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Abstract

Choosing a Real-Time Operating System(RTOS) for an embedded application is a dif-
ficult task. There a numerous products which claim to be RTOS. Also for the RTOS to be
useful in automobiles it must possess the necessary characteristics.

The purpose of this report is to list out the various aspects in choosing a commercial
RTOS for use in automobiles. To that end this report gives a brief description of the OSEK
open standard and looks at two real-time operating systems with a view towards use in
automobiles.
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Chapter 1

Introduction to Real-Time Systems

1.1 Introduction

A real-time system is defined as a system in which the correctness of its output(s) depends
not only upon the logical computations carried out but also upon the time at which the
results were delivered to the external interface. A good RTOS can be called as one that
has bounded (predictable or timely) behavior under all system input scenarios.

In general, a real-time task falls into one of the 3 categories, namely:

e Hard real-time: missing a deadline has catastrophic results for the system.

e Firm real-time: missing a deadline entails an unacceptable quality reduction as a
consequence.

e Soft real-time: deadlines may be missed and can be recovered from. The reduction
in system quality in soft real-time systems is acceptable.

We will look at the different issues in real-time systems with emphasis on hard real-time
systems.

1.2 Issues in real-time Computing

A complex real-time system has, in general, both hard and soft deadlines. Since hard
deadlines are critical to the functioning of the system, they must be met even under the
worst conditions. As a result the system’s performance under worst-case conditions is fun-
damental to many, if not all, real-time systems.

[10, 9] describe the features of an RTOS that are desirable. We present a few of
them along with the features that make them suitable for embedded control systems in
automobiles.



1.2.1 Task Management and Interrupts

From the definition of real-time, an application has to be capable of responding in a
predictable or timely way to multiple simultaneous external events. This is the basis of
multitasking. The level of multitasking depends on the whether the processes are run as a
whole or are divided into task or threads.

Threads are preferable over tasks as they have smaller context switching times. This
results in faster and timely response to an event. Each thread is assigned a priority by the
scheduler or the user (in case of user threads).

Interrupt latency must be minimum, but more essentially time bounded. To that end
the routine that service interrupts must be small. Also care must be taken of the situations
where interrupts occur when another interrupt is being serviced. There are different ways
of doing it and are implementation specific.

Sometimes during the execution of an interrupt it is not preempted(by way of another
interrupt). For that reason sometimes interrupts are disabled at the start of servicing an
interrupt and re-enabled at the end of servicing. This disabling time must be ideally very
small.

It is important to have different priority levels. Different priority levels ensure timeli-
ness. This is done by assigning highest priority to threads (or tasks) that have the earliest
deadline. Also threads that ensure safety in safety-critical systems need the highest priority.
Generally there should be at least 128 priority levels.

1.2.2 Scheduling and Fault-Tolerance

The scheduler one of the basic parts of the OS. It has the function of switching from one
task, thread or process to another. As this activity constitutes overhead it must be done
as quickly as possible.

There are many algorithms for scheduling in real-time systems. [9] describes the some
of the different paradigms and their related algorithms. The different paradigms are :

e Static table-driven approaches

e Static priority driven pre-emptive approaches
e Dynamic planning based approaches

e Dynamic best effort approaches

One of the metrics used to quantify a scheduling algorithm is predictability offered by
it. Predictability is the ability of the scheduler to predict that the tasks will meet their



deadlines.

Fault tolerance is an important issue in any RTOS because by definition if a deadline
is missed, the results would be catastrophic. Thus a good RTOS must be able to recognize
in advance when a deadline is going to be missed and take appropriate counter-measures [9].

One of the approaches to fault-tolerance is to have a backup schedule in case of failure.
If there is no failure, the primary task gets executed, the alternative task is not executed
and the time allocated for the alternative task is reused. Otherwise in case of a failure,
a somewhat degraded version of the task is run. But this approach results in increased
processing in terms of computing the alternative schedule and having scheduling them well
beforehand such that in case the primary task fails the alternative task still has enough
time before the deadline.

1.2.3 Memory Management

Each program needs to be held in memory to be executed. Generally the program may be
placed in RAM. Also threads, tasks, queues(mailboxes) and many other operating system
constructs require memory.Data kept in memory can be accessed directly or using memory
management techniques. The problem with memory management techniques is the time
constraint.

The fundamental requirement for memory in a real-time system is that memory access
must be bound(i.e. predictable).Hence use of demand-paging in real-time systems is pro-
hibited. Also care must be taken to load the associative maps in virtual memory systems
onto the processor and lock them so that swapping of the pages does not take place. Gen-
erally systems do not use memory management in the final applications but use them to
debug until the application is ready for deployment.

1.2.4 Communication and synchronization

Different threads communicate when they execute. They synchronize to make sure that
all the exchanges occur at the right moment, under the right conditions and they do not
get into each other’s ways. Also care must be taken so that messages reach the target in
the required time.

Communication between different processes can be typically using:

e Message Queues

FIFO’s and Pipes

Mailboxes

Shared Memory



Also different types of issues like multiple senders and multiple receivers must be taken
into consideration.

1.3 User Interface

This feature does not directly affect the functioning of the real-time system. But it is
essential to develop programs that have good real-time characteristics. In general an RTOS
must provide a good GUI so that users/developers can use it to develop good applications.

1.3.1 API Richness

Simple applications would need a very few system calls. Complex applications might re-
quire many system calls. Also the question of implementing a part of the software as part
of the OS or application is an important one.

The API provided by an RTOS, like the GUI, will not affect the execution time of a
program but will enhance the ease of usage of the RTOS. Good API results in enhance-
ment of the ability on the user’s/developer’s part to write good programs. Hence RTOS
must provide a rich set of system calls and also user-level functions. Also it must provide
support for API standards like POSIX which help in porting of code.



Chapter 2

OSEK/VDX : An Open-Ended
Architecture for automobiles

OSEK/VDX is a standard for open-ended architecture for distributed control units in ve-
hicles. It is defines a single processor operating system meant for distributed embedded
control units. As a complete description of the specification is not possible, it’s outline is
given briefly.

The OSEK/VDX specification is divided into four areas called Conformance Classes
(CC) and described by four documents. [2] describes the overall relationships or depen-
dencies between the classes. Each class has its own specification.

The classes are:

e Operating system [6]
e Communication [3]
e Network management [5]

e OSEK/VDX Implementation Language [4]

The Operating system document describes the features that an operating system must
possess to be suitable for automobiles. These include the areas of task processing, memory
management, interprocess communication.

The Communication document describes the services to be offered by the operating sys-
tem for communication between tasks and interrupt service routines(ISRs). These tasks or
ISRs can be in the same control unit or different unit. Communication is via messages and
this communication is possible only through the specified Application Program Interface
(APT).

The Network document describes the services by which different control units can be
networked together. For this the operating system must provide standardized interfaces.

The OSEK/VDX Implementation Language document describes the mechanisms to
configure an OSEK application inside a particular CPU.

>



2.1 Introduction to the Operating System Specifica-
tion
Automotive applications are characterized by stringent real-time constraints. Hence the
OSEK operating system specification offers the necessary functionality to support event
driven control systems.
One of the goals of OSEK is to support the portability and re-usability of application

software. Hence the interface between application programs and operating system is defined
by standardized system services with well defined functionality.

2.1.1 Task Management

As the operating system is intended for use in any type of control units, it has to support
time-critical applications on a wide range of hardware. Hence dynamic generation of objects
in time-critical applications has been avoided. Instead the generation of system objects is
assigned to system generation phase.

Basically OSEK defines two types of tasks.

e Basic tasks

o Extended tasks

Basic Tasks

Basic tasks are those that release the processor only if
e they terminate,
e the operating system switches to a higher priority task or,

e an interrupt occurs causing the processor to switch to an ISR.

Extended Tasks
Extended tasks are different from basic tasks in that they are allowed to use the system

call WaitEvent, which may result in a waiting state.

2.1.2 Processing Levels and priorities

In the OSEK operating system there are basically two types of entities that compete for
CPU. They are :

e Interrupt Service Routines(ISR) managed by the operating system.
e Tasks



The hardware resources of a control unit can be managed by operating system services.
These services are called by a unique interface, either by the user program or internally by
the operating system.

There are three processing levels in OSEK :

e Interrupt Level
e Logical level for Scheduler
e Task (Basic and Extended Task) Level

Within each task level, the tasks are scheduled (non or full or mixed preemptive schedul-
ing) according to their user assigned priority. The priorities of tasks are statically assigned
by the user.

For efficiency reasons OSEK does not implement dynamic priority management. All
priorities of all tasks are defined statically i.e. the user cannot change it at the time
of execution. OSEK prescribes the OSEK Priority Ceiling Protocol for avoid priority
inversion.

2.1.3 Interrupts and events
Interrupts

The functions to process the interrupts are subdivided into two categories :

e ISR Category 1 : The ISR does not use operating system service. Thus they have
least overhead.

e ISR Category 2 : The user can provide his own routine to be executed when this
interrupt occurs.

Also the operating system provides system functions like EnableAllInterrupts, Dis-
ableAllInterrupts, ResumeAlllnterrupts, SuspendAllInterrupts etc. These system calls have
small latencies.

Event mechanism

Event mechanism is a means of synchronization and is provided only for extended tasks.
Events are objects managed by the operating system.



Chapter 3

A

Report published by CSA

In June 2003, the Canadian Space Agency(CSA) published a report on the process of se-
lecting an RTOS for embedded systems development in satellite applications[8]. In the
report a total of 48 Real-Time Operating Systems were evaluated and 20 of those were
selected for ranking and others rejected.

The evaluation was done on the following categories :

Kernel

Scheduling

Process/Thread /Task Model
Memory

Interrupt and Exception Handling
Application Program Interface
Development Information

Commercial Information

The evaluation was performed with a view towards space-applications, but are equally
applicable to automotives where hard real-time deadlines exist.



3.1 Results of Evaluation

The results showed that four RTOS are in the forefront. They are
e QNX Neutrino from QNX Software Systems
e 0S-9™
e Precise/MQX ™
e OSE ™

Also VxWorks from Wind River, which is the most popular and well known RTOS, is
placed 3 * behind 9 others. eCos is the only open source software to make it to the top
20.

In the following chapters we will be looking at two RTOS namely QNX Neutrino from
QNX software systems and eCos from Free Software Foundation(FSF). Also many of their
features will also be discussed.



Chapter 4

QNX Neutrino from QNX Software
Systems

4.1 Introduction to QNX

QNX Neutrino from QNX Software Systems is a micro-kernel based RTOS.

As it is micro-kernel based, only the most fundamental OS primitives are handled in the
kernel. All other components drivers, file systems, protocol stacks, user applications run
outside the kernel as separate, memory-protected processes. As a result any component
failure does not affect the kernel or other processes. It is highly fault tolerant.

4.2 Microkernel Architecture

The micro-kernel implements only the core services like threads, signals, message passing,
synchronization, scheduling and timer services [7]. The micro-kernel itself is never sched-
uled. Its code is executed as a result of a system call, the occurrence of an interrupt or a
processor exception.

Being a microkernel the size of applications can be very small. Thus it is suitable for
small footprint applications.

4.3 Communication and synchronization

QNX Neutrino RTOS is a message-based operating system. The message passing service
is based on client-server model: the client sends a message to the server who replies with
the result. Queues and mailboxes are the communication objects available.

Counting Semaphores, Binary Semaphores, Mutexes, Condition variables, Event flags
are, as in most systems, available for synchronization. In addition to these there are

10



spinlocks, joined threads, reader/writer locks, sleepons, barriers etc..

4.4 Task Processing and Interrupts

There are 63 different thread priority levels available to applications.The scheduler sched-
ules the threads according to a prioritized FIFO, round-robin algorithm and a new method
called “Sporadic Scheduling”. This new method of scheduling is a sort of adaptive schedul-
ing.

The interrupt redirector in the micro-kernel handles the interrupts in their initial stages.
This redirector saves the context of the currently running thread and sets the processor
context such that the ISR has access to the code and data that are part of the thread the
ISR is contained within(i.e this is the thread that attached the ISR).

QNX Neutrino also supports interrupt sharing. When an interrupt occurs, every inter-
rupt handler attached to the hardware interrupt is executed in turn. Interrupts are not
disabled during the execution of an interrupt handler. Thus interrupts can be nested.

4.5 Memory Management Method

In QNX Neutrino every process has its own virtual memory space. The virtual memory is
supported by the paging mechanism of the processor. Virtual memory protects processes
(both user and system processes) from each other, enhancing the overall robustness of the
system. It does not implement demand paging.

4.6 User Interface

QNX Neutrino has an excellent GUI called photon microGUI that makes it easy to build,
debug and maintain applications. Modules can be inserted and deleted using the GUI.

4.7 API Richness

The QNX Neutrino provides both a POSIX-compliant and proprietary API. The API is
geared towards message-based systems, which is a natural match for the system architec-
ture.

4.8 Documentation and Support

QNX Neutrino comes with excellent documentation and has wonderful support. The doc-
umentation keeps improving with the release of newer versions.
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Chapter 5

Embedded Cygnus Operating
System(eCos)

5.1 Introduction

eCos is an open source, configurable, portable, royalty-free embedded real-time operating
system. Developers have full and unfettered access to all aspects of the runtime system.
As no part is hidden or proprietary, users are at liberty to examine, add to, and modify
the code as deemed necessary.

One of the key technological innovations of eCos is the configuration system. The
configuration system allows the application writer to impose their requirements on the
run-time components, both in terms of functionality and implementation, whereas tradi-
tionally the operating system has application writers own implementation. This enables
eCos developers to create their own application-specific operating system and makes eCos
suitable for a wide range of embedded uses.

Configuration ensures that the resource footprint of eCos is minimized as all unnecessary
functionality and features are removed. The configuration system also presents eCos as a
component architecture. This provides a standardized mechanism for component suppliers
to extend the functionality of eCos and allows applications to be built from a wide set of
optional configurable run-time components.

5.2 Overview of Features of eCos

5.2.1 Open Source and Royalty-Free

The royalty-free nature of eCos means that users can develop and deploy their application
using the standard eCos release without incurring any royalty charges. In addition, there
are no up-front license charges for the eCos runtime source code and associated tools.
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5.2.2 eCos Kernel

The kernel is one of the key packages in all of eCos. It provides the core functionality
needed for developing multi-threaded applications:

1. The ability to create new threads in the system, either during the startup or when
the system is already running.

2. Control over the various threads in the system.
3. A choice of schedulers, determining which thread should concurrently be running.

4. A range of synchronization primitives, allowing threads to interact and share data
safely.

5. Integration with the system’s support for interrupts and exceptions.

Unlike some of the other kernels, memory allocation in eCos is handled my a separate
package. Similarly each device driver would be a separate package.The various packages
are combined and configured by using the eCos configuration technology to meet the needs
of the application.

The eCos kernel package is optional. It is possible to write single-threaded applications
which do not use any kernel functionality. Such applications are based around a central
polling loop, continually checking all devices and taking appropriate action. It is also
possible to write multi-threaded applications that use a full-fledged kernel and provide
multitasking.

5.2.3 Schedulers

When a system involves multiple threads, a scheduler is needed to determine which thread
should currently be running. The eCos kernel can be configured with one of two schedulers,
the bitmap scheduler and the multi-level queue (MLQ) scheduler.

Bitmap Scheduler

The bitmap scheduler allows only one thread per priority level, limiting the total no. of
threads available to the no. of priority levels. A simple bitmap can be used to determine
which threads are currently runnable. Bitmaps also can be used to keep track of threads
waiting on some synchronization primitive like mutexes. Bitmaps are fast and totally
deterministic.

Multi-level Queue(MLQ)

MLQ scheduler allows multiple threads at the same priority. Also some kernel functionality
like SMP support and mutex priority ceiling or priority inversion is available only with MLQ
scheduler.
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5.2.4 Synchronization Primitives

eCos provides a number of different synchronization primitives like mutexes, condition
variables, semaphores, mail boxes and event flags.

Mail boxes are used to indicate that a particular event has occurred and allows for one
item of data to be exchanged per event. Typically this item of data would be a pointer to
some data structure. Because of the need to store this extra data, mail boxes have finite
capacity.

5.2.5 Threads and Interrupt Handling

During normal operation the processor will be running one of the threads in the system.
This may be an application thread, a system thread running inside say the TCP/IP stack,
or the idle thread. From time to time a hardware interrupt will occur, causing control to
be transferred briefly to an interrupt handler. When the interrupt has been completed the
system’s scheduler will decide whether to return control to the interrupted thread or to
some other runnable thread.

Instead the kernel uses a two-level approach to interrupt handling. Associated with
every interrupt vector is an Interrupt Service Routine or ISR, which will run as quickly
as possible so that it can service the hardware. However an ISR can make only a small
number of kernel calls, mostly related to the interrupt subsystem, and it cannot make
any call that would cause a thread to wake up. If an ISR detects that an I/O operation
has completed and hence that a thread should be woken up, it can cause the associated
Deferred Service Routine or DSR to run. A DSR is allowed to make more kernel calls, for
example it can signal a condition variable or post to a semaphore.

5.2.6 Application Programming Interface

eCos kernel can be programmed in two ways. The kernel has its own C API, with functions
like cyg_thread_create and cyg_mutex_lock. These can be directly called from the application
code or from the additional packages. Alternatively there are a number of packages which
provide compatibility with existing API’s, for example POSIX threads or uI'TRON. These
allow application code to call standard function such as pthread_create, and those functions
are implemented using the basic functionality provided by the eCos kernel. This aids in
code reuse and sharing of code.

5.2.7 GUI/IDE

eCos comes with an IDE that is easy to handle and eases the task of configuring the system.
We can choose a build time using the GUI, various parameters like choice of scheduler etc..
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5.2.8 Documentation and support

eCos being open source does not have much in terms of support except through mailing
lists. But it has excellent documentation.
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Chapter 6

Comparison of QNX and eCos

We present a comparison of QNX and eCos operating system based on their applicability
to embedded systems development.

Feature QNX Neutrino eCos

Installation easy not easy

Small size yes yes

Fast context switches | yes yes

Response to External

interrupts quickly yes yes

virtual memory Yes No

Interrupt latencies small small

Scheduling mechanism | Sporadic Scheduling | Bitmap or MLC
Support Very Good Only via mailing lists
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Chapter 7

Conclusion

QNX Neutrino is an excellent real-time operating system for use in developing embed-
ded applications. It is robust, fault tolerant and has excellent technical support making it
ideal for use in commercial applications.

eCos is a very fast growing real-time system. Due to its open source nature it can be
modified to suit the needs of an application. Also it is in constant development making it
a good prospect for designing embedded applications.

Hence from the discussion it can be concluded that if a proprietary real-time operating

system can be afforded or deemed necessary then QNX Neutrino is a very good option. If
the requirement is of an open source RTOS then eCos is the best choice.
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