
A Survey of WCET Analysis of Real-Time Operating Systems∗

Mingsong Lv1, Nan Guan1, Yi Zhang1, Qingxu Deng1, Ge Yu1, Jianming Zhang2

1 Northeastern University, Shenyang, China P.R.
2 China Center for Information Industry Development

Abstract

Timing correctness of hard real-time systems is guar-
anteed by schedulability analysis and worst-case execu-
tion time (WCET) analysis of programs. Traditional WCET
analysis mainly deals with application programs and has
achieved success in industry. Timing analysis of applica-
tion programs along cannot guarantee correctness of com-
plete systems consisting RTOS. WCET tools designed for
application program analysis have been applied to analyze
RTOS routines by several research groups, but poor WCET
estimations have been reported. Timing analysis of real-
time systems considering both applications and RTOS has
not been fully studied. So we intend to give a survey of
related work on WCET analysis of RTOS. By summarizing
previous work, challenges of WCET analysis of complete
real-time systems are presented, and some possible further
research potentials are unleashed.

1 Introduction

Hard real-time systems are those systems the tasks of
which must meet their deadlines, otherwise, there will be
disastrous consequences. Timing correctness of hard real-
time systems is traditionally guaranteed by separate schedu-
lability analysis and worst-case execution time (WCET)
analysis. WCET analysis is used to obtain execution times
of tasks, and schedulability analysis use these results to de-
cide whether all the tasks in the system are schedulable.
Traditional WCET analysis mainly focuses on application
programs and has achieved success in industry. While real-
time systems are composed of both applications and RTOS,
and the timing properties of the system are decided by both
parts. So in order to obtain usable WCET estimations for

∗This work was partially sponsored by the National High Technol-
ogy Research and Development Program of China (863 Program) under
Grant No. 2007AA01Z181 and the Cultivation Fund of the Key Scientific
and Technical Innovation Project of Ministry of Education of China under
Grant No. 706016.

real systems, timing analysis should be performed on both
application programs and RTOS. Interdependence and in-
teractions of these two parts should also be considered.

Several groups have conducted research on WCET anal-
ysis of RTOS using static analysis tools designed to analyze
application programs. Unfortunately, almost all the projects
reported difficulties in analyzing RTOS. Lots of problems
that may lead to large overestimation are unveiled. For ex-
ample, loops are much harder to bound in RTOS analysis
since most loop bounds are decided by runtime properties
of the tasks. The reason behind is that very little informa-
tion on application programs is considered in the analysis
of RTOS. Moreover, traditional WCET analysis assumes
non-interruptible programs, but the existence of RTOS in-
troduces task preemptions, which makes this assumption
invalidated in real systems. Related research shows that on
complex CPUs (e.g. those exhibit timing anomalies) sepa-
rate schedulability and WCET analysis may even be unsafe
since task switching may prolong the execution time of the
tasks. This is rather undesirable in safe-critical hard real-
time systems.

Results reported so far show that existing WCET tools or
techniques designed to analyze application programs can-
not properly handle RTOS, so it is highly desirable to de-
velop new techniques and tools for the timing analysis of
RTOS. In this paper, we first give a survey of related re-
search practices on timing analysis of RTOS using static
methods. Then the problems encountered are summarized
and possible new challenges are given. Although some of
the challenges have been identified in WCET analysis of
applications, they are generally circumvented before. The
need for timing analysis of RTOS brings the problems again
onto the stage. We believe there should be more efforts
on WCET techniques and tools to meet the challenges pre-
sented by timing analysis of RTOS, which will improve the
usability of WCET analysis [14] in real systems.

The rest of the paper is organized as follows. Section
2 gives some background information on WCET analysis.
Related research projects are detailed in Setction 3. In Sec-
tion 4, we summarize the problems reported in the research

practices and show what should be enforced in WCET anal-
ysis. The paper is concluded in Section 5.

2 Overview of Timing Analysis Techniques

The results of WCET analysis are required to be safe and
accurate: no actual execution of the program should exceed
the estimated time, and the estimation should be as close as
possible to the real maximal execution time of the program.
Soft real-time systems do not always have safety require-
ments, but hard real-time systems require that the WCET of
programs should never be underestimated. The accuracy of
the estimation can affect the quality of schedulability analy-
sis: too pessimistic estimations lead to over-design and very
low task accept ratio.

There are two major types of timing analysis techniques:
static analysis and dynamic analysis. Static analysis derives
the WCET of a program by statically analyzing the behavior
of the code without actually executing it. Dynamic analysis
determine program timing by measurements: the program is
executed many times with different inputs and the execution
time is measured by either software methods or hardware
instruments, such as oscillators and logic analyzers.

Theoretically, static analysis can either explicitly or im-
plicitly consider all possible executions of the program, so
safety is guaranteed. But the problem is that in presence of
complex hardware the program state space is too large to
handle. Since the program is not actually executed, a safe
abstract hardware model is always needed, but such models
are usually hard to construct. Obviously, dynamic analysis
requires no such abstract hardware models. The problem of
dynamic analysis is that safety of the results is not guaran-
teed, because it is generally impossible to cover all program
states by execution.

Traditionally, timing analysis of RTOS is performed by
dynamic analysis techniques. But in hard real-time systems,
safety of the WCET results is mandatory, so measurement-
based methods are not suitable for such systems. That is
why multiple research groups tried to analyze RTOS via
static methods.

Static analysis usually works as follows. The analysis
starts from control flow analysis that reconstructs the Con-
trol Flow Graph (CFG) from the binary code or the source
code of the program. Then a processor behavior analysis
follows to estimate the execution time of each basic block
in the CFG running on some specific hardware. The ab-
stract hardware model is used in this step. Finally, the es-
timation is calculated by finding the path that leads to the
longest execution time, given the results obtained from the
first two steps. Possible techniques to search this path are
Integer Linear Programming (ILP) [3, 18, 19], model check-
ing [22, 23, 36], and tree-based calculation [1, 10].

The above content is to provide necessary background

information on WCET analysis for better understanding.
Interested readers can refer [35] for an excellent survey of
general WCET analysis techniques and tools.

3 Related Research on WCET Analysis of
RTOS

This section surveys related research on WCET Analysis
of RTOS. Research from six groups are introduced and the
problems reported and the solutions are presented.

3.1 Static Timing Analysis of RTEMS

Colin and Puaut are the first group to conduct research
on static WCET analysis of RTOS [11]. The RTEMS [2]
real-time kernel was analyzed using HEPTANE [10] which
was developed by the same group. HEPTANE is a tree-
based WCET analyzer with limited capabilities on micro-
architecture modeling. At the time of the research, RTEMS
had 85 system calls provided by 17 modules, but only 12
system calls were analyzed. The analyzed system calls con-
sisted of 91 source files and contained 14,532 lines of code.
Lots of problems were reported on analyzing RTOS, which
are given as follows.

The first problem Colin encountered in practice was un-
structured control flow, such as multiple loop exits due to
the use of goto statement within the loop body. Almost all
tree-based WCET analyzer suffer this problem, while IPET-
based tools can easily handle it. This problem is specific to
the analyzer instead of the analyzed program. Colin tackled
this problem by re-writing the loops.

The second problem was from dynamic function calls
that are implemented through function pointers. Dynamic
function calls are a notorious problem for static WCET
analysis, because the called function is known only at
run-time. In RTEMS, dynamic function calls were intro-
duced by user extensions, API extensions and the calling
of architecture-dependent hooks. If such function calls can
be fixed at design time, then the problem disappears; other-
wise, additional methods are required to deal with dynamic
function calls. In Colin’s work, dynamic function calls were
replaced by static ones.

The third type of problems came from the determination
of loop bounds. WCET tools usually require the user to
give loop bounds manually. This works well in the analysis
of application programs, but awkward for RTOS analysis,
because most loop bounds are related to the RTOS’s dy-
namic runtime behaviors. For example, the scheduler of-
ten iterates a run-queue to find the task with the highest
priority to be scheduled, so the loop bound is determined
by the maximum number of running tasks in the system.
If the user is ignorant of this information, he has to as-
sume the extreme case where there are MAX TASK tasks

in the system (MAX TASK specifies the maximum num-
ber of allowable tasks), which leads to big pessimism in the
estimated results. The problem existed in management of
names in string and user extensions, heap management and
task management of RTEMS. Loops were bounded manu-
ally in Colin’s work by a close investigation of the codes.

The most difficult problem was that the body of the
scheduler is a loop, the loop count of which is affected by
interrupts issued during the run time of the scheduler. For
example, in the first iteration of the loop, there may be a new
interrupt appended, which leads to a future iteration to han-
dle the interrupt. In the worst case, a new interrupt comes
and is appended in each iteration, so it is not trivial to bound
the loop. Colin pointed out that this problem is feasible if
enough information on the interrupts are available.

Blocking system calls are hard to analyze and this is the
killer to most WCET tools. Colin also pointed out that a
static WCET analyzer just takes the Context Switch
function as a normal function and ignores the hardware
behaviors specific to context switches. Interrupt routines
themselves are easy to analyze, but they may affect the loop
iterations of the scheduler. Colin required to ensure no
blocking system calls, and the context switch time related
to cache and pipeline behaviors was not well handled.

Putting them all together, an average of 86% overesti-
mation was reported in Colin’s work. This result is much
worse than those obtained in the analysis of application pro-
grams. Although almost no really new analysis technique
was given, Colin’s work paved the way for WCET analysis
of RTOS using static methods and gave lots of insights on
this research topic.

3.2 Combined Schedulability and WCET
Analysis at Saarland University

In [33], Schneider proposed a comprehensive framework
considering both schedulability analysis, WCET analysis
and their interdependence, which was built on an argue that
the precision of WCET analysis of RTOS can be improved
by considering the applications, and vise versa. Some of
the difficulties encountered in RTOS analysis were identi-
fied to support this argue. The first type of problems came
from system calls: if the calling parameters, calling con-
text, or even the calling history is considered, we can obtain
a more precise estimation of the WCET of the system calls,
since these information can help to identify system modes
and infeasible pathes. Another problem was cache state
changes due to inter-task cache replacement, and this side
effect was highly related to task preemption. Static system
parameters determined by applications are also needed. The
precision of analyzing the WCET of applications can also
be improved by considering positive effects from RTOS.
So Schneider proposed that it is desirable to analyze both

RTOS and applications in an integrated framework consid-
ering their interdependence. A high-level view of the sys-
tem to consider both schedulability and WCET analysis is
also important to the quality of RTOS analysis.

In [31] and Schnieder’s Ph.D. dissertation [32], com-
bined schedulability and WCET analysis was discussed.
Schneider first demonstrated the existence of timing anoma-
lies and domino effects in the PowerPC 755 processor, and
these effects could be triggered by task preemptions. Then
he proofed that in presence of timing anomalies traditional
separated schedulability and WCET analysis might be un-
safe, and if a safe margin was added to context switch
overhead, the results might be very pessimistic. Timing
anomalies also make Deadline Monotonic non-optimal for
independent periodic task sets. Against this background,
a combined schedulability and WCET analysis framework
was proposed, which could give safe timing predictions and
schedulability results on complex microprocessors exhibit-
ing timing anomalies and domino effects.

The higher level of the analysis framework was Re-
sponse Time Based (RTB) schedulability analysis which
made almost no difference from traditional RTB analysis
methods: all execution time information on tasks and RTOS
routines were needed to calculate the response times. The
major difference existed in the estimation of task WCETs.
For each task, all the interfering jobs were identified and the
interfering information was provided to the WCET analy-
sis where the WCET of the task was calculated consider-
ing task-switching-triggered timing anomalies and domino
effects. The cache effects and pipeline effects were calcu-
lated as part of the execution time of the task instead of
context switch cost. The framework was not implemented
in Schneider’s dissertation, so no concrete evaluations on
the degree of automation were reported.

3.3 Static Timing Analysis of the OSE
Kernel

The WCET analysis of the OSE kernel was conducted by
Martin Carlsson [8, 9] and Daniel Sandell [28, 29] conjunc-
tively. Carlsson’s work centered on timing analysis of the
Disable Interrupt (DI) regions of the OSE kernel [12] run-
ning on an ARM9 processor. The purpose of his research
was twofold: timing analysis of DI regions can help the OS
vendors to optimize their OS for better responsiveness; this
work can also provide valuable information about real sys-
tem codes for WCET researchers.

The analysis tool adopted was SWEET [1], extended
with a ”frontend” to extract DI regions from the object code.
The OSE kernel contained more than 1,200 DI regions, and
timing analysis was performed on 612 DI regions that could
be identified by the analysis tool. It was found out that
554 regions contained no more than three basic blocks, and

loops were found in about 5% regions, which means the
control flow of the DI regions are quite simple. Poor esti-
mations were reported due to the lack of cache modeling in
the analysis tool and the difficulty in bounding the loops.

Carlsson made several suggestions on static timing anal-
ysis of RTOS according to his experience. First, there is a
need to make relevant high-level information available on
the object code level, because high-level information on
loop bounds, OS modes and task information greatly af-
fect the precision of the estimated results. Work on data
flow analysis and compilers should be enforced. Traditional
analysis techniques on bounding loops seems insufficient,
so a more general language to express constraints on value
ranges would be useful. Second, absolute WCET estima-
tions are of less interest for timing analysis of RTOS. There
is a great potential in improving the degree of automation in
the analysis of RTOS.

Sandell used the aiT tool [3] to analyze the OSE kernel
running on an ARM7TDMI processor. Two main objectives
of his research were to find out how hard it was to analyze
typical operating systems codes, and how compiler opti-
mizations affected the manual labor needed to perform an
accurate WCET analysis, where the former problem is our
focus. Four system calls on memory allocation and inter-
process communication were analyzed.

Sandell encountered three major problems in the analy-
sis. The first one was the execution times of the system calls
highly depend on system parameters, such as the number
of signal buffers or maximum message sizes. The second
problem was some loop bounds were determined by system
parameters at runtime, so even the powerful aiT tool was
used, many loops could not be properly bounded. The third
problem was the execution times varied a lot according to
different system modes (normal mode or error handling),
but most of the time the system worked in some typical sce-
narios. Lots of user intervention was required throughout
the analysis. It was concluded that the static WCET anal-
ysis techniques were not mature enough to fully automate
the timing analysis of RTOS on a ”one-click-analysis” ba-
sis. Sandell also pointed out that absolute WCET bounds
were not appropriate for RTOS codes, and the constant time
assumed for context switch might be too pessimistic. A se-
ries of case studies of applying WCET analysis in industrial
settings confirmed the conclusions of Sandell’s work [15].

3.4 Timing Analysis of L4 Kernel at
NICTA

A team at NICTA Australia, led by Stefan Petters, per-
formed WCET analysis of the L4 real-time kernel [27] (de-
veloped by NICTA and still evolving) with the objective of
exploring the degree of automation in WCET analysis of
RTOS codes. The analysis tool uses a hybrid design with

a tree representation of the control flow of the program and
the execution time of each basic block obtained by mea-
surement [30]. Efforts were made to analyze the whole L4
kernel and some analysis obstacles were reported in their
paper [34]. Around ten challenges were reported, but we
are trying to summarize them according to the fundamental
source of difficulties.

The first challenge came from the code structure. Non
well-structured codes, such as irreducible loops (mainly due
to the use of break or goto statements within the loop),
were a big problem since the WCET tool they were using
is tree-based. This problem can be resolved by virtually
unrolling the loop or duplicating code to obtain a reducible
structure. Assembly codes in the L4 kernel also introduced
similar problems. Code structure problems were resolved
manually in Petters’ work.

Another problem is the indexed jumping due to compiler
optimization: the compiler creates a hash table of all the
case addresses and make an indirect jump to these options.
Efforts are needed to identify the jump tables. The return
address in the ARM architecture is stored in a specific reg-
ister, so in order to reconstruct the call trace, a tracer that
can analyze register contents was designed.

A third major problem is dynamic function calls. For ex-
ample, the interrupt vector table is such a construct. Manual
analysis is performed in Petters’ work. A special case is that
function pointers are indexed in a loop. For such situations,
loop unrolling is useful to flatten the control flow and attach
to each loop iteration a dedicated function call.

Petters also considered context switches in measurement
of the execution time of the basic blocks, but the interaction
with the scheduler is not discussed in his paper. Petters also
encountered problems in memory allocation, which is quite
similar to that reported in Colin’s work. They suggested
proper design at the RTOS side to resolve these problems.

Expertise in the RTOS to be analyzed and the WCET tool
adopted is crucial throughout the analysis. the L4 kernel
will be augmented to a multiprocessing kernel in the future,
this will pose new challenges to WCET analysis.

3.5 Research on Predictable Architec-
tures at TUWien

Traditionally, timing analysis of hard real-time systems
assumes a hierarchical model that separates the low-level
task timing issues from the high-level real-time scheduling
problem. This worked well for systems running on simple
processors in the past, but yields bad results with the adop-
tion of more and more complex hardware in hard real-time
systems. In [25], Puschner investigated how to design a
system in a way that composable timing analysis can still
be used without laborious work on designing fancy WCET
tools or introducing too much pessimism into the analysis.

The author mainly discussed timing effects due to complex
hardware architectures and task scheduling. Although this
work did not directly target at WCET analysis of RTOS, it
unveiled some problems that needs considering.

The author defined the biggest obstacle to composable
WCET analysis as ”side effects”: task interactions that can-
not be traced back to the interfaces between tasks and their
environment. For example, task A is preempted by task B
according to some scheduling policy, and B’s execution re-
places A’s data in the cache, which affects the execution
time of the remainder of A. This effect cannot be traced
back to any task interface.

In simple hardware architectures, the execution times of
tasks may vary because there are instructions with the exe-
cution cycles of which determined by the operands. Differ-
ent task data inputs may also lead to execution time varia-
tions. In complex hardware, side effects are harder to pre-
dict. Due to complex hardware features, different instances
of the same task may have different execution times. Does
this variation will eventually stabilize? After how many is-
sues will the execution time converge? These questions are
very hard to answer. When scheduling exists, even if pre-
emption is turned off, the execution time of a task may also
vary since different tasks may execute alternatively, which
creates different start states for each task instance. If pre-
emption exists, the problem will be more severe, since hard-
ware states will change at the preemption points. Other
problems also come from out-of-order pipelines that can
introduce timing anomaly [21, 26], and the problem state
space will be prohibitively large.

Since multi-core processors are gaining popularity in
embedded systems, new architectural features will pose
new challenges to WCET analysis. One problem is shared
cache: if two tasks on two different cores share the same
cache, it is hard to bound the effects of mutual replace-
ment of cache contents. Other shared resources, such as
shared bus, have similar problems. Another problem is
SMT, which enables multiple tasks on the same core to
share the function units or pipelines at instruction level. An-
alyzing such inter-task interferences is not trivial.

Puschner took one extreme to tackle the above prob-
lems. The basic idea is try every possibility to avoid side
effects that make task execution unpredictable. Four tech-
niques were presented: (1) Using single-path programming
in all tasks [24] to reduce intra-task side effects; (2) Forcing
execution of a single task/thread per core to reduce inter-
task interference; (3) Using simple hardware with in-order
pipelines to reduce the state space; (4) Statically scheduled
accesses to shared memory to reduce side effects due to re-
source sharing. Khyo and Puschner later designed a plat-
form [17, 16] with the hardware and RTOS implementing
the above design philosophy.

Puschner’s platform is predictable at clock cycle level,

but this is not achieved without sacrifice. In single-path
codes, both paths of an ”if-then-else” construct must be ex-
ecuted, the system has to do lots of unnecessary computa-
tion. The system requires that all the context switches and
IPCs are scheduled offline, this is too restricted for those
real-time systems that have high responsiveness to the envi-
ronment which cannot be pre-determined. Puschner’s work
demonstrates one extreme: ultimate predictability can be
achieved at the design stages on both hardware and soft-
ware, and this greatly simplifies analysis efforts since most
of the unpredictable timing features are eliminated.

3.6 Miscellaneous

Aissa et al in [4, 5] proposed a distributed WCET com-
putation scheme for smart card systems. Smart card systems
are interesting: the source codes are compiled into some in-
termediate form which is then downloaded to the smart card
and compiled on-line into native codes before execution. In
this case, the WCET of the programs can only be deter-
mined on-card, which poses great challenge to the analysis
complexity. The main idea is to offload the burden of on-
card analysis as much as possible. The problem is tackled
in a distributed manner: an off-card parser flattens the CFG
into a weighted tree, and then the tree is sent to the card
and analyzed by the compiler. Loops are bounded by user
annotation, and the bounds are transformed into codes that
ensure the execution of each loop will not exceed its bound.
The difficulty mainly comes from the peculiarities of the
smart card system, Aissa’s work was not directly related to
WCET analysis of RTOS discussed throughout this paper.

4 Summarization of Problems and New
Challenges

In this section, we summarize and classify the problems
on static timing analysis of RTOS, and present our vision on
the challenges that should be addressed in future research.

4.1 Summarization of Problems on Static
Timing Analysis of RTOS

The problems encountered in the above research prac-
tices on static timing analysis of RTOS are summarized in
Figure 1, and they are roughly classified into three cate-
gories: (1) Problems due to program features; (2) Problems
due to the lack of application information; (3) Problems due
to task switching and inter-task interference.

Problems such as irreducible program structures are not
critical to WCET analysis of RTOS, since most of such
problems do not exist if you choose a proper WCET tool
that is flexible in handling complex control flows.

* “S”: the problem is properly solved

* “N”: the problem is circumvented in related research

* “P”: the problem is partially solved, but needs further development. Possible problems may be low scalability of the analysis (P1),

too much user intervention required (P2), low quality of the results (P3), or the adopted techniques are too restrictive (P4)

 Colin Schneider Sandell Petters Puschner

RTOS Analyzed RTEMS OSE OSE L4

Analysis Tool HEPTANE aiT aiT/SWEET Petters’ Tool

Average Overestimation 86% n/a n/a n/a

Problems Due to Program Features

Irreducible Program Structure P2 P2

Indexed Jumping S

Problems Due to Lack of Application Information

Hard to Bound Loops Due to Runtime Properties P2,3 P2,3 N

Dynamic Function Calls P4 P4

Blocking System Calls N

Lack of Knowledge on System Call Contexts P3

Lack of Knowledge on RTOS Running Mode P2

Problems Due to Task Switching and Inter-Task Interference

Timing Effects Due to Task Switching P1 P4

Timing Anomalies Due to Preemption P1 P4

Inaccurate Execution Time of Context Switches N S N P4

Inter-Task Interference Due to Resource Sharing on Multicores N N

Figure 1. A List of Analysis Problems Reported in Research Practices

Problems due to the lack of application information
greatly affect analyzability and the precision of the results.
The biggest problem reported by many groups is the dif-
ficulty in bounding loops, since the loop bounds in RTOS
has very close relation to the runtime properties and sys-
tem parameters. Dynamic function calls and blocking sys-
tem calls should be classified as program features which
are generally hard to tackle in traditional WCET analysis.
But if we can extract more application information on func-
tion/system calls and communicate it to RTOS analysis, the
behavior of such program features may be bounded. And if
more information on call context and RTOS working mode
is given, the precision of the analysis can be further im-
proved. Problems of existing techniques are that lots of user
intervention is required to give these information, and poor
results are obtained due to this type of problems.

Traditionally WCET analysis assumes uninterrupted
program execution. This is not the case in multi-tasking sys-
tems running an RTOS. In presence of task switching, the
execution time of a task also depends on the behaviors of
the interfering tasks. The timing effects due to task switch-
ing must be safely bounded in the analysis. Schneider tried
to conduct detailed analysis on complex hardware in each
possible preemption point. Experiments were only done
on simple programs, but there will probably be scalabil-
ity problems when analyzing complex programs. Puschner
took the other extreme by designing a predictable RTOS to
circumvent all these problems. We believe his approach is

effective but too restrictive. In the multi-core era, tasks on
different cores may share lots of hardware resources. Re-
source sharing deteriorates inter-task interferences and the
execution time is much harder to estimate. This problem
was touched by Petters and Puschner respectively, but nei-
ther of them gave any solution.

4.2 Challenges on Static Timing Analysis
of RTOS

Although different research groups put great efforts on
static timing analysis of RTOS, we can see from the prob-
lem summarization that most of the identified problems
have not been solved properly. New challenges emerge in
many aspects of the analysis.

4.2.1 Does Single WCET Value Suffice?

WCET analysis of application programs is mature, and for
many years the results that WCET analysis offers is sin-
gle absolute value. In related research practices, we hear a
strong voice for parametric WCET analysis, in which the re-
sults are given as a formula instead of a single value. Differ-
ent from application programs, the execution time of RTOS
highly depends on static or runtime system parameters, so
a single value can never give a tight bound for all possible
system configurations.

Lisper in [20] proposed the idea of parametric WCET

analysis, and his work recently evolved to handle complex
architectures [6]. In [7], Bygde and Lisper demonstrated
that this technique is currently applicable to small programs.
Since ILP-based method dominates the WCET tools from
both academia and industry, we believe that Lisper’s para-
metric ILP could be one of the promising techniques to ob-
tain parametric formulas. Lisper’s work mainly centered on
parameterizing loops, but in RTOS analysis, lots of system
parameters, besides loop bounds, affect the execution time
of the system calls, so they should also be characterized as
parameters. Research on parameterizing the system calls
across a broader spectrum should be developed. Since cur-
rently parametric WCET analysis cannot handle large pro-
grams, efforts on optimization techniques to efficiently ob-
tain the formulas for this specific type of problems (WCET
analysis) are key to the usability of parametric techniques
in WCET analysis of RTOS.

4.2.2 WCET Analysis Considering Both Applications
and RTOS

Related research practices show that the analyzability and
the precision of the RTOS analysis results can benefit from
information provided by the applications. Examples of such
application information include the number of tasks, com-
munication behaviors, memory allocation policies, etc. One
critical problem is ”How to make application information
available to the RTOS analyzer?” Up till now, users play
the role to communicate application information to WCET
analysis of RTOS, but this is obviously not desirable. To
automate this procedure, new techniques should be devel-
oped. First, the techniques must parse the source code of
applications and RTOS to extract useful information. Then
they must be able to correctly map the information from the
source code level to the binary code level. Mapping of flow
facts is one of the key issues in WCET analysis, but it still
needs further development.

4.2.3 Combined Schedulability and WCET Analysis

Traditional real-time analysis adopts the separate frame-
work - performing WCET and schedulability analysis in
two separate steps, with the assumption that the WCETs
of tasks are fixed and never affected by scheduling behav-
iors. Obviously in a multi-tasking real-time system, it is
not practical to neglect the effect of inter-task interferences.
The situation is even more severe in multi-core systems
since tasks on different cores interfere with each other in
a more fine-grained manner. Schneider demonstrated that
on complex hardware, separate schedulability and WCET
analysis may be unsafe due to timing anomalies and domino
effects. If one still want a separate analysis framework,
large pessimism has to be introduced into the WCET of
tasks or RTOS. In [13], a combined analysis framework

with mutual communication between schedulability anal-
ysis and WCET analysis is proposed, but neither detailed
information on how it works nor the quality of results is
given. We believe that schedulability and WCET analysis
should be performed in an integrated and interactive man-
ner when analyzing complete real-time systems running on
complex hardware. The biggest problem is the state space
explosion due to combined analysis. So efficient abstrac-
tion techniques to reduce the state space in combined anal-
ysis should be developed and evaluated for practical use in
analyzing large systems.

4.2.4 Raising the Degree of Automation in WCET
Analysis of RTOS

Almost all the related research practices reported low de-
gree of automation in analyzing RTOS. Users worked la-
boriously revising irreducible source codes, bounding the
loops, resolving dynamic calls, etc. This has become the
most notorious problem in WCET analysis of RTOS. It is
true that this issue is not orthogonal with the other prob-
lems, but WCET tool designers must always keep the issue
of ”automation” in mind when trying to tackle any of the
problems, for the degree of automation is the largest factor
that affects the usability of a WCET tool.

4.2.5 Managing Analysis Complexity in the Multi-core
Era

Multi-core has become the inevitable architecture of fu-
ture processors. Caches are often designed as shared re-
source due to design flexibility, data sharing and coherency
considerations. Fine-grained accesses to shared resources
lead to complex inter-task interference and unmanageable
analysis complexity - this is the biggest challenge to tim-
ing analysis posed by multi-cores. To tackle these prob-
lems, performance isolation techniques (e.g. cache parti-
tioning) and predictability enforcing techniques (e.g. cache
locking) have been applied to enable resource sharing in a
controlled manner, but overall system performance is sacri-
ficed. We believe that pure analysis techniques with safety
as the unique goal is inadequate, both design and analysis
techniques should be adopted to ensure that on one hand the
analysis complexity is manageable, and on the other hand
the horsepower provided by multi-cores is least sacrificed.
Research on timing analysis of multi-core real-time systems
is becoming hot, but far from mature.

5 Conclusion

In this paper, we conduct a survey of the research prac-
tices in static timing analysis of RTOS. Lots of problems
were reported by the practices, which shows that WCET

tools for application program analysis cannot be directly
used to RTOS analysis without further development. Crit-
ical problems include usability of single-value WCET re-
sults, lack of application information on RTOS analysis,
and neglecting inter-task interferences. These problems
pose great challenge to the application of WCET analysis
in real systems. The emergence of multi-core architecture
also brings new challenges to WCET analysis of both ap-
plications and RTOS. Although some of the challenges may
be not really new, they are generally ignored due to anal-
ysis complexity in previous research. We hope the sur-
vey can help to clarify the challenges in timing analysis of
RTOS, and to motivate new analysis techniques to crack
these tough problems to improve the usability of WCET
analysis in real systems.

References

[1] http://www.mrtc.mdh.se/projects/wcet/sweet.html.
[2] http://www.rtems.com.
[3] AbsInt. The absint page. http://www.absint.com.
[4] N. B. H. Aissa, D. Deville, and G. Grimaud. A distributed

wcet computation scheme for smart card operating systems.
In WCET 2004.

[5] N. B. H. Aissa, G. Grimaud, and V. Benony. Bringing worst
case execution time awareness to an open smart card os. In
RTCSA 2007.

[6] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm. Para-
metric timing analysis for complex architectures. In RTCSA
2008.

[7] S. Bygde and B. Lisper. Towards an automatic parametric
wcet analysis. In WCET 2008.

[8] M. Carlsson. Worst case execution time analysis, case study
on interrupt latency for the ose real-time operating system.
Master Thesis of Royal Institute of Technology, 2002.

[9] M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and
B. Lisper. Worst-case execution time analysis of disable in-
terrupt regions in a commercial real-time operating system.
In 2nd International Workshop on Real-Time Tools, 2002.

[10] A. Colin and I. Puaut. A modular and retargetable frame-
work for tree-based wcet analysis. 13th Euromicro Confer-
ence on Real-Time Systems, 2001.

[11] A. Colin and I. Puaut. Worst-case execution time analysis
of the rtems real-time operating system. 13th Euromicro
Conference on Real-Time Systems, 2001.

[12] Enea. Enea embedded technology page. www.enea.com.
[13] C. Ferdinand and R. Heckmann. Worst-case execution time

- a tool provider’s perspective. In ISORC 2008.
[14] J. Gustafsson. Usability aspects of wcet analysis. In In

ISORC 2008.
[15] J. Gustafsson and A. Ermedahl. Experiences from applying

wcet analysis in industrial settings. In ISORC 2007.
[16] G. Khyo, P. Puschner, and M. Delvai. An operating sys-

tem for a time-predictable computing node. The 6th IFIP
Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems, pages 150–161, 2008.

[17] R. Kirner and P. Puschner. Time-predictable task preemption
for real-time systems with direct-mapped instruction cache.
In ISROC 2007.

[18] X. Li, Y. Liang, T. Mitra, and A. Roychoudury. Chronos:
A timing analyzer for embedded software. Science of Com-
puter Programming, 69(1-3):56–67.

[19] Y.-T. S. Li, S. Malik, and A. Wolfe. Cinderella: A retar-
getable environment for performance analysis of real-time
software. In Euro-Par 1997.

[20] B. Lisper. Fully automatic, parametric worst-case execution
time analysis. In WCET 2003.

[21] T. Lundqvist and P. Stenstrom. Timing anomalies in dynam-
ically scheduled microprocessors. In The 20th IEEE Real-
Time Systems Symposium, 1999.

[22] M. Lv, Z. Gu, N. Guan, Q. Deng, and G. Yu. Performance
comparison of techniques on static path analysis of wcet. In
The 5th International Conference on Embedded and Ubiq-
uitous Computing, 2008.

[23] A. Metzner. Why model checking can improve wcet analy-
sis. In CAV, pages 334–347, 2004.

[24] P. Puschner. Transforming execution-time boundable code
into temporally predictable code. In SDPES, 2002.

[25] P. Puschner and M. Schoeberl. On composable system tim-
ing, task timing, and wcet analysis. In WCET 2008.

[26] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian,
J. Eisinger, and B. Becker. A definition and classification of
timing anomalies. In WCET, 2006.

[27] S. Ruocco. Real-time programming and l4 microkernels. In
In Proceedings of the 2006 Workshop on Operating System
Platforms for Embedded Real-Time Applications, 2006.

[28] D. Sandell. Evaluating static worst-case execution-time
analysis for a commercial real-time operating system. Mas-
ter Thesis of Malardalen University, 2004.

[29] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static
timing analysis of real-time operating system code. In 1st In-
ternational Symposium on Leveraging Applications of For-
mal Methods, 2004.

[30] S. Schaefer, B. Scholz, S. M. Petters, and G. Heiser. Static
analysis support for measurement-based wcet analysis. In
WiP Session of RTCSA 2006.

[31] J. Schneider. Cache and pipeline sensitive fixed priority
scheduling for preemptive real-time systems. 21st IEEE
Real-Time Systems Symposium, 2000.

[32] J. Schneider. Combined schedulability and wcet analysis
for real-time operating systems. Ph.D. thesis of Saarland
University, Germany, 2002.

[33] J. Schneider. Why you can’t analyze rtoss without consider-
ing applications and vice versa. 2nd International Workshop
on Worst-Case Execution Time Analysis, 2002.

[34] M. Singal and S. M. Petters. Issues in analysing l4 for its
wcet. Proceedings of the 1st International Workshop on Mi-
crokernels for Embedded Systems, 2007.

[35] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenström. The worst-case execution-time
problem—overview of methods and survey of tools. Trans.
on Embedded Computing Sys., 7(3):1–53, 2008.

[36] S. Wilhelm. Efficient analysis of pipeline models for wcet
computation. In WCET 2007.

