS associated with a given
task mode gives a certain benefit for the application/system.

We denote Ak,j
i the benefit given by task i when it runs in

mode k and with the processor frequency fj . No restriction

on the values of Ak,j
i is assumed. The application designer

may use any benefit function to set up the values of Ak,j
i .

The definition of benefit function is not the focus of this
paper, though. An interested reader can be referred to other
sources [5, 25].

Applications for which the mechanism described in this pa-
per is useful may contain either soft or hard tasks. In the
former case, it is recommended the use of reservation-based
scheduling [20] according to which tasks are given process-
ing bandwidths so that temporal isolation is ensured. Mo-
tivated by this need, we assume that there is a server as-
sociated with each task. A server is defined by the tuple
(Q,T), meaning that the task being served may execute up
to Q processing units per T time units. The use of servers
here is not part of the mechanism we are going to describe,
though. Their use is to make our description independent of
the kind of tasks that are being dealt with. Hence, hereafter
we assume that the system is composed of a set of n servers
S = {S1, . . . , Sn}.

We do not assume a specific type of bandwidth-reservation
mechanism but require that servers are scheduled in the sys-
tem according to the Earliest Deadline First (EDF) policy.
Mechanisms which are in line with this assumption can be
found in other works (e.g. [20, 1]) and will not be further de-
scribed. The time needed to switch frequency/voltage is 50
μs in the worst case according to [2]. As we are using EDF
and cannot determine the number of preemptions of a task,
50 μs will be added to the application execution time twice,
one to represent the time to adjust the frequency/voltage
to the values chosen by the algorithm and the other for the
application to return to its previous configuration. Thus,
100 μs (0.10 ms) should be added to the execution time of
each task.

We denote Si = (Qk
i , T

k
i) as the server associated with task i

running in mode k. We assume that the execution of a task
can be divided in two parts, one related to the term PD

and the other to the term P I, which is in line with Eq. (1).

Hence, Qk
i = Qk,D

i +Qk,I
i , where Qk,D

i and Qk,I
i account for

the frequency-dependent and frequency-independent parts
of the task, respectively.

4. SYSTEM RECONFIGURATION UNDER
ENERGY CONSTRAINTS

This section begins by presenting the mathematical formu-
lation of the problem of server reconfiguration under schedu-
lability and energy consumption restrictions. A sample in-

stance is defined to illustrate concepts and algorithms. La-
grangian and surrogate relaxations are developed to com-
pute bounds and parameters that will be handy in the de-
sign of a heuristic. Finally, a greedy heuristic based on the
surrogate relaxation and Lagrangian multipliers is proposed
to find approximate solutions for the server reconfiguration
problem.

4.1 Problem Formulation
The model assumes a processor that can run at a frequency
fj chosen from a finite set F = {f1, . . . , fF }. The real-time
system is composed of a set S = {S1, . . . , Sn} of servers.
A server Si operates at a mode k selected from a set Ki =
{1, . . . , Ki} and is characterized by a tuple (Qk,I

i , Qk,D
i , P k,I

i ,
T k
i) defining the frequency-independent active budget, the

frequency-independent budget, the power consumption, and
the period, respectively.

The problem consists in defining the mode of operation and
processor frequency for each server so as to maximize the
overall system benefit, while ensuring task schedulability
and keeping energy consumption below a user-defined limit.
In mathematical notation the problem is cast as:

P : max f =
∑
Si∈S

∑
(k,j)∈Ωi

Ak,j
i xk,j

i (3a)

s.t. :
∑

(k,j)∈Ωi

xk,j
i = 1, Si ∈ S (3b)

∑
Si∈S

∑
(k,j)∈Ωi

uk,j
i xk,j

i ≤ 1 (3c)

∑
Si∈S

∑
(k,j)∈Ωi

P k,j
i xk,j

i ≤ βP � (3d)

xk,j
i ∈ {0, 1}, Si ∈ S , (k, j) ∈ Ωi (3e)

where:

• Ωi = {(k, j) : k ∈ Ki, fj ∈ F} is the set of all possible
mode-frequency configurations of server Si;

• uk,j
i is the processor utilization of server Si when it

operates at mode k and frequency fj , being defined
as:

uk,j
i =

Qk,D
i

T k
i fj

+
Qk,I

i

T k
i

(4)

• P k,j
i is the power consumed by server Si, operating at

mode k and frequency fj , being defined as:

P k,j
i = (P k,I

i + CV 2fj)u
k,j
i (5)

• P � is the maximum power consumption given by P � =∑
Si∈S max{P k,j

i : (k, j) ∈ Ωi} and β ∈ (0, 1] is a
user-defined parameter establishing the limit on energy
consumption;

• Ak,j
i is the system benefit accrued by running server

Si in mode k and at frequency fj ;

• xk,j
i is a binary variable which takes on value 1 if and

only if server Si runs in mode k and at processor fre-
quency fj .

84

The possibility of interruption or admission denial of a server
Si is modeled by setting Ak,j

i = 0, uk,j
i = 0, and P k,j

i = 0
for a mode k and processor frequency fj .

Although this work assumes the EDF schedulability policy,
other policies may be used such as Rate Monotonic (RM)
by replacing inequality (3c) with∑

Si∈S

∑
(k,j)∈Ωi

uk,j
i xk,j

i ≤ Ulub (6)

where Ulub is the CPU utilization limit defined according to
the number of tasks. Similar to the schedulability policy,
other power management models such as DVS can be used
by modifying the energy constraint (3d).

The reconfiguration problem can be extended to control the
frequency/voltage of other devices by introducing additional
dimensions to the given parameters, currently restricted to
the task mode k and processor frequency fj . For instance,
a new dimension could be introduced to model memory fre-
quency.

The server reconfiguration problem under energy constraints
is obviously NP-Hard since the standard knapsack problem
is reducible to P . Actually, P is a variation of the two-
dimensional knapsack problem [30].

A dynamic programming (DP) algorithm can be devised for
solving P . Suppose that constraints (3c) and (3d) are multi-
plied by sufficiently large positive constants Δ and Γ tomake
the parameters uk,j

i and P k,j
i integers, respectively. The DP

algorithm is based on the recursive computation of the func-
tion fl(δ, γ) defined as the optimal objective of the problem
Pl(δ, γ), which consists of P restricted to servers S1, . . . , Sl,
the right-hand side of (3c) replaced by δ ∈ {0, 1, . . . ,Δ}
(available CPU), and the right-hand side of (3d) replaced
by γ ∈ {0, 1, . . . ,ΓβP �} (available energy).

An nice feature of the DP algorithm is that it can reach
an optimal solution. The algorithm runs in Θ(ΔΓβP �|Ω|)
time, where Ω = {(i, k, j) : Si ∈ S , (k, j) ∈ Ωi} is the set
of all mode-frequency configurations of all servers. Owing
to its running time, the DP algorithm is efficient only for
small instances or when the constants Δ, ΓβP �, and n are
relatively small. Because the DP approach solves a fam-
ily of reconfiguration problems for varying energy and CPU
availability, reconfiguration can be carried out immediately
provided that the DP tables are stored in memory.

4.2 Sample Instance
A sample instance is defined here with the purpose of illus-
trating models and algorithms. The tasks were generated
with the UUniFast algorithm [3] because it produces sce-
narios that are neither too pessimistic, nor overly optimistic
for the analysis. The sample real-time system consists of
n = 3 servers with each server Si having Ki = 3 modes of
operation. The processor has F = 3 frequencies represented
by the set F = {1.0, 0.75, 0.5}, whereby f1 = 1.0 means
that the processor runs at frequency 2.53GHz, f2 = 0.75
for 1.90GHz, and f3 = 0.50 for 1.27GHz. The parame-
ters of Table 1 and Eq. (4) were used to obtain the server
utilizations given in Table 2.

Table 1: Server configuration parameters
i k (Qk,I

i , Qk,D
i , P k,I

i , T k
i)

1 (0.1, 15.70, 0.438, 33)
1 2 (0.2, 1.9, 0.438, 66.7)

3 (0.4, 8.2, 0.438, 200)
1 (0.3, 7.6, 0.438, 33)

2 2 (1.9, 16.6, 0.438, 66.7)
3 (0.3, 4.8, 0.438, 200)
1 (2.2, 0.03, 0.438, 33)

3 2 (1.2, 1.5, 0.438, 66.7)
3 (2.7, 3.7, 0.438, 200)

Table 2: CPU utilization
uk,j
i

i = 1 i = 2 i = 3
u1,1
i 47.88% 23.94% 6.76%

u1,2
i 63.74% 31.62% 6.79%

u1,3
i 95.45% 46.97% 6.85%

u2,1
i 3.15% 27.74% 4.05%

u2,2
i 4.10% 36.03% 4.80%

u2,3
i 6.00% 52.62% 6.30%

u3,1
i 4.30% 2.55% 3.20%

u3,2
i 5.67% 3.35% 3.82%

u3,3
i 8.40% 4.95% 5.05%

The power consumption parameters are C ≈ 6.32411×10−9 ,
Vmax = 1.25 [12], and P k,I

i = 0.438 [21] for all Si ∈ S ,

k ∈ Ki. Using these parameters, the CPU utilizations uk,j
i ,

and the processor frequencies in Eq. (5), the energy con-
sumption of the servers for the various modes and frequen-
cies are obtained as shown in Table 3. The benefits of the
system tasks appear in Table 4 depending on operatingmode
and processor frequency.

The maximum energy consumption P � = 10.5 of the real-
time system is computed from the instance parameters. The
sample instance of the problem of reconfiguring real-time
serves under schedulability and energy consumption con-
straints, P , is readily defined with the given parameters.

Table 3: Energy Consumption
P k,j
i

i = 1 i = 2 i = 3

P 1,1
i 12.1794 6.0897 1.7190

P 1,2
i 7.0015 3.4730 0.7456

P 1,3
i 3.4010 1.6735 0.2440

P 2,1
i 0.8009 7.0555 1.0297

P 2,2
i 0.4502 3.9581 0.5270

P 2,3
i 0.2137 1.8750 0.2244

P 3,1
i 1.0938 0.6487 0.8140

P 3,2
i 0.6225 0.3680 0.4193

P 3,3
i 0.2993 0.1764 0.1799

The dynamic programming algorithm will find the optimal
server reconfiguration if Δ = 104 and Γ = 104. Because

85

Table 4: System benefit
Ak,j

i

i = 1 i = 2 i = 3

A1,1
i 3.0000 1.0000 3.0000

A1,2
i 2.5000 0.9658 2.5000

A1,3
i 2.0000 0.9316 2.0000

A2,1
i 0.0898 3.0000 1.0000

A2,2
i 0.0838 2.5000 0.8998

A2,3
i 0.0778 2.0000 0.7995

A3,1
i 1.0000 0.8631 0.5990

A3,2
i 0.7724 0.6703 0.5677

A3,3
i 0.5449 0.4775 0.5363

such parameters will make the DP tables large, an approxi-
mate version of the DP algorithm was applied to the sample
instance with Δ = 102 and Γ = 102. Fractional utiliza-
tions Δuk,j

i and energy consumption ΓP k,j
i were rounded

to the nearest integer. Despite this approximation, the DP
algorithm found the optimal solution for β = 1, which is
x3,1
1 = 1, x2,1

2 = 1, and x1,1
3 = 1 with a total benefit of 7

units. It also found the optimal solution for β = 0.5, which
is x3,1

1 = 1, x2,3
2 = 1, and x1,1

3 = 1 with a total benefit of
6 units. Notice that with the reduction in power supply,
the server S2 was reconfigured to run at a lower processor
frequency.

4.3 Relaxations
Let x = (xk,j

i : (i, k, j) ∈ Ω) be a vector collecting all vari-
ables of P and let P = {x : x satisfies (3b) through (3e)}
denote its solution space. Then, P is compactly stated
as f� = max{f(x) : x ∈ P}. A problem R, defined by
r� = max{r(x) : x ∈ R}, is a relaxation of P if [30]:

i) P ⊆ R;

ii) r(x) ≥ f(x) for all x ∈ P .

Because a relaxation problem must be solved up to optimal-
ity for r� to induce an upper bound, it is mostly useful when
an efficient algorithm exists. Relaxations are key to estab-
lishing certificates of quality for feasible solutions and also
to the design of algorithms for solving optimization prob-
lems. For instance, integer-programming algorithms such as
branch-and-bound and cutting-plane rely on the computa-
tion of bounds via relaxations.

Lagrangian and surrogate relaxations are developed below
for the reconfiguration problem. They will play a part in
the design of a heuristic for solving the server reconfigura-
tion problem under schedulability and energy consumption
constraints.

4.3.1 Lagrangian Relaxation
Given Lagrange multipliers for the schedulability and en-
ergy consumption constraints, λu and λp respectively, the
Lagrangian dual function fL for the reconfiguration problem

is obtained as follows:

LP (λ) :

fL(λ) = max
∑

(i,k,j)∈Ω

(Ak,j
i − λuu

k,j
i − λpP

k,j
i)xk,j

i

+ λu + λpβP
� (7a)

s.t. :
∑

(k,j)∈Ωi

xk,j
i = 1, Si ∈ S (7b)

xk,j
i ∈ {0, 1}, (i, k, j) ∈ Ω (7c)

where λ = (λu,λp). For any λ ≥ 0, the Lagrangian dual
function induces an upper bound fL(λ) ≥ f�. This dual
function has the nice property of being computed analyti-
cally as follows:

1. define (k̂, ĵ)(i) = argmax{(Ak,j
i − λuu

k,j
i − λpP

k,j
i) :

(k, j) ∈ Ωi}.

2. the solution x(λ) to LP (λ) is obtained by setting, for

all Si ∈ S , xk,j
i (λ) = 1 if (k, j) = (k̂, ĵ)(i) and other-

wise xk,j
i (λ) = 0 for all (k, j) ∈ Ωi.

The Lagrangian dual problem consists in finding the vector
λ� that minimizes the upper bound fL [9]. Formally, the
Lagrangian dual is cast as:

LD : fL(λ
�) = min

λ≥0

fL(λ) (8)

According to duality theory, the Lagrangian dual problem is
convex because fL(λ) is convex and nondifferentiable. Al-
though the nondifferentiability of fL prevents the use of ef-
ficient gradient-based algorithms such as the damped New-
ton’s method [4], a subgradient algorithm (SGA) can mini-
mize fL since subgradients are easily computed.

A vector ξ(λ) ∈ R
2 is a subgradient for fL at λ if fL(λ̄) ≥

fL(λ)+ξ(λ)′(λ̄−λ) for all λ̄ ≥ 0. Given a solution x(λ) =

(xk,j
i (λ) : (i, k, j) ∈ Ω) to LP (λ), a subgradient for fL at λ

is obtained as follows:

ξ(λ) =

[
ξu(λ)
ξp(λ)

]
=

⎡
⎢⎣ 1−

∑
(i,k,j)∈Ω

uk,j
i xk,j

i (λ)

βP � −
∑

(i,k,j)∈Ω

P k,j
i xk,j

i (λ)

⎤
⎥⎦ (9)

The availability of subgradients allows us to develop a sub-
gradient algorithm to solve, at least approximately, the La-
grangian dual. The subgradient algorithm is detailed in Al-
gorithm 1. Under certain conditions, this algorithm pro-
duces a series of multipliers that converges to the optimal
Lagrangian vector λ�. In particular, Theorem 10.4 of [30]

ensures that the series {fL(λ
(k))}∞k=0 converges to fL(λ

�) if

μ(0) and ρ < 1 are sufficiently large, and kmax = ∞.

The performance of the subgradientmethod depends greatly
on the sequence {μ(k)} of the step lengths for the subgradi-

ents. This means that the parameters μ(0) and ρ will have to
be tuned for the particular problem at hand. The running
time of SGA is controlled by the iteration limit kmax. Its
step 6 requires scanning all the parameters defining the re-
configuration problem P , so the computational cost for this

86

Algorithm 1 Subgradient Algorithm (SGA)

1: Input: servers S , {(Ak,j
i , uk,j

i , P k,j
i) : (i, k, j) ∈ Ω}, β,

initial Lagrangian multiplier λ(0), initial step μ(0), de-
creasing rate ρ < 1, tolerance η, and iteration limit kmax

2: k := 0 {iteration counter}
3: fbest

L := ∞ {best upper bound}
4: fbest := −∞ {best feasible objective}
5: repeat
6: solve LP (λ(k)), obtaining x(λ(k)) and fL(λ

(k))

7: if fL(λ
(k)) < fbest

L then

8: λbest := λ(k)

9: fbest
L := fL(λ

(k))
10: end if
11: if x(λ(k)) is feasible for P and f(x(λ(k))) > fbest

then
12: xbest := x(λ(k))
13: fbest := f(xbest)
14: end if
15: compute subgradient ξ(λ(k)) according to Eq. (9)

using x(λ(k))
16: obtain the next multipliers:

λ
(k+1)
u := max{0,λ(k)

u − μ(k)
ξu(λ

(k))}

λ
(k+1)
p := max{0,λ(k)

p − μ(k)
ξp(λ

(k))}

17: μ(k+1) := ρμ(k)

18: k := k + 1

19: until (k > kmax or ‖λ(k+1)−λ
(k)‖

‖λ(k)‖
≤ η)

20: return λbest, fbest
L , xbest, and fbest

step is Θ(|Ω|). Since all the other steps take time propor-
tional to n or less, SGA runs in O(|Ω|kmax) time.

SGA was applied to the sample instance with λ(0) = 1,
μ(0) = 1, ρ = 0.95, η = 10−3, and kmax = 200:

• for β = 1, the algorithm yielded fbest
L = 7.6131 with

λbest = (0.3484, 0.1707), and fbest = 5.7724 induced
by the solution x3,2

1 = 1, x2,3
2 = 1, and x1,1

3 = 1.

• for β = 0.5, the algorithm produced fbest
L = 6.2437

with λbest = (0, 0.4335), and fbest = 6 induced by
the solution x3,1

1 = 1, x2,3
2 = 1, and x1,1

3 = 1. Notice
that this solution coincides with the optimal solution
attained by the DP algorithm.

Two other Lagrangian relaxations are obtained by dualizing
only the schedulability constraint (3c) or the energy con-
sumption constraint (3d), denoted LDu and LDp respec-
tively. The computation of the dual functions of these re-
laxations is more costly than the computation of fL(λ) since
they entail solving a generalization of the knapsack problem.
However, LP (λ) has the integral property, meaning that the
solution of its continuous relaxation is integer [10]. This im-
plies that the lowest upper bound fL(λ

�) has the same value
of the bound obtained by solving the linear-programming re-
laxation of P . On the other, the relaxations LDu or LDp

do not have the integral property, implying that the upper
bounds obtained by these dual problems may be lower than
the linear-programming bound.

In this work we choose the Lagrangian dual function fL dual-
izing the schedulability and energy consumption constraints
for its simplicity, low computational requirements, and the
need of combining these two resources in the design of a
density greedy heuristic. A linear-programming algorithm
specially tailored for P could be used instead of the subgra-
dient algorithm to obtain the optimal dual vector λ� and up-
per bound f�

L . However, a linear-programming algorithm is
much more complex than SGA, invariably consuming more
memory and potentially more time to reach an optimal so-
lution.

4.3.2 Surrogate Relaxation
The surrogate relaxation is obtained by combining restric-
tions (3c) and (3d) with surrogatemultipliers τ = (τu, τ p) ≥
0 into a single constraint [11]. More precisely, the inequali-
ties (3c) and (3d) are replaced with the surrogate inequality:∑

(i,k,j)∈Ω

(τuu
k,j
i + τpP

k,j
i)xk,j

i ≤ τ u + τ pβP
� (10)

Given a vector τ ≥ 0, the surrogate dual function fS is
computed by solving the problem:

SP (τ) :

fS(τ) = max
∑

(i,k,j)∈Ω

Ak,j
i xk,j

i (11a)

s.t. :
∑

(k,j)∈Ωi

xk,j
i = 1, Si ∈ S (11b)

∑
(i,k,j)∈Ω

(τuu
k,j
i + τ pP

k,j
i)xk,j

i

≤ τu + τpβP
� (11c)

xk,j
i ∈ {0, 1}, (i, k, j) ∈ Ω (11d)

Because fS(τ) ≥ f for any τ ≥ 0, the surrogate dual func-
tion yields an upper bound for the reconfiguration prob-
lem. Unlike the Lagrangian dual function fL(λ) which is
computed analytically, the surrogate dual function fS(λ) is
computationally hard since it generalizes the classic knap-
sack problem. The surrogate dual expresses the desire of
minimizing the surrogate upper bound, being defined as the
problem:

SD : fS(τ
�) = min

τ≥0

fS(τ) (12)

In this paper, we do not attempt to compute the surrogate
dual function, let alone solve the surrogate dual. Instead,
the surrogate dual function and problem will be useful in the
design of a heuristic for solving the reconfiguration problem
approximately.

4.4 Density Greedy Heuristic
Based on the procedure developed in [19] for the two-con-
straint knapsack problem, we propose a heuristic for the
reconfiguration problem. The heuristic consists in using the

subgradient algorithm to obtain an approximation λ̃ to the
optimal Lagrangian multipliers λ�, and then solving SP (τ)

for τ = λ̃ with a density-greedy strategy.

Definition 1. X ⊆ Ω is a feasible set of the server con-
figurations if:

87

1. for each Si ∈ S there exists exactly one configuration
(i, k, j) ∈ X, that is, |Ωi ∩X| = 1 for all Si;

2.
∑

(i,k,j)∈X
uk,j
i ≤ 1 and

∑
(i,k,j)∈X

P k,j
i ≤ βP �.

Assumption 1. There exists a feasible set X(β) of the
server configurations for the given energy consumption limit.

Assumption 2. For all Si ∈ S and (k, j), (k′, j′) ∈ Ωi, if

uk,j
i < uk′,j′

i and P k,j
i < P k′,j′

i then Ak,j
i < Ak′,j′

i . Other-
wise, the reconfiguration (k′, j′) could be discarded.

In the sample instance, the set X(β) = {(1, 3, 1), (2, 3, 1),

(3, 3, 1)} is feasible for β = 0.5 because
∑

(i,k,j)∈X(β) P
k,j
i =

2.5565 < 5.25 = βP � and
∑

(i,k,j)∈X(β) u
k,j
i = 0.1005 <

1. Notice that X(β) was obtained by selecting modes of
operation with low quality for the tasks being managed by
the servers.

Let Ω(X) = Ω−X and Ωi(X) = {(k, j) ∈ Ωi : (i, k, j)
∈ X}
be the configuration sets without the configurations appear-
ing in X. Further, for any Si let (k, j)X,i be the configu-
ration of Si appearing in X, i.e., (i, (k, j)X,i) ∈ X. With
this notation, X is used to set up a problem P (X) equiv-
alent to the reconfiguration problem P . By substituting

(1−
∑

(k,j)∈Ωi(X) x
k,j
i) for x

(k,j)X,i

i , we arrive at the follow-
ing form of the reconfiguration problem:

P (X) :

f = max
∑

(i,k,j)∈Ω(X)

ΔAk,j
i xk,j

i +
∑
Si∈S

A
(k,j)X,i

i (13a)

Subject to:∑
(k,j)∈Ωi(X)

xk,j
i ≤ 1, Si ∈ S (13b)

∑
(i,k,j)∈Ω(X)

Δuk,j
i xk,j

i ≤ 1−
∑
Si∈S

u
(k,j)X,i

i (13c)

∑
(i,k,j)∈Ω(X)

ΔP k,j
i xk,j

i ≤ βP � −
∑
Si∈S

P
(k,j)X,i

i (13d)

xk,j
i ∈ {0, 1}, (i, k, j) ∈ Ω(X) (13e)

where Δuk,j
i = uk,j

i − u
(k′,j′)X,i

i , ΔP k,j
i = P k,j

i − P
(k′,j′)X,i

i ,

and ΔAk,j
i = Ak,j

i − A
(k′,j′)X,i

i for all (i, k, j) ∈ Ω(X).

Our heuristic is based on the density greedy approach of
Martello and Toth [19], which was developed for the two-
constraint 0-1 knapsack problem. Given a feasible set X
of server configurations, the proposed heuristic solves P (X)
approximately as follows:

1. solve the Lagrangian dual LD with the subgradient

algorithm to obtain Lagrangian multipliers λ̃ = λbest

approximating λ� and a feasible solution xbest; define
a feasible configuration set X using xbest if this can-
didate solution is feasible, otherwise use a predefined
feasible solution X(β);

2. define P (X) using X;

3. obtain the surrogate problem SP (X, τ) of P (X) using

τ = λ̃, in a manner similar to the surrogate problem
SP (τ);

4. follow the density greedy strategy sorting the config-
urations in nonincreasing order of the ratio of benefit
to the combination of CPU utilization and energy con-
sumption weighted by the Lagrangian multipliers; in
mathematical notation, this ratio is given by:

ΔÃk,j
i =

ΔAk,j
i

λ̃uΔuk,j
i + λ̃pΔP k,j

i

5. examine the configurations in the sorted order, chang-
ing server configuration depending on whether or not
the new configuration improves overall benefit, while
ensuring feasibility.

The pseudo-code of the density greedy heuristic (DGH) ap-
pears in Algorithm 2. The complexity of DGH is determined
as follows. Step 2 consists in applying SGA which takes
O(|Ω|kmax) time. Steps 3-8 can be performed in Θ(n) time.
Step 9 takes Θ(|Ω| log |Ω|) to sort the mode-frequency con-
figurations for all servers. Step 11 can be performed in Θ(1)
time using an array. Since steps 12-16 run in constant time,
the for-loop 10-18 runs in Θ(|Ω|) time. Thus, the running
time of DGH is O(|Ω|kmax + |Ω| log |Ω|) being dominated by
SGA and the sorting step.

Algorithm 2 Density Greedy Heuristic (DGH)

1: Input: servers S , {(Ak,j
i , uk,j

i , P k,j
i) : (i, k, j) ∈ Ω}, β,

feasible set X(β), initial Lagrangian multipliers λ(0), ini-

tial step μ(0), decreasing rate ρ < 1, tolerance η, and
iteration limit kmax

2: run SGA with the given parameters to obtain λ̃ = λbest

approximating λ�, fbest
L , and xbest

3: if xbest is feasible for P then
4: X := {(i, k, j) : xk,j

i = 1 in xbest}
5: else
6: X := X(β) is the initial feasible solution
7: end if
8: u(X) :=

∑
(i,k,j)∈X

uk,j
i , P (X) :=

∑
(i,k,j)∈X

P k,j
i ,

f(X) :=
∑

(i,k,j)∈X
Ak,j

i

9: obtain Ω̂(X) := 〈(i, k, j)(1), (i, j, k)(2), . . . , (i, k, j)(T)〉

by sorting Ω(X) in nonincreasing order of ΔÃk,j
i , where

T := |Ω(X)|
10: for t = 1 to T do
11: find (i, k, j) ∈ X such that i = i(t)

12: if (A
k(t),j(t)
i ≥ Ak,j

i) ∧ (u(X) − uk,j
i + u

k(t),j(t)
i ≤ 1)

∧ (P (X)− P k,j
i + P

k(t),j(t)
i ≤ βP �) then

13: X := (X − {(i, k, j)}) ∪ {(i, k(t), j(t))}

14: u(X) := u(X)− uk,j
i + u

k(t),j(t)
i

15: P (X) := P (X)− P k,j
i + P

k(t),j(t)
i

16: f(X) := f(X) −Ak,j
i + A

k(t),j(t)
i

17: end if
18: end for
19: return X, f(X), u(X), P (X), and fbest

L

88

The heuristic yields a feasible solution X which is not worse
than the initial, feasible solution. The quality of X is es-
timated by the upper bound fbest

L , that is, f� − f(X) ≤
fbest
L − f(X).

The density greedy heuristic was applied to the sample in-
stance. DGH used in step 2 the same parameters used by
SGA when it was applied to the sample instance.

For β = 0.5, SGA yielded λbest = (0, 0.4336) and found
an optimal solution X� = {(1, 3, 1), (2, 2, 3), (3, 1, 1)} with
f(X�) = 6, U(X�) = 0.6352, and P (X�) = 4.6878. By us-
ing the feasible solution X(β) = {(1, 3, 1), (2, 3, 1), (3, 3, 1)}
with f(X(β)) = 2.4621, DGH managed to find the optimal
solution X�.

For β = 1.0, SGA yielded λbest = (0.3485, 0.1709) and
found a feasible solution X = {(1, 3, 2), (2, 2, 3), (3, 1, 1)}
with f(X) = 5.7724, U(X) = 0.6489, and P (X) = 4.2165.
Using the initial solution X and λbest obtained with SGA,
DGH found the optimal solutionX� with f(X�) = 7, U(X�)
= 0.3880, and P (X�) = 9.8683.

5. EVALUATION
This section presents numerical results from the solution of
the reconfiguration problem using an off-the-shelf optimiza-
tion solver and the density greedy heuristic. These solution
approaches are compared with respect to solution time and
quality.

5.1 Simulation Scenarios
To evaluate the performance of the heuristic and solver, sets
of tasks were generated using the UUniFast algorithm pro-
posed in [3], which produces representative scenarios devoid
of task sets that are too pessimistic or overly optimistic for
the analysis. Five scenarios were put together with 10, 20,
30, 40, and 50 tasks. Ten different instances for each sce-
nario were obtained from independent runs of UUniFast.

In all scenarios, the real-time system is composed by tasks
that are handled by dedicated servers. A server Si ∈ S
manages the execution of task i, which can run in one of
Ki = 3 different modes of operation and F = 4 possible pro-
cessor frequencies. The processor supports frequencies that
are restricted to the set F = {1.0, 0.75, 0.45, 0.25} where

the maximum frequency is 2.56GHz. The parameters Qk,D
i

and Qk,I
i were produced by the UUniFast algorithm, with∑n

i=1 u
k,1
i = 1 for k = 1, 2, 3. The power consumption

parameters are the same of the sample instance, with the
exception of P � which models the maximum energy con-
sumption of the system.

The evaluation was performed in MacBookPro5,5 with a
2.53GHz Intel Core 2 Duo, 4GB on a Debian (Linux Ker-
nel 2.6.32-5-amd64) operating system and Gcc 4.4.5. The
mixed-integer linear programming (MILP) solver Cplex ver-
sion 12.2.0 was used to find the optimal reconfiguration for
all the instances by solving problem P . Cplex is one of the
most efficient MILP solvers available in the market.

The benefit value Ak,j
i of each possible task configuration

was set according to the CPU and frequency utilization.

Processor usage was taken into consideration to avoid CPU
idle time. Frequency was also considered to avoid selection
of tasks with low power consumption and poor quality when
energy is still available for the system.

In order to estimate the running time of the Cplex solver in
an embedded system platform, such as ARM9 [2], the ex-
periments measured the number of instructions performed.
According to [2], an ARM968E-S with 470MHz can exe-
cute 517 DMIP (Dhrystone MIPS), which is equivalent to
517 millions of instructions per second. DMIP is the ra-
tio between the score of the Dhrystone Benchmark program
and 1757, which is the score obtained per second on a VAX
11/780, nominally a 1 MIPS machine [23].

The number of instructions executed by the solver to find
an optimal solution to the reconfiguration problem was mea-
sured with Pintool [24], a computational tool for dynamic
instrumentation of programs. By dividing the total number
of instructions by the number of instructions processed per
second in an ARM9 processor, we obtain an estimate for the
running time of the solver in an embedded system.

5.2 Cplex Computational Results
Figure 1 shows the overall system benefit induced by Cplex
for all the scenarios, as a function of the energy availability
parameter β. Cplex solved the reconfiguration problem P
given by expressions (3a)-(3e). The system benefit is the
average over the 10 instances of each scenario.

Figure 1 indicates that the overall system benefit declines
with a decreasing β, which is in line with the intuition that
system performance degrades when energy availability is re-
duced. When less energy is available, servers are forced to
run at low frequencies and with modes that consume less
CPU, thereby accruing less benefit to the system.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

β

B
en

ef
it

Cplex with 10 tasks

Cplex with 20 tasks

Cplex with 30 tasks

Cplex with 40 tasks

Cplex with 50 tasks

Figure 1: Overall system benefit achieved by Cplex
as a function of energy availability.

To establish a fair estimate of the running time of Cplex in
an embedded system, we consider an ARM9 processor run-
ning at 470MHz, ARM968E-S. The estimated running time
of Cplex on ARM968E-S appears in Figure 2. It is impor-
tant to mention that the reconfiguration problem is solved
only when the system undergoes environment changes. If
the average running time is not acceptable, and a worst-case
running time must be ensured, the solver may be forced to

89

run up to a time limit or reduce the quality of the solution.
Setting a tolerance of 4% to the best solution, the worst-
case running time of Cplex dropped from 0.79s to 0.15s to
solve the instance with 50 tasks. By bounding the solution
time or quality, the reconfiguration obtained by solving P
approximately will not be optimal, but a feasible one that
respects the constraints.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

β

E
st

im
te

d
R

un
ni

ng
 T

im
e(

s)

Cplex with 10 tasks

Cplex with 20 tasks

Cplex with 30 tasks

Cplex with 40 tasks

Cplex with 50 tasks

Figure 2: Running time of Cplex to reach the opti-
mal solution of all instances for varying β on a pro-
cessor ARM968E-S running at 470MHz.

The CPU time necessary to solve a problem instance with
Cplex does not necessarily increase with problem size, which
is not an atypical behavior in the domain of integer pro-
gramming as observed in Figure 2. Incidentally, for β = 1.0,
Cplex spent more time to solve the instances of the scenar-
ios with 30 and 40 tasks than those of the scenario with 50
tasks. For all the other values tested for β, the set of 50
tasks executed more instructions than the other sets.

5.3 Heuristic Computational Results
Figure 3 shows the overall system benefit induced by the
heuristic for the same scenarios of the Cplex (Figure 1).
The results indicate that the system benefit achieved by the
heuristic is similar to what was obtained with Cplex. Fig-
ure 4 shows the running time of the heuristic to solve the
reconfiguration problems, for all instances and varying en-
ergy availability. Notice that the average running time of the
heuristic is below 16ms (0.016 s), much faster than Cplex
that has an average running time below 800ms (0.8 s).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

β

B
en

ef
it

Heuristic with 10 tasks
Heuristic with 20 tasks
Heuristic with 30 tasks
Heuristic with 40 tasks
Heuristic with 50 tasks

Figure 3: Overall system benefit achieved by the
heuristic as a function of energy availability.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16
x 10

−3

β

E
st

im
te

d
R

un
ni

ng
 T

im
e(

s)

 Heuristic with 10 tasks

Heuristic with 20 tasks

Heuristic with 30 tasks

Heuristic with 40 tasks

Heuristic with 50 tasks

Figure 4: Running time of the heuristic applied to
all instances for varying β on a processor ARM968E-
S running at 470MHz.

5.4 Remarks
Figure 5 compares the solution yielded by the density greedy
heuristic with the optimal reconfiguration found by Cplex,
depicting the distance of the heuristic solution from the op-
timum (error). The average error is approximately 9.9% and
the maximum is about 16.5%. To some extent, the quality
of the heuristic solution depends on the quality of the La-
grangian multipliers used as surrogate multipliers. For this
reason, the subgradient algorithm was tuned so as to induce
a good performance of the density greedy heuristic.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2%

4%

6%

8%

10%

12%

14%

16%

18%

β

E
rr

or
(%

)

Heuristc with 10 tasks
Heuristc with 20 tasks
Heuristc with 30 tasks
Heuristc with 40 tasks
Heuristc with 50 tasks

Figure 5: Comparison between the solution pro-
duced by the heuristic and the optimal reconfigu-
ration obtained with Cplex.

Figure 6 illustrates the variation of selected modes accord-
ing to the value of β. The mode selection behavior induced
by the optimal solution (Cplex) is not shown because it was
similar to the one of the heuristic. It is possible to conclude
that the system tends to use the third mode, which gen-
erates more benefit by consuming more energy and CPU,
as energy availability increases. In the instances chosen for
analysis, the tasks consume less energy when they run at
low frequency as confirmed by Figure 7.

As an MILP solver, Cplex uses a branch-and-bound search
combined with cutting-plane generation and sophisticated
procedures for bounding, variable branching, and guiding
the search, all of which play a part on efficiency. Thus,
the difference in solution time between Cplex and DGH is

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

β

T
as

ks

Mode1
Mode2
Mode3

Figure 6: Behavior of mode selection induced by
the heuristic solution in the 50 tasks scenario as a
function of energy availability.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

β

T
as

ks

Frequency100%
Frequency75%
Frequency50%
Frequency25%

Figure 7: Behavior of frequency selection according
to the heuristic solution in the 50 tasks scenario as
a function of energy availability.

not surprising, since the former enumerates all solutions ei-
ther explicitly or implicitly to find the global optimum. On
the other hand, the heuristic produces an approximate solu-
tion with a certificate of quality induced by the Lagrangian
bound. An experiment that could be carried out consists
in halting Cplex after running for the same amount of time
that DGH runs, in which case Cplex might produce a good
solution. Nevertheless, Cplex is a highly sophisticated soft-
ware that consumes far more memory than DGH.

An ARM968E-S processor has the power efficiency of 0.00011
W/MHz [2]. Based on this fact, Cplex needs 0.794 seconds
whereas DGH needs only 0.0152 seconds in the worst case
to solve the reconfiguration problem for a system with 50
tasks on a processor running at 470MHz, which consumes
0.0410498W for Cplex and 0.00078584W for DGH.

Because Cplex and DGH consume energy and CPU cycles,
the design of the real-time system should consider reconfig-
uration as a system task and define the events that trigger
reconfiguration. For example, if a robot receives a mission
that takes an hour to be accomplished but with a battery
that can last for only 40 min, the reconfiguration should be
applied to degrade the quality of the tasks. Other events
that can trigger system reconfiguration are the interruption
of energy supply and the admission of new tasks.

6. CONCLUSION
In this paper, we have described a framework for dynamic
reconfiguration of multi-mode real-time applications. The
framework has been formalized as an optimization problem
whose goal is to maximize application QoS subject to both
schedulability and energy constraints. The energy consump-
tion model was based on DPM to account for both on-chip
and off-chip energy usage by the system.

Because the reconfiguration task generalizes the 2-constraint
knapsack problem, which is NP-Hard, a heuristic was devel-
oped to find approximate solutions with low computational
cost. The heuristic follows a greedy strategy to solve the
associated surrogate problem defined by Lagrangian multi-
pliers obtained with a subgradient algorithm.

The proposed framework and heuristic were implemented
in C++ and applied to five real-time systems of varying
size. The computational results showed that the heuristic is
able to find high quality solutions approximating the opti-
mum, which was computed with a top-notch mixed-integer
linear-programming solver (Cplex). As observed in the ex-
periments, the reconfiguration mechanism tends to choose
operating modes that improve system benefit with the in-
crease of energy availability. Indeed, the obtained results
encourage the implementation of the proposed framework
in a real-time embedded operating system, a research step
to be considered in future work.

7. REFERENCES
[1] L. Abeni and G. Buttazzo. Resource reservation in

dynamic real-time systems. Real-Time Systems,
27(2):123–167, 2004.

[2] ARM. Application notes and tutorials, Jun 2011.

[3] E. Bini and G. Buttazzo. Measuring the performance
of schedulability tests. Real-Time Systems,
30(1):129–154, 2005.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[5] A. Burns, D. Prasad, A. Bondavalli, F. D.
Giandomenico, K. Ramamritham, J. Stankovic, and
L. Strigini. The meaning and role of value in
scheduling flexible real-time systems. Journal of
Systems Architecture, 46(4):305–325, 2000.

[6] G. Buttazzo. Research trends in real-time computing
for embedded systems. ACM SIGBED Review, 3(3),
2006.

[7] E. Camponogara, A. B. de Oliveira, and G. Lima.
Optimization-based dynamic reconfiguration of
real-time schedulers with support for stochastic
processor consumption. IEEE Transactions on
Industrial Informatics, 6(4):594–609, Nov 2010.

[8] A. B. de Oliveira, E. Camponogara, and G. Lima.
Dynamic reconfiguration in reservation-based
scheduling: An optimization approach. In Proceedings
of the 15th IEEE Symposium on Real-Time and
Embedded Technology and Applications, pages
173–182, Apr 2009.

[9] M. L. Fisher. The Lagrangian relaxation method for
solving integer programming problems. Management
Science, 50(12):1861–1871, 2004.

[10] A. M. Geoffrion. Lagrangian relaxation an its uses in

91

integer programming. Mathematical Programming
Study, 2:82–114, 1974.

[11] F. Glover. Surrogate constraints. Operations Research,
16(4):741–749, July-August 1968.

[12] Intel. Intel Technical Documents - Intel core 2 duo
mobile processor, oct 2010.

[13] J. Jehuda and A. Israeli. Automated meta-control for
adaptable real-time software. Real-Time Systems,
14(2):107–134, 1998.

[14] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded
systems. In Proceedings of the 41st Annual Design
Automation Conference, pages 275–280, 2004.

[15] W. Kim, J. Kim, and S. Min. A dynamic voltage
scaling algorithm for dynamic-priority hard real-time
systems using slack time analysis. In Proceedings of
the Conference on Design, Automation and Test in
Europe, 2002.

[16] C. Lee, J. P. Lehoczky, D. S. R. Rajkumar, and
J. Hansen. A scalable solution to the multi-resource
QoS problem. In Proceedings of the 20th IEEE
Real-Time Systems Symposium, pages 315–326, 1999.

[17] C. Lee, J. P. Lehoczky, R. Rajkumar, and
D. Siewiorek. On quality of service optimization with
discrete QoS options. In Proceedings 5th IEEE
Real-time Technology and Applications Symposium,
pages 276–286, 1999.

[18] G. Lima, E. Camponogara, and A. C. Sokolonski.
Dynamic reconfiguration for adaptive multiversion
real-time systems. In Proceedings of the 20th IEEE
Euromicro Conference on Real-Time Systems, pages
115–124, 2008.

[19] S. Martello and P. Toth. An exact algorithm for the
two-constraint 0–1 knapsack problem. Operations
Research, 51(5):826–835, 2003.

[20] C. W. Mercer, S. Savage, and H. Tokuda. Processor
capacity reserves for multimedia operating systems.
Technical Report CMU-CS-93-157, Carnegie Mellon
University, 1993.

[21] Micron. Technical Notes, oct 2010.

[22] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems.
SIGOPS Operating Systems Review, 35:89–102, Oct
2001.

[23] N. Pinckney, T. Barr, M. Dayringer, M. McKnett,
N. Jiang, C. Nygaard, D. M. Harris, J. Stanley, and
B. Phillips. A MIPS R2000 implementation. In
Proceedings of the 45th Annual Design Automation
Conference, pages 102–107, 2008.

[24] Pintool. A dynamic binary instrumentation tool.
http://www.pintool.org/, Jul 2011. Online; accessed
July-2011.

[25] D. Prasad and A. Burns. A value-based scheduling
approach for real-time autonomous vehicle control.
Robotica, 18(3):273–279, 2000.

[26] G. Quan and X. Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors. In Proceedings of the Design Automation
Conference, pages 828–833, 2001.

[27] C. Rusu, R. Melhem, and D. Mossé. Multi-version
scheduling in rechargeable energy-aware real-time

systems. Journal of Embedded Computing,
1(2):271–283, 2005.

[28] C. A. Rusu, R. Melhem, and D. Mossé. Maximizing
the system value while satisfying time and energy
constraints. IBM Journal of Research and
Development, 47(5-6):689–702, Sept 2003.

[29] Y. Shin, K. Choi, and T. Sakurai. Power optimization
of real-time embedded systems on variable speed
processors. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
pages 365–368, 2000.

[30] L. A. Wolsey. Integer Programming. John Wiley &
Sons, New York, NY, 1998.

[31] C. Xian, Y.-H. Lu, and Z. Li. Dynamic voltage scaling
for multitasking real-time systems with uncertain
execution time. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 27(8):1467–1478, Aug 2008.

[32] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In Proceedings of the
36th Annual Symposium on Foundations of Computer
Science, pages 374–382, Oct 1995.

[33] H. Yu, B. Veeravalli, and Y. Ha. Dynamic scheduling
of imprecise-computation tasks in maximizing QoS
under energy constraints for embedded systems. In
Proceedings of the Asia and South Pacific Design
Automation Conference, pages 452–455, March 2008.

[34] X. Zhong and C.-Z. Xu. Energy-aware modeling and
scheduling for dynamic voltage scaling with statistical
real-time guarantee. IEEE Transactions on
Computers, 56(3):358–372, March 2007.

[35] D. Zhu, R. Melhem, and D. Mossé. The effects of
energy management on reliability in real-time
embedded systems. In Proceedings of the International
Conference on Computer-Aided Design, pages 35–40,
2004.

[36] Y. Zhu and F. Mueller. Feedback EDF scheduling of
real-time tasks exploiting dynamic voltage scaling.
Real-time Systems, 31(1-3):33–63, 2005.

92

