
Energy-Aware Design of Embedded
Memories: A Survey of Technologies,
Architectures, and Optimization Techniques

LUCA BENINI
DEIS Universitá di Bologna
ALBERTO MACII
Politecnico di Torino
and
MASSIMO PONCINO
Universitá di Verona

Embedded systems are often designed under stringent energy consumption budgets, to limit heat
generation and battery size. Since memory systems consume a significant amount of energy to store
and to forward data, it is then imperative to balance power consumption and performance in mem-
ory system design. Contemporary system design focuses on the trade-off between performance and
energy consumption in processing and storage units, as well as in their interconnections. Although
memory design is as important as processor design in achieving the desired design objectives,
the former topic has received less attention than the latter in the literature. This article centers
on one of the most outstanding problems in chip design for embedded applications. It guides the
reader through different memory technologies and architectures, and it reviews the most successful
strategies for optimizing them in the power/performance plane.

Categories and Subject Descriptors: B.3.1 [Hardware]: Memory Structures—Semiconductor
Memories; C.0 [Hardware]: General

General Terms: Design, Performance

Additional Key Words and Phrases: Embedded systems, system-on-a-chip, embedded memories,
memories, volatile, nonvolatile, integration

1. INTRODUCTION

In the deep submicron era, hundreds of millions of transistors can be integrated
onto a single silicon chip. The most natural question to ask then is: “What do we
do with hundreds of millions of transistors?” The correct answer is probably: “It
depends on the application,” but if forced to give a more direct answer, we should

Authors’ addresses: L. Benini, DEIS Universitá di Bologna, Viale Risorgimento 2, 40136 Bologna,
Italy; email: lbenini@deis.unibo.it; A. Macii, Politecnico di Torino, Corso Duca degli Abruzzi, 10129
Torino, Italy; email: amacii@athena.polito.it; M. Poncino, Dip. Informatica, Universitá di Verona,
Strada le Grazie 15—Cá Vignal 2, 37134 Verona, Italy; email: poncino@sci.univr.it.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2003 ACM 1539-9087/03/0002-0005 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003, Pages 5–32.

6 • L. Benini et al.

respond: “Mostly memory.” In current systems-on-chip (SoCs), memory takes,
on a average, more than half of the silicon real-estate. Thus, the term “em-
bedded memories,” commonly used to define memory blocks integrated within
logic chips, is probably a misnomer in current technologies, and we should talk
about “embedded logic” instead. The primary purpose of this article is to sur-
vey the evolution of embedded memories both from a technology and a design
standpoint.

Integration of memories and logic onto the same silicon substrate in CMOS
technology is a challenging task. For a long time, memories and logic chips
have followed different evolutionary paths, and their fabrication technologies
have diverged. We should then ask ourselves another question: “Why reverse
this trend?” The development of embedded memories has imposed a significant
reconvergence effort which is motivated by a fundamental rationale: embed-
ded memories increase performance and reduce power consumption [Watanabe
et al. 1997], that is, they greatly improve the power-delay product, an energy-
efficiency metric. Logic and memory integration and energy optimization are
therefore inextricably linked. Our work attempts to shed some light on this
complex relationship.

The survey is organized in three parts. The first provides an up-to-date pic-
ture of the current status of embedded memory technologies, and it gives the
reader a first grasp on the fundamental characteristics of various types of em-
bedded memories and their design constraints. The second part focuses on en-
ergy optimization techniques for the embedded memory classes introduced in
the first section. We survey approaches at various levels of abstraction: circuit,
logic, architecture, and system level. Finally, the last part looks into the crystal
ball and outlines future trends, evolutions and challenges of embedded memo-
ries, and their technologies. The main purpose of this section is to give a glimpse
of the design problems that will become critical in the near future.

2. EMBEDDED MEMORIES TODAY

In the early days of digital computing, researchers focused on memory size
optimization. Memory was expensive, and memory space was a scarce re-
source. The fast growth of semiconductor technology and the consequent
increase of the level of integration have completely changed this picture.
Nowadays, the cost per memory bit is extremely low (both for off-chip and
embedded memories), and memory size is rarely the main issue. Memory
performance and power consumption are now the key challenges in system
design.

In this section, we focus on technologies, circuit techniques, and architec-
tures for embedded memories. We first outline the key technological issues
raised by the integration of memories and logic. We continue by describing
some classes of circuit techniques that can be utilized to design fast and low-
energy memories. Finally, we conclude by highlighting a few memory architec-
tural templates which are commonly adopted in modern embedded computing
systems.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 7

Fig. 1. SRAM cell structure.

2.1 Technologies

The traditional taxonomy for digital memories [Nachtergaele et al. 2001] distin-
guishes between read-only and read-write memories. Within the class of read-
write memories, two major subclasses are defined, namely volatile and non-
volatile. The classification tree is much deeper, introducing distinctions among
different types of access (e.g., sequential, block-based) and storage persistence
(e.g., static vs. dynamic). For our purposes, we adopt a coarser, technology-
centric taxonomy. We distinguish between the two broad classes of process-
compatible and dedicated-process memories.

Process-compatible memories do not require significant technology enhance-
ments with respect to standard processes for digital logic. Integration of
these memories with functional units on a single chip is straightforward
from a technology viewpoint, even though they may require design flow
modifications.

Dedicated-process memories do require process changes and technology en-
hancements to be integrated with logic. The significance of these enhancements
may vary widely, depending on the type of memory. In some cases (e.g., low-
leakage SRAMs), just a few process steps need to be modified. Other types of
embedded memories require an almost complete overhaul of the process (e.g.,
embedded DRAMs). The impact on design flow is significant for all dedicated-
memory options.

2.1.1 Process-Compatible Embedded Memories. As pointed out before, the
fabrication processes for memories and logic have diverged substantially.
Among the most common memory types, static random access memories
(SRAMs) can be implemented effectively in processes optimized for logic. The
elementary cell, shown in Figure 1, contains six CMOS transistors, and it is
therefore called 6T cell. The bit stored in the cell (thanks to the cross-coupled
inverters, forming a bistable circuit) is maintained indefinitely as long as the
cell is powered (i.e., the memory is volatile). Note that the cell contains both
NMOS and PMOS transistors. Needless to say, many variations of the basic cell
that use special processes to increase integration density exist [Keitel-Schulz
and Wehn 2001].

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

8 • L. Benini et al.

The characteristic features of embedded SRAMs are low density and high
speed. Hence, they are the preferred choice for frequently-accessed, time-critical
storage, such as caches and register files.

Example 1. The Emotion Engine [Suzuoki et al. 1999; Kunimatsu et al.
2000] by Sony and Toshiba is a high-performance, computation-intensive SoC
that integrates three independent processing cores, a few I/O controllers, spe-
cialized coprocessors and many fast SRAM memories for instruction (16 KB)
and data (8 KB) caching. Local data storage is also supported by a 16 KB scratch-
pad SRAM.

Speed is primarily determined by the cross-coupled, regenerative structure
of the elementary cell, which actively drives the output during reads. Tech-
niques for speeding up the read operation have been extensively studied in the
literature (see, for example, Chandrakasan et al. [2001]), mainly because in
most high-performance processors the critical path goes through one or more
SRAMs.

Power is also a serious concern for large embedded SRAMs [Chandrakasan
et al. 2001], even though speed remains the primary objective. It is important
to note that power minimization for SRAMs has a different focus than that
for logic. First, SRAMs have a relatively low dynamic power density, because
only a very small part of a complex large memory array switches at any given
time. Dynamic power in SRAMs is mainly due to the switching of long and
heavily loaded bit and word lines, spanning a large number of cells, and read-
out circuits containing regenerative amplifiers (called sense amplifiers) whose
gain (and speed) is positively correlated with power. Static power is much more
relevant for SRAMs than for standard logic circuits because a very large frac-
tion of the memory is quiescent most of the time. In CMOS technology, static
power is primarily due to leakage through OFF-transistors, an undesirable
phenomenon that worsens with technology scaling. Recent studies [Frank et al.
2001] show that SRAM leakage power is becoming a serious problem, and sev-
eral researchers have optimized SRAM circuit components (memory cells, the
cell matrix, read and write blocks) for reduced leakage power, with minimal
impact on speed [Powell et al. 2001].

Besides SRAMs, read-only memories (ROM) can also be easily implemented
in a process-compatible fashion. ROM cells are much smaller than RAM cells
(they require only one transistor); hence, they are extremely compact even in
standard CMOS technology. Compared to read/write memories, however, ROMs
have a limited range of applications, and usually they do not take a large frac-
tion of silicon area.

2.1.2 Dedicated-Process Embedded Memories. The main disadvantage of
SRAMs is low density, which ultimately limits the amount of fast memory that
can be instantiated on chip.

Example 2. The storage requirements of the MPEG4 video codec of
Takahashi et al. [2000] are significant (16 Mb). The chip has thus been imple-
mented in an embedded-DRAM process, which allows the integration of three
processing cores and DRAM on the same substrate.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 9

Fig. 2. Dedicated-process memory cells: (a) DRAM; (b) FGMOS.

Another limitation of SRAMs is that they are volatile, and they lose informa-
tion when power is switched off, whereas many applications require read/write
nonvolatile storage. To address these limitations of embedded SRAMs, embed-
ded DRAMs and nonvolatile memories (EEPROM, FLASH) have been devel-
oped. Embedded DRAMs feature storage densities up to ten times larger than
those of SRAMs, whereas embedded EEPROMs and FLASH memories provide
nonvolatile and high-density storage (only slightly less dense than DRAMs). As
far as speed is concerned, embedded DRAMs are generally significantly slower
than SRAMs, whereas EEPROMs and FLASH memories are only marginally
slower. DRAMs and nonvolatile memories greatly enhance the flexibility of
SoCs, but unfortunately they are not compatible with standard CMOS technol-
ogy and they require dedicated processes.

The area-optimized one-transistor DRAM cell (shown in Figure 2(a)) can be
in principle realized in standard CMOS technology. However, such a cell would
not be usable in practice for two main reasons: (i) logic CMOS transistors are
optimized for speed, and they have relatively high leakage currents, which
would compromise the lifetime of the information stored as charge in the ca-
pacitor; and (ii) the storage capacitor would occupy a very large area, thereby
compromising density. On the other hand, the fabrication process for commod-
ity DRAMs is poorly suited to implement logic circuits for several reasons:
(i) transistors are optimized for low leakage and have reduced switching speed;
(ii) the substrate is optimized for a single transistor type (NMOS) and the dual
transistor (PMOS) has poor performance; and (iii) DRAMs are characterized
by very regular connectivity and their processes support a limited number of
level of metal (two to three) that would be insufficient for logic applications.

To support embedded DRAMs, compromises must be accepted in defining a
process suitable for both DRAM cells and logic circuits. Usually, such a pro-
cess is defined starting either from a logic-optimized process or from a DRAM-
optimized process, by adding masks and process steps. Although “hybrid” pro-
cesses cannot achieve the level of optimization allowed by specialized logic or
memory processes, embedded DRAMs are still four to six times more dense
than SRAMs.

Embedded nonvolatile memories are assuming an increasingly important
role in modern SoCs. Their main function is to provide on-chip nonvolatile stor-
age for configuration information that is frequently read but rarely written over
the lifetime of the component. For instance, in processor-based templates, the

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

10 • L. Benini et al.

executable code that runs on the core processors is often stored in an embedded,
nonvolatile memory. This solution has several advantages with respect to exter-
nal nonvolatile storage. First, the read bandwidth is greatly increased (because
the I/O bottleneck is bypassed) and pinout requirements are relaxed. Second,
bit-width and memory size can be tailored to application-specific requirements.
Finally, embedded memories provide increased security when nonvolatile data
should be inaccessible to users (this is the case for proprietary algorithms run-
ning on embedded core processors).

Example 3. The single-chip voice recorder and player developed by
Borgatti and coauthors [Borgatti et al. 2001] stores recorded audio samples
on embedded FLASH memory. The main building blocks are a microcontroller
unit (MCU), a speech coder and decoder, and an embedded FLASH memory. A
distinguishing feature of the system is the use of a multilevel storage scheme to
increase the speech recording capacity of the FLASH. Speech samples are first
digitized, then compressed with a simple waveform coding technique (adaptive-
differential pulse-code modulation) and finally stored in FLASH memory. The
embedded FLASH macro, given its size and the presence of power-hungry
mixed-signal components, dominates both area and power dissipation.

The dominant nonvolatile memories today are EEPROM and FLASH
[Cappelletti et al. 1999]. Both EEPROM and FLASH are electrically erasable
and writable, and they are based on a device known as floating-gate MOS tran-
sistor (FGMOS), shown in Figure 2(b). The key feature of the FGMOS is that
its threshold can be adjusted by changing in a controlled fashion the amount of
charge trapped in the floating-gate. Depending on the programmed threshold
value, a read to the cell results in a zero or a one. In current technologies, charge
trapping is extremely reliable: Current FGMOS-based memories can withstand
more than 106 rewrites and feature retention times exceeding ten years. Non-
volatile memories differentiate mainly on the write mechanism. EEPROM can
be erased and rewritten one cell at a time, whereas FLASH memories can be
erased only in blocks (called sectors). On the other hand, EEPROMs trade off
finer cell erase granularity with significantly larger cell size (approximately
twice that of FLASH). Moreover, FLASH memories can “emulate” single-cell
erase at the price of a marginal waste of memory space [Cappelletti et al. 1999].

3. ENERGY-AWARE EMBEDDED MEMORY DESIGN

As stated in the introduction, one of the key motivations for the wide diffusion
of embedded memories in SoC design is their inherent energy advantage with
respect to external commodity memories. In the previous section, we have de-
scribed the most common memory technologies in today’s design practice, and
we have pointed out their pros and cons. Such analysis sets the stage for the
energy-efficient design techniques surveyed in this section.

3.1 Circuits

The power consumed by CMOS memories is of two kinds: active power, which
is burnt when cells are accessed from outside, and retention power, which is
dissipated when the data are maintained in the circuit.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 11

Fig. 3. Bit-line division.

Power consumption of a memory array can be synthetically expressed by
equation: P = Vdd × Idd, where Vdd is the external power supply voltage and
Idd is the current of Vdd. Idd comprises two main components: (i) the effective
current of active or selected cells; and (ii) the effective data retention current
of an inactive or nonselected cell. In this section, we describe some circuit tech-
niques for the implementation of SRAM and DRAM modules aiming at the
reduction of both active and retention power.

3.1.1 Active Power Reduction. Active power for a fixed cycle time can be
minimized by reducing the charging capacitance and lowering signal swings
on the heavily loaded bit- and word lines in the memory matrix. As memory
capacity keeps increasing, so does the number of memory cells connected to each
bit- and word line, and the line capacitance grows proportionally [Amrutur and
Horowitz 2000].

A practical solution to reduce load capacitance is to divide bit-lines and word
lines into several blocks and to activate only one block at a time [Usami and
Kawabe 2000].

Example 4. The memory array of Figure 3 is split into two subarrays of
different sizes by inserting transfer-gates into each bit-line. The smaller array,

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

12 • L. Benini et al.

MAS, is connected directly to the sense amplifiers, while the larger array, MAL,
is connected to the sense amplifiers via the transfer-gates. When the transfer-
gates are turned off, the bit-lines of array MAL are electrically separated from
those of array MAS, resulting in discharging only in MAS. Power consumption
is then reduced when MAS is accessed.

In DRAMs, the reduction of the number of cells connected to a data line
should be accompanied by a decrease of the refresh frequency. In fact, increasing
the maximum refresh time yields a reduction of the time the memory is not ac-
cessible from outside, due to refresh operations, and consequently the conflicts
between normal and refresh operations are reduced [Itoh 1990]. Other tech-
niques that aim at the reduction of the charging capacitance, especially suited
for SRAM circuits, exploit I/O line division and predecoding schemes [Mai et al.
1998]. Inserting a predecoding stage between an address buffer and a final
decoder optimizes both speed and power.

Regarding operating voltage reductions, many techniques have been pro-
posed in the literature. For DRAM circuits, an effective circuit for reducing the
array operating current is based on a half-Vdd data line precharging [Kimura
et al. 1986; Lu and Chao 1984]. Similar approaches have been proposed for
SRAMs [Mai et al. 1998]. Half-Vdd precharging cuts in half the data line power
of full-Vdd precharging, with halved data line voltage swing.

Another solution consists of applying voltage-down conversion (VDC)
[Tanaka et al. 1992] in combination with scaled-down devices. This technique
provides power reduction, smaller chip area and speed increase, since the VDC
has negligibly low current and negligibly small area. Notice that low-voltage op-
erations must be accompanied by high signal-to-noise ratio design [Itoh 1990],
because the latter reduces the cell margin with reduced signal charge.

Signal swings can be reduced even without down-scaling Vdd by exploit-
ing self-timed pulsed operation. Embodiments of this technique are (i) pulsed
bit-lines [Mai et al. 1998]; (ii) pulsed word line [Minato et al. 1984]; and
(iii) the pulse operation of the column/sense circuitry [Sasaki et al. 1989].
Pulse-mode circuits are based on a self-timed feedback loop that stops signal
swing on a heavily loaded line as soon as it is detected [Amrutur and Horowitz
1998].

3.1.2 Retention Power Reduction. In data retention mode, a DRAM chip
is not accessed from outside and the data are maintained by the refresh op-
eration. The refresh operation consists of actively reading the data on a word
line and restoring them for each of the word lines in order. Hence, data re-
tention power reduction in DRAMs entails both leakage and switching power
minimization. Reducing the power of on-chip voltage converters such as VDC,
voltage-up (Vdh) converter [Itoh et al. 1995], substrate back-bias (Vbb) genera-
tor, Vref generator [Horiguchi et al. 1991], and half-Vdd generator minimize the
static current component. The switching current component can be reduced by
extending the refresh time and reducing the refresh charge [Itoh et al. 1995].

In low power SRAMs, the static cell leakage current is the main source of the
retention power because the peripheral static current is negligible [Itoh et al.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 13

Fig. 4. An example of hierarchical memory architecture.

1995]. On-chip voltage converters have not been extensively used as SRAM
cells have a wider voltage margin and a different operating principle. Thus,
data retention can be sufficiently reduced solely by memory cell and technology
improvements [Agawa et al. 2001; Powell et al. 2001].

3.2 Architectures

The simplest solution to implement a memory is through a flat architecture,
which assumes that data are stored in a single, monolithic memory bank. Mem-
ory access time, as well as power per access, increase with increasing memory
size. In modern systems, memory tends to dominate the overall chip area; thus,
flat implementations are no longer applicable, and alternative architectures
are adopted.

The most popular organization of the memory subsystem that is found in
the majority of today’s systems follows a hierarchical template. The storage
space is split into different (possibly overlapping) subsets, each of which is
implemented at a different hierarchical level. Lower levels in the hierarchy are
made of small memories, close and tightly coupled to computation units. Higher
hierarchy levels are made of increasingly large memories, far from computation
units, and possibly shared. In this context, the concept of distance of memory
from computational units represents the effort needed to fetch (or store) a given
amount of data from (to) the memory. Effort can be expressed in units of time,
or in terms of energy, depending on the cost function of interest.

Example 5. An example of a hierarchical memory architecture, taken from
Ko et al. [1998], is shown in Figure 4.

The hierarchy has four levels. Three levels of cache are on the same chip of
the execution units. To get high cache hit ratios, the line sizes at upper levels
are bigger than those at lower levels. L0 has 16-byte lines, L1 has 32-byte and
L3 has 64-byte. Similarly, cache size increases with level. L0 ranges from 1 to
16 KB, L1 from 4 to 64 KB, L2 from 16 to 1024 KB. The last level of memory

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

14 • L. Benini et al.

hierarchy is the off-chip DRAM, organized in banks, with up to 1024 MB for each
bank, when the bank is fully populated. The DRAM access is routed through a
memory control/buffer that generates row/column address strobes (RAS/CAS),
addresses, and controls sequencing for burst access. Average energy for access-
ing the L0 cache is approximatively 1.5 nJ, energy for L1 cache access is 3 nJ,
the energy for L2 access is 7 nJ. Average energy of a burst transaction to the
external DRAM is 127 nJ, which is more than two orders of magnitude larger
than the energy for accessing the L0 cache.

Each level of the hierarchy can be designed according to specific templates,
so as to meet the given specification constraints. In the following, we introduce
two broad classes of architectural options that are normally employed when the
target is energy minimization: partitioned (or segmented) memories [Farrahi
et al. 1995] and widened memories [Coumeri 1999]. Specialization of these
architectures is possible depending on the level of hierarchy at which they
need to be used (i.e., cache vs. main memory), and on the chosen process and
technology (SRAM vs. DRAM vs. FLASH).

In the following, we only introduce the basic concepts of memory partitioning
and widening. Details concerning methodologies and techniques for designing
and optimizing memory hierarchy levels that comply with these classes are the
subject of the next section.

3.2.1 Partitioned Memories. The principle in memory partitioning is to
subdivide the address space into many blocks and to map blocks to different
physical memory banks that can be enabled and disabled independently. Energy
for memory access is reduced when memory banks are small. On the other
hand, an excessively large number of small banks is highly area inefficient,
and imposes a severe wiring overhead, which tends to increase communication
power. For this reason, the number of memory banks should be constrained.

Example 6. An example of memory partitioning is provided in Coumeri
[1999]. The left-hand side of Figure 5 shows a monolithic implementation of an
array of 256 words of 16 bits each. The right-hand side of the figure depicts the
same memory array mapped onto two memory banks of 128 words each. The
chip-enable lines (CE) of the two banks are controlled by a 2-1 decoder which,
in turn, is driven by the line of the address bus which differentiates between
words in bank M1 and words in bank M2 (i.e., line Addr[7]). To ensure that
only one bank at a time is accessed, address lines Addr[0-6] are buffered.

Clearly, partitioning can be applied iteratively, although overhead due to
control logic and extra wiring may tend to off-set the actual savings introduced
by accessing smaller memory banks.

3.2.2 Widened Memories. The idea on which widened memory architec-
tures are based is that multiple words can be read during one access. Output
multiplexing is then used to select the single word for which an access was ac-
tually requested. Using this architecture is advantageous when memory words
are accessed in sequence: After the first word is transferred, the second can be
accessed by way of the output multiplexer without further performing a read

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 15

Fig. 5. An example of partitioned memory.

operation. The overhead introduced by this architecture is limited to the output
multiplexer and the extra wiring.

More complex is the situation for writing information in a widened memory,
as only multiple words can be written to memory per each access, and they may
not all be available simultaneously. One option to solve the problem consists
of resorting to a “latched-write” scheme. Assuming the memory is widened by
a factor of 2, when the writing of one memory word is required, it is actually
written into a latch. When the next consecutive word to be stored becomes
available, the content of the latch, as well as the datum available on the data-
bus, are written to memory.

Clearly, the latched-write architecture only works when data words are writ-
ten consecutively in memory. If this is not the case, one may adopt a “feed-back
write” scheme, whose implementation is more hardware demanding.

Example 7. Memory widening can be considered as a special case of mem-
ory paging in which size of memory pages is small [Prince 1997].

3.3 Optimization Techniques

In Section 2, we discussed technologies, circuits and architectures that are
commonly adopted in energy-efficient memory implementations. In this sec-
tion, we focus our attention on optimization aspects; in particular, we describe
techniques and methodologies presented in the recent literature for the opti-
mization of energy consumption of an hierarchical memory subsystem.

The objective of energy-efficient memory design is to minimize the overall
energy cost for accessing memory, within performance and size constraints. As
mentioned in Section 3.2, hierarchical organizations reduce memory energy

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

16 • L. Benini et al.

by enabling accesses to smaller banks. In addition, as most applications are
characterized by nonuniform memory access patterns (i.e., a few locations are
accessed with high frequency, whereas most locations are accessed a few times),
mapping frequently accessed locations to low hierarchy levels helps in reducing
the total energy. The dependency of memory energy on two independent vari-
ables (the access cost and the access profile) allows to model it as the product of
the number of memory accesses by the cost of each individual access. Formally,
if N is the number of accesses:

Emem =
N∑

i=1

Cost(i). (1)

In the formula, Cost(i) lumps the effective cost of an access due to the memory
organization and the cost of the physical access given by the technology.

Equation (1) exposes the two quantities we can consider to reduce the energy
consumption of a memory system. They are also independent, thus allowing us
to classify memory optimization techniques in three categories, according to
which the variable is kept fixed:

(1) Given a memory access profile (N fixed), reduce the effective access cost by
producing a customized memory hierarchy for that access pattern. We call
this class of approaches hardware-centric.

(2) Given a fixed memory architecture (Cost(i) fixed), modify the storage re-
quirements and access patterns of the target computation to optimally
match the given hierarchy. We call this class of approaches software-centric.

(3) Concurrently optimize memory access patterns and the relative access cost.
We call this class of approaches hardware–software memory codesign.

Figure 6 shows a taxonomy of the approaches to low-power memory design
existing in the literature; the first level of the taxonomy is represented by the
three classes above.

Considering the scope of this article, in the following, we focus on hardware-
centric optimizations, leaving aside software-centric approaches and combined
hardware-software optimizations. The interested reader may refer to Benini
and De Micheli [2000] and Panda et al. [2001] for more details on the latter
techniques. We start by adding some insight on the relation between perfor-
mance and energy in memory design; then, we provide a detailed survey of
existing hardware-oriented optimizations.

3.4 Performance vs. Energy

When comparing latency and energy per access in a memory hierarchy, we
observe that these two cost metrics have a similar behavior, namely, they both
increase as we move from low to high hierarchy levels. Hence, we might be lead
to the conclusion that a low-latency memory architecture is also a low-power
one, and thus optimizing memory performance implies power optimization.
Unfortunately, this conclusion is often incorrect for two main reasons.

First, even though both power and performance increase with memory size
and memory hierarchy levels, they are not guaranteed to increase in the same

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 17

Fig. 6. A taxonomy of memory optimization techniques.

way. Second, and more important, performance is a worst-case quantity (i.e.,
intensive), whereas power is an average-case quantity (i.e., extensive). Thus,
memory performance can be improved by removing a memory bottleneck on a
critical computation, but this may be harmful for power consumption, because
we need to consider the impact of a memory architecture on all memory ac-
cesses, not just the critical ones. The following example, taken from Shiue and
Chakrabarti [1999], shows how energy and performance can be contrasting
quantities.

Example 8. Consider a two-level memory hierarchy consisting of an on-
chip cache and an off-chip main memory, characterized by the following
parameters:

—Cache size, ranging from 16 bytes to 8 KB (in powers of two);
—cache line size, from 4 to 32, in powers of two;
—associativity (1, 2, 4, and 8);
—off-chip memory size, from 2 Mb SRAM, to 16 Mb SRAM.

The exhaustive exploration of the cache organization for minimum energy
for an MPEG decoding application resulted in an energy-optimal cache organi-
zation with cache size 64 bytes, line size 4 bytes, eight-way set associative. For
this organization, total memory energy is 293 µJ and execution time 142,000
cycles. Conversely, exploration for maximum performance yields a cache size of
512 bytes, line size 16 bytes, eight-way set associative. In this case, the execu-
tion time is reduced to 121,000 cycles, but energy becomes 1,110 µJ.

The example shows that energy cannot be simply reduced as a by-product of
performance optimization. In some cases, however, solutions originally devised

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

18 • L. Benini et al.

for performance optimization are also beneficial in terms of energy. For example,
this is the case for techniques that improve locality of access, which result in a
reduction of the effective cost of a memory access. Some of the techniques that
will be reviewed in this section are strictly performance-oriented solutions, as
they also positively affect energy consumption.

3.5 Hardware-Centric Approaches

Solutions in this class assume systems containing one (or more) core proces-
sor(s) and an application (or an application mix), and explore the memory hier-
archy design space to find the organization that best matches both processor(s)
and application(s).

3.5.1 Exploration Techniques. One first category of techniques is intrinsi-
cally explorative. They exploit the fact that the memory design space can be
parameterized and discretized to allow exhaustive or near-exhaustive search.
Most efforts in this area postulate a memory hierarchy with one or more lev-
els of caching, and in some cases an off-chip memory. A finite number of cache
sizes and cache organization options are considered (e.g., degree of associativ-
ity, line size, cache replacement policy), as well as different off-chip memory
alternatives (e.g., number of ports, available memory cuts). The best memory
organization is obtained by simulating the workload for all possible alternative
architectures.

The various contributions in the literature differ in the number of hierarchy
levels that are covered by the exploration, or by the number of available dimen-
sions in the design space. Su and Despain [1995], Kamble and Ghose [1997], Ko
et al. [1998], Bahar et al. [1998], Shiue and Chakrabarti [1999] focus on cache
memories. Coumeri and Thomas [1998] analyze embedded SRAMs, while Juan
et al. [1997] study translation look-aside buffers.

Example 8 shows an instance of a design space and the result of the corre-
sponding exploration. An advantage of the explorative techniques is that they
allow concurrent evaluation of multiple cost functions such as performance and
area, which can be used as constraints without any specific effort during explo-
ration. On the other hand, the main shortcoming of this class of methods is that
they only provide a posteriori insight. Furthermore, in order to limit the number
of simulations, the granularity of the design space they can span is relatively
coarse. Therefore, explorative techniques are more effective for general-purpose
systems in which the uncertainty on the application mix imposes the adoption
of robust (yet less flexible) memory architectures, which can adapt fairly well
to different workloads.

3.5.2 Memory Partitioning. As already discussed in Section 3.2, within a
given memory hierarchy level, power can be reduced by memory partitioning
techniques. Memory partitioning by itself is a typical performance-oriented
solution, because it reduces latency by accessing smaller memory blocks, and
energy may be reduced only for some specific access patterns (see Example 8).

What actually gives this class of techniques an explicit low-power potential
is the opportunity of selectively shutting down memory banks that are not

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 19

accessed. However, arbitrarily fine partitioning is prevented by the fact that
introducing too many banks is area inefficient and it imposes a severe wiring
overhead, which tends to increase communication power.

Partitioning-based techniques proposed in the literature differ in several
aspects. First, the hierarchy level targeted for partitioning (from register files
to off-chip memories). Second, the “type” of partitioning: physical partitioning
strictly maps the address space onto different, nonoverlapping memory blocks;
and logical partitioning allows some redundancy in the various blocks of the
partition, with the possibility of having addresses that are replicated several
times in the same level of hierarchy.

Physical partitioning of embedded memories has been analyzed by sev-
eral authors. Region-based caching [Lee and Tyson 2000] proposes the use
of separate caches for stack data and global data, and a main cache for all
other accesses. Clearly, nonaccessed cache modules can be disabled for energy
saving.

Benini et al. [2002] describe an application-driven partitioning of on-chip
SRAMs, which is based on a recursive formulation. Locality is exploited to
synthesize a custom memory hierarchy, consisting of independently accessible
memory banks. The method explicitly accounts for the overhead induced by
the partitioning. In fact, the partitioning engine is integrated inside a compre-
hensive framework that links the partitioning algorithm to the physical design
phase.

Logical partitioning was proposed by González et al. [1995], in which the
on-chip cache is split into a spatial and into a temporal cache to store data with
high spatial and temporal correlation, respectively. This approach relies on a
dynamic prediction mechanism that can be realized without modification to the
application code by means of a prediction buffer. A similar idea is proposed by
Milutinovic et al. [1996], in which a split spatial/temporal cache with different
line sizes is used.

The idea behind these two approaches has been extended by Grun
et al. [2001] in the context of embedded systems for energy optimization. In
their approach, data are statically mapped onto either cache, thanks to the
high predictability of the access profiles in embedded programs. Depending on
the application, data might be duplicated and thus be mapped to both caches.

Another class of logical partitioning techniques falls into the generic scheme
of Figure 7. Buffers are put along the I-cache and/or the D-cache, to realize some
form of cache parallelization. Such schemes can be regarded as a partitioning
solution because the buffers and the caches are actually part of the same level
of hierarchy.

In this architecture, data and instructions are explicitly replicated, and re-
dundancy is an intrinsic feature of these approaches. Energy is saved by reduc-
ing the average cost of a memory access by increasing the cache hit ratio.

Jouppi [1990] proposes the use of the buffer as a victim cache that is accessed
on a main cache miss. In the case of a buffer hit, the line is moved to the cache
and returned to the CPU, while the replaced line in the cache is moved to the
victim cache. In the case of a buffer miss, the lower level of hierarchy is accessed
and the fetched datum is copied into the main cache as well, while the replaced

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

20 • L. Benini et al.

Fig. 7. Using buffers alongside caches.

line in the cache is moved to the victim cache. In practice, the victim cache
serves as an over-full buffer for the main cache.

A similar approach has been used by Bahar et al. [1995], in which buffers are
used as speculative buffers: every cache access is marked with a confidence level,
obtained by the processor state; and the main cache contains misses with a high
confidence level, whereas the buffers contain those with a low confidence level.

Fisk and Bahar [1999] proposed the use of a small associative buffer (e.g.,
32 entries) in parallel to the L1-cache (called the noncritical buffer), used to
“protect” the cache from being filled with noncritical (i.e., potentially polluting)
data. Noncritical data are identified at run-time by the issue rate of the core.

A slightly different approach is used by Walsh and Board [1995] and John
and Subramanian [1997], in which the data to be stored in the main cache
are filtered through a small highly-associative cache close to the L1-cache (the
annex cache). Unlike the victim cache (in which the data are kept before their
disposal), the annex cache stores the data read from memory, which are copied
into the main cache only on subsequent references to those data. This idea of
filtering cache accesses to reduce writes that are very likely to cause misses
has been refined in Tang et al. [2002], in which the side buffers are selectively
disabled to save additional energy.

3.5.3 Extending the Memory Hierarchy. Memory partitioning extends the
“width” of the memory hierarchy by splitting, with or without replication, a
given hierarchy level. An alternative option is offered by modifying its “depth,”
that is, the number of hierarchy levels. This solution does not just imply the
straightforward addition of extra levels of cache memories.

A first class of techniques is based on the insertion of ad hoc memories be-
tween existing hierarchy levels. These methods exploit the strong locality of
reference of the instruction flow. In most programs, a large fraction of the ex-
ecution time is spent in a very small section of the executable code, namely, a
few critical loops.

Predecoded instruction buffers [Bajwa et al. 1998] store instructions in criti-
cal loops in a predecoded fashion, thereby decreasing both fetch and decode en-
ergy. The targets of the proposed optimization technique are DSP applications,

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 21

such as image or signal processing, in which cyclic execution of a few instruc-
tions dominates.

Loop caches [Kin et al. 1997] are used to store the most frequently executed
instructions (typically contained in small loops) and are used as a level-0 cache.
Given their very small sizes (128–256 bytes), loop caches negatively affect the
miss rate, but decrease the overall energy. Compared with pre-decoded instruc-
tion buffers, loop caches are less energy efficient for programs with very high
locality, but are more flexible.

Another class of solutions is based on the replacement of one or more lev-
els of caches with more energy-efficient memory structures. Such structures
are usually called scratch-pad buffers, and are used to statically store a por-
tion of the off-chip memory (or a memory farther in the hierarchy). This is in
sharp contrast with caches, that dynamically map a set of noncontiguous sets
of addresses from a slower, larger memory. These techniques are particularly
effective in application-specific systems, which run an application mix whose
memory profile can be studied a priori, thus providing intuitive candidates for
the addresses to be put into the buffer.

The work by Panda and Dutt [1999] presents a first attempt in this direction.
Their architecture is concerned with data addresses, and maps a fixed set of
contiguous addresses of the off-chip memory onto a on-chip SRAM buffer. Their
architecture also includes a first-level cache that dynamically maps addresses
of the address space of the off-chip memory that is not mapped onto the buffer.
The same authors propose a solution to the problem of which subset of the data
has to be mapped onto the buffer, for some specific classes of applications that
are suitable for contiguous mapping (e.g., array-intensive programs) [Panda
et al. 2001].

A more flexible solution, in which the buffer is named application-specific
memory (ASM), is proposed in the literature; its major difference with respect
to a conventional buffer is that an ASM appears to be distributed over many
noncontiguous locations. Hence, it overcomes the limitation of standard buffers,
which leave to the designer the burden of adopting a careful coding style or
implementing program transformations to guarantee that the most frequently
accessed data are stored in a small number of contiguous memory addresses or
both. The authors also provide different architectural configurations that allow
to combine the ASM with a cache or with off-chip memories or both.

3.5.4 Performance-Oriented Techniques. Architectural solutions explicitly
for performance optimization may also help in reducing energy. Techniques that
attempt to reduce the cache-miss rate by proper cache design are an example
of such solutions; in fact, cache-miss reduction decreases the effective average
cost of accessing memory data.

Conflict misses can be reduced by using more than a single mapping func-
tion for placing data into sets. This scheme aims at obtaining the benefits of
an increased associativity without actually increasing it. The direct-mapped
column-associative cache [Agarwal and Pudar 1993] employs two different map-
ping schemes: The first is used when a cache access is issued, whereas the
second is applied only in case of a miss in the first attempt. In practice, this

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

22 • L. Benini et al.

cache behaves like a two-way associative cache with sequential search. The
skewed-associative cache [Seznac 1993] is an alternative option. A two-way
associative cache can achieve the equivalent hit performance of a four-way
cache by employing different mapping functions for each way.

3.5.5 Bandwidth Optimization. Bandwidth is defined as the width of the
processor-to-memory interface (PMI), as opposed to memory latency, which is
a measure of the depth of the PMI. It has been pointed out in Burger [1998]
that memory bandwidth is becoming more and more important as a metric for
modern systems, due to the increased instruction-level parallelism generated
by superscalar or VLIW processors, and due to the density of integration that
allows shorter latencies.

Unlike latency, bandwidth is an average-case quantity, and is related to mem-
ory traffic. Therefore, not all solutions that reduce latency necessarily translate
into bandwidth improvements, as for energy. For instance, hardware prefetch-
ing can be helpful in removing latency bottlenecks, but will increase the traffic
along the memory hierarchy, thus actually reducing the available bandwidth.
Conversely, increasing the size of a given level of memory hierarchy will typi-
cally improve both (average) latency and bandwidth, because of reduced traffic
in the lower levels of the hierarchy. Therefore, due to their extensive nature,
several architectural techniques that improve bandwidth translate directly into
energy savings.

The works by Burger et al. [1997] and Burger [1998] present several vari-
ants of traffic-efficient caches that reduce unnecessary memory traffic by clever
choice of associativity, block size or replacement policy, as well as careful strate-
gies for memory fetches. These solutions do not necessary improve worst-case
latency, but result in reduced read and writes, thus reducing energy.

Another important class of techniques is based on the compression of the
information transmitted between any two levels of the hierarchy. This solu-
tion has been applied to both instruction and data memories, by implementing
ad hoc instruction compression schemes.

Instruction compression aims at reducing the large amount of redundancy in
instruction streams, by storing compressed instructions in main memory and
decompressing them on-the-fly before execution (or when they are stored in
instruction cache). The various techniques trade off the aggressiveness of the
compression algorithm with the speed and power consumption of the hardware
decompressor.

The approach by Yoshida et al. [1997] replaces the individual instructions
used by an embedded application with binary patterns of limited width (i.e.,
dlog2 Ne, where N is the number of distinct instructions appearing in the code).
A hardware decompression table is required for the core to be able to use the
same set of instructions.

Benini et al. [1999] build upon the method of Yoshida et al. [1997] by over-
coming its major limitation: The number of distinct instructions may be rela-
tively large, with the result of increasing the size of the instruction decompres-
sion table and complicating the implementation of the controller, especially
when the bit-width of the compressed instructions is not a multiple of the byte.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 23

In their approach, only a fixed subset (namely, 256) of the used instructions is
compressed, and the code stored in memory consists of a mix of compressed and
uncompressed instructions.

Another approach is followed by Ishihara and Yasuura [2000], in which fre-
quently executed basic blocks are replaced by a single instruction. The merged
sequence of object codes is restored by an instruction decompressor before de-
coding takes place. The decompressor is implemented as a ROM.

Code compression techniques have been used to reduce the size of executables
of programs; new ideas on the subject have thus been explored, especially for
what concerns the domain of embedded systems; in detail, in the work by Liao
et al. [1998] and by Lekatsas and Wolf [2000], code density is the main cost
function, and power reductions are obtained as a by-product. However, the work
by Benini et al. [2001] targets power minimization as the primary objective.

The principle exploited in code compression (namely, reduction of memory
traffic), can be extended to the case of data. The compressed cache by Yang
et al. [2000] is based on the frequent value locality, that is, the fact very few
values (typically small integers) account for usually around half of the total
memory accesses, for most benchmarks. This allows the storage of the selected
values in a compressed form. Compression/decompression is performed on the
fly on accesses from/to the next hierarchy level.

4. FUTURE PERSPECTIVES

The Semiconductor Industry Association (SIA) and most analysts predict that
embedded memories will increasingly dominate the SoC content both in terms
of number of transistors and silicon real-estate. According to the SIA, ITRS
2000, 52% of the area of a typical 2002 SoC design is occupied by embedded
memories. This percentage is expected to increase to 71% in 2005. Clearly, this
trend emphasizes the strategic role of embedded (on-chip) memories for SoC
architectures, and motivates the efforts made in academia and in the business
arena to improve the integration of logic and memories onto the same silicon
substrate.

The purpose of this section is to outline the main challenges and development
directions for embedded memories, following both an evolutionary and a rev-
olutionary path. Whereas evolutionary approaches are based on mainstream
memory technology, revolutionary approaches leverage novel devices and phys-
ical properties of materials. The risk associated with revolutionary approaches
is obviously very high, and success is a long-term perspective. On the other
hand, the pay-off for a memory technology capable of overturning the current
mainstream is staggering. For this reason, numerous revolutionary approaches
are being pursued, and surveying all of them would be impossible. Thus, after
outlining the most active areas of evolution in traditional memory technologies,
we focus on revolutionary technologies that are already at an advanced stage
of development and commercialization level.

4.1 Trends of Evolution

The main objectives in the evolution of embedded memories are high den-
sity, storage permanence, speed, and reliability. At the same time, a low cost,

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

24 • L. Benini et al.

high-yield process is desirable to successfully compete with multi-chip alterna-
tives. No single memory technology excels in all categories: Density is maxi-
mum for DRAMs; SRAMs are better in speed; and FLASH and EEPROMs are
nonvolatile. Improvements with respect to all the cost metrics listed above are
pursued at the technology, circuit, and architectural levels.

Density improvements are especially critical for SRAMs, whose atomic
six-transistor cell in Figure 1 is much larger than that of DRAMs and
FLASH/EEPROMs. A promising approach in this direction is the development
of the 1T SRAM [Glaskowsky 1999] (one-transistor SRAM). This architecture
is based on an elementary cell containing one transistor and a MOS capaci-
tor (similarly to early DRAMs), which is still much larger than modern DRAM
cells, but it is fully compatible with logic CMOS technology. The cell does not
contain any regenerating feedback, hence it must be refreshed as in DRAMs.
The 1T SRAMs completely hide the refresh controller to the external world,
and offer an input–output interface fully compliant with standard synchronous
memory macros. The main issue in achieving this goal is to avoid delayed reads
when the read target cells are being refreshed. The 1T SRAM architecture
overcomes this problem by implementing a clever caching structure: the mem-
ory is internally multibanked, and whenever a bank needs to be refreshed,
its entire content is copied into a standard 6T SRAM memory buffer, which
is accessed in replacement of the 1T bank being refreshed. Additionally, the
multibank architecture helps speed up access times because it reduces the bit-
line capacitance that must be driven by a cell during reads. Thus, access time
is only marginally larger than that of standard embedded SRAMs. Needless
to say, the logic CMOS compatible cell, the heavily multibanked architecture,
the controller and the refresh buffer have a significant area cost, and the 1T
SRAM is less dense than embedded DRAMs (15% density loss is reported), but
it is fully process-compatible with logic CMOS and significantly denser than
traditional 6T SRAMs (70% smaller area for the same capacity). Additionally,
power consumption is significantly reduced. A factor of 4 power reduction with
respect to 6T SRAMs is claimed.

Although density is probably the main concern for embedded SRAMs,
dedicated-process memories have their own challenges. The most significant
research and development efforts are directed toward decreasing the complex-
ity and improving the yield of merged memory–logic processes. Excessive cost,
caused by these joint factors, is the most significant obstacle to the diffusion
of embedded DRAMs and embedded FLASH (EEPROM), in view of the com-
petition from low-cost commodity memories [Rajsuman 2001; Watanabe et al.
1997]. Nonvolatile memories are also faced by limited write performance and
reliability. Writes are much slower than reads and require high voltages to
erase the content of floating-gate cells and store new content. These high
voltages cause oxide wear-out of the floating-gate transistors under multi-
ple rewrite cycles. Today’s nonvolatile memories can withstand approxima-
tively 106 write cycles [Strauss and Daud 2000], which is already one order
of magnitude better than in 1999 [Cappelletti et al. 1999]. One million rewrites
are unfortunately not sufficient for some applications characterized by a fast
rewrite rate and long life cycle [Strauss and Daud 2000]. Fast and low-stress

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 25

techniques for nonvolatile memory erase and rewrite are being actively in-
vestigated [Cappelletti et al. 1999]. Another evolutionary trend in nonvolatile
memories is the development of multibit storage cells. Floating-gate cells can
be programmed with many different threshold values, enabling storage of mul-
tiple bits of information into a single cell with no area penalty [Borgatti et al.
2001; Cappelletti et al. 1999].

Another area of active research is the development of design flows for the
integration of embedded memories within large SoCs. In this arena, we can
distinguish two main directions, namely memory compilers (or generators)
and memory design outsourcing (or memory IP development). The first ap-
proach [Clerc et al. 1999; Rajsuman 2001] is synthesis-oriented: the designer
specifies a memory configuration (number of rows and columns, word size, out-
put size, etc.) and the compiler instantiates the memory block by generating
different back-end views for design integration such as HDL functional and
timing simulation model, SPICE netlist, layout database (GDSII), etc. Memory
compilers are very effective for small memories, but they become unreliable
for very large and complex memories: predicting delay, power, and reliability is
very hard for large memory cuts, because second-order effects (e.g., line induc-
tance) become non-negligible. Furthermore, memory compilers still produce
inferior results in comparison with hand-crafted designs, and the optimality
loss tends to grow with memory size. For these reasons, large memories are
usually hand-designed as hard macros. These macros can be either exchanged
among design groups in large companies, or they can be outsourced to special-
ized design houses [Hall and Costakis 2001]. Generally, these companies do
employ specialized generators for functional blocks inside the memory macro,
but they customize the macro on demand, and they tailor their generators
to different technologies and processes. In this way, SoC design time is still
reduced, but the embedded memory is highly optimized. The choice between
memory compilers and outsourcing is a difficult one and most SoC designs ex-
ploit both, depending on the size of the memory macro to be instantiated. In
perspective, we expect memory compilers to conquer larger market share as
embedded memories become commodified, but the largest memory macros will
still be hand-crafted (and increasingly outsourced). From the technology view-
point, SRAMs are definitely more amenable to automatic generation, whereas
generators for dedicated-process memories, such as DRAMs and FLASH are
still quite limited in flexibility and usage.

Besides memory instantiation, validation and design quality assessment
methodologies are in rapid development [Rajsuman 2001]. In particular, tim-
ing and power analysis are critical topics in this area. As design sign-off
moves toward higher levels of abstraction, there is a growing need for sign-
off quality memory modeling techniques, primarily for performance, but also
for power. Large memory macros are complex, mixed signal subsystems, and
full-chip simulation would not have been thinkable without abstracting away
their transistor-level details. This abstraction should not, however, compro-
mise the accuracy of timing characterization, to avoid potentially fatal design
failures. Memory characterization usually relies on manual analysis: the mem-
ory designer identifies the critical path, creates load models, and extracts an

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

26 • L. Benini et al.

equivalent circuit for SPICE simulation. Worst-case corners are specified and
characterization of the process and operating condition induced variations is
then carried out through iterative simulation. Unfortunately, this process is
slow and error-prone, and automatic analysis and model extraction tools are
strategic advances that we expect to see in this area.

The growth of on-chip memory usage has profound implications on chip
yield [Dipert 2001b; Zorian 2000]. One of the primary causes of chip failure
is the growth of memory as a percentage of a chip’s area. Dedicated-process
memories require more complex fabrication processes, but in general embedded
memories imply higher cell density, thereby increasing the likelihood for a point
defect to create a faulty cell. To circumvent this problem, semiconductor manu-
facturers started adding redundancy into large embedded memories, to enable
repair after manufacturing, as is commonly done in stand-alone memories. The
standard test-and-repair process for commodity memories follows three steps:
(i) memory testing is performed on a dedicated tester with automatic test pat-
tern generation capability (ATPG); (ii) test results are down-loaded and diag-
nosis is performed to locate defective cells; and (iii) chip repair is carried out by
a fuse-blow process using laser repair equipment. For an embedded memory,
these steps are much more cumbersome and expensive than for a stand-alone
memory. SoC testers are much more expensive because they must test both
memory and logic; furthermore, feeding test patterns to an embedded memory
requires an on-chip test bus (with a silicon area cost). External test generation
and testing can be bypassed with built-in self-test (BIST) techniques. BIST
embeds the memory test function on-chip [Zorian 2000].

The BIST block is functionally equivalent to the on-chip test access bus and
the ATPG required to test the memory. In addition, BIST allows an at-speed
test, which is critical for high-speed chips. The use of basic BIST techniques
does not simplify diagnosis and repair, but it can simplify the architecture of
the postrepair tester, which does not have to perform ATPG. This idea can be
pushed one step further, towards built-in redundancy analysis (BIRA). Instead
of transferring the test results externally, on-chip diagnostic circuits analyze
the BIST outcome and identify the failed memory rows/columns. In this case,
only the redundancy configuration map needs to be transferred to the exter-
nal repair equipment, which can be highly simplified. As a last step, even the
laser repair equipment can be eliminated. The fuse-based “hard” repair then
becomes “soft” repair, also called built-in self-repair (BISR). In addition to BIST
and BIRA, BISR includes the storage of repair data and the control of a soft re-
configuration mechanism that bypasses the failed cells and activates available
spares [Schober et al. 2001; Zorian 2000].

An example of a practical instantiation of the concepts outlined above is the
STAR memory system by Virage Logic [Virage Logic]. It is a memory macro con-
taining not only memory banks, but also a test, diagnosis, and repair controller,
and spare blocks. The controller automatically tests the memory, allocates re-
dundancy resources, and coordinates any needed repairs. Two repair methods
are available: (i) factory repair, in which the STAR processor performs BIRA
and transfers programming instruction to external laser repair equipment; and
(ii) field repair, which tests and repairs memory instances each time the SoC

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 27

is powered up or reset. These modes of operation are not mutually exclusive.
Factory repair is well suited for eliminating manufacturing defects and rais-
ing chip yield, whereas field repair is useful for any subsequent problem over
the life of the end product. Clearly, the self-repair approach is viable only for
fairly large memories: the STAR controller includes a few thousand gates and
requires additional nonvolatile memory for storing test patterns and programs.
Virage Logic commercializes STAR for memory blocks not smaller than 256 KB.

Self-diagnosis and self-repair are effective countermeasures for permanent
failures, but unfortunately, memories are subject to a number of transient fail-
ure mechanisms that take place during system operation for a limited time
span. Phenomena that cause transient faults are supply noise, radiation, elec-
trostatic discharge from I/O pins, etc.

Effective techniques to test and repair these types of faults include periodic
self-diagnosis and self-repair, as well as self-checking and fault-tolerant cir-
cuits and architectures. Self-checking and fault-tolerant operation exploit some
amount of redundancy in storing information in memory. As a result, all these
techniques impose a significant area penalty but a limited performance penalty.
The research activity on error-resilient memory architectures is extremely ac-
tive, and the interested reader is referred to specialized literature in the field
(see, for example, Lala [2001]; Sarrazin and Malek [1984]). In perspective, the
reduction in minimum feature size, the increasing complexity of silicon tech-
nology, and the trend of decreasing supply voltages, which together contribute
to diminishing the signal-to-noise ratio in digital integrated circuits, are strong
drivers towards the widespread adoption of these techniques in future SoCs.

4.2 Revolutionary Technologies

As seen in the previous section, mainstream embedded memories are rapidly
evolving to meet the challenges of SoC design. However, a substantial research
effort is also directed towards the development of radically new solid-state stor-
age devices, based on new materials and different physical phenomena. In this
area, we briefly mention four “revolutionary” technologies that have matured
beyond the level of a single-cell feasibility study and show good promise. Fer-
roelectric (FRAM), silicon-oxide-nitride silicon (SONOS), and giant magneto-
resistance RAM (GMRAM) are nonvolatile, read-write memories that aim at
overcoming the fundamental limitations of floating-gate memory write process
(low speed and limited reliability). Negative-resistance device (NDR) RAMs are
being investigated as high-density alternatives to SRAMs.

Ferroelectric RAM [Dipert 2001a; Takasu 2001] is probably the most ma-
ture technology. These memories are based on ferroelectric polarization effects,
which can be summarized as the capability of a material to store polarization
in absence of an applied electric field. Under an electric field, a ferroelectric
material goes through an hysteresis cycle that can be exploited to store one bit
of information (i.e., 0 or 1 depending on which branch of the hysteresis cycle
the cell is polarized into), similarly to a DRAM capacitor, but in a nonvolatile
fashion. Reads are destructive, and FRAMs automatically rewrite cell content
after reads, analogous to a DRAM read-refresh cycle. Similarly to floating-gate

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

28 • L. Benini et al.

memories, FRAMs exhibit fatigue under multiple rewrites, but they can with-
stand up to 1013 rewrite cycles. Further, rewrite times are in the nanosecond
range, as opposed to the microsecond to millisecond times of floating-gate mem-
ories. FRAM fabrication technology is based on thin-film deposition over a sili-
con substrate. Current challenges in FRAM production are increasing process
yield, cell density, and ensuring compatibility with a logic-CMOS process, an
essential requirement for embedded applications [Dipert 2001a].

SONOS nonvolatile memories are close relatives of traditional floating-gate
memories, but they replace the floating-gate with a thin silicon nitride film.
The stored charge is localized in isolated sites within the silicon nitride dielec-
tric, as opposed to a delocalized charge storage in the conductive polysilicon
of a standard floating-gate. This is a key reliability advantage for SONOS. In
a floating-gate structure, if the oxide becomes permeable to charge, then the
entire conductive floating-gate is discharged. In SONOS, only a few localized
charge traps can be affected by a localized oxide failure, and information storage
is degraded, but not destroyed. Integration of SONOS with standard CMOS is
simple: only a few (as little as two) additional masking steps are required. Cell
size is very small, and multibit storage is possible. Even though SONOS mem-
ories seem very strong competitors for both EEPROM/FLASH and DRAMs,
their technology is still in a maturing stage, and the basic failure mechanisms
of these memories needs to be better understood [White et al. 2000].

Giant magnetoresistance [Dipert 2001a; Strauss and Daud 2000] and
negative-resistance [Nemati and Plummer 1998] memories are less mature
than FRAMs and SONOS memories. GMRAM is based on the resistance change
of a multilayered thin-film material when subject to a magnetic field (induced
by an electric current in the underlying substrate). The resistance variation is
enduring, but it can be reversed. Hence, GMRAMs are inherently nonvolatile.
They also show much higher rewrite reliability and speed than traditional
floating-gate memories. Integration with standard CMOS processes, albeit pos-
sible, has still to be fully demonstrated at high levels of integration. Finally,
NRD memories are under investigation as high-density SRAM replacement.
They leverage a vertically stacked PNPN structure (a thyristor) in contact
with an addressable MOS transistor. Vertically stacking the device, similar
to DRAMs capacitors, is highly area-efficient, but at the same time, the high
current drive capability of the PNPN thyristor has the potential for read times
comparable, if not superior, to those of current SRAMs. Furthermore, in con-
trast with current DRAMs, the information stored in the cell does not need to
be periodically refreshed. Even though simple NRD memories have been fabri-
cated, their fabrication process is fairly complex and not yet mature for mass
production in submicron processes.

Concluding this section, we observe that current mainstream embedded
memory technologies are still maturing, and they can partly leverage the
huge investments and design experiences made in the commodity memory
field. Thus, we do not expect CMOS SRAM, DRAM, and FLASH/EEPROM
to run out of steam anytime soon. However, our brief survey of “revolutionary”
approaches shows that viable alternatives do exist, and they are under very
active development.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 29

5. CONCLUSION

Embedded systems are now becoming ubiquitous; in particular, they have large
applicability in mobile, battery-operated personal communication systems, for
which energy consumption is a major constraint.

Among the various contributors to the system’s energy budget, memory plays
a prominent role; in fact, reading and writing data to the memory hierarchy is
an operation which takes place very often, especially in data-dominated appli-
cations (e.g., video and audio playing). As such, memory energy optimization
has shown itself to be one of the most promising and successful approaches to
system power minimization.

In this article, we have surveyed the current state-of-the-art in energy ef-
ficient embedded memory design. We have addressed technological, architec-
tural, and methodological issues by providing theoretical illustrations and prac-
tical application examples of the most promising memory design approaches.
Although broad, the survey does not cover the whole spectrum of available
solutions proposed in the literature; our focus has been on hardware-centric
techniques. Equally important energy optimization opportunities can be pro-
vided by software-centric and HW–SW codesign approaches. We have not con-
sidered them in this manuscript for space reasons, but the interested reader
can refer to [Power Aware Design Methodologies 2002] and [Panda et al.
2001] for excellent reviews of these two aspects of energy-aware memory
design.

REFERENCES

AGARWAL, A. AND PUDAR, S. D. 1993. Column-associative caches: A technique for reducing the miss
rate of direct-mapped caches. In ISCA-93: ACM/IEEE International Symposium on Computer
Architecture (San Diego, CA, May), 179–180.

AGAWA, K., HARA, H., TAKAYANAGI, T., AND KURODA, T. 2001. A bitline leakage compensation scheme
for low-voltage SRAMs. IEEE J. Solid-State Circuits 36, 5, 726–734.

AMRUTUR, B. AND HOROWITZ, M. 1998. A replica technique for wordline and sense control in low-
power SRAMs. IEEE J. Solid-State Circuits 32, 8, 1208–1219.

AMRUTUR, B. AND HOROWITZ, M. 2000. Speed and power scaling of SRAMs. IEEE J. Solid State
Circuits 34, 2, 175–185.

BAHAR, R. I., ALBERA, G., AND MANNE, S. 1998. Power and performance tradeoffs using various
caching strategies. In ISLPED-98: ACM/IEEE International Symposium on Low Power Elec-
tronics and Design (Monterey, CA, Aug.), 64–69.

BAJWA, R. S., HIRAKI, M., KOJIMA, H., GORNY, D. J., NITTA, K., SHRIDHAR, A., SEKI, K., AND SASAKI, K.
1998. Instruction buffering to reduce power in processors for signal processing. IEEE Trans.
VLSI Syst. 5, 4 (Dec.), 417–424.

BENINI, L., MACII, A., MACII, E., AND PONCINO, M. 1999. Selective instruction compression for mem-
ory energy reduction in embedded systems. In ISLPED-99: ACM/IEEE International Symposium
on Low Power Electronics and Design (San Diego, CA, Aug.), 206–211.

BENINI, L., MACII, A., AND PONCINO, M. 2002. Memory Design Techniques for Low-Energy Embed-
ded Systems, Kluwer, Dordrecht.

BORGATTI, M., ET AL. 2001. A 64-Min single-chip voice recorder/player using embedded 4-b/cell
FLASH memory. IEEE J. Solid-State Circuits 36, 3, 516–521.

BURGER, D. C. 1998. Hardware techniques to improve the performance of the processor/memory
interface, Ph.D. dissertation, Univ. of Wisconsin-Madison.

BURGER, D. C., GOODMAN, J. R., AND KAGLE, A. 1997. Limited bandwidth to affect processor design.
IEEE Micro 17, 6, 55–62.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

30 • L. Benini et al.

CAPPELLETTI, P., GOLLA, C., OLIVO, P., AND ZANONI, E. 1999. Flash Memories, Kluwer, Dordrecht.
CHANDRAKASAN, A., BOWHILL, W., AND FOX, F. 2001. Design of High-Performance Microprocessor

Circuits, IEEE Press, New York.
CLERC, S., DUFOURT, D., AND ZANGARA, L. 1999. High flexibility CMOS SRAM generator using

multiplan architecture. In IEEE ASIC/SOC Conference, 414–417.
COUMERI, S. L. 1999. Modeling memory organizations for the synthesis of low power systems,

Ph.D. dissertation, EE and CS Dept., Carnegie Mellon Univ.
COUMERI, S. L. AND THOMAS, D. E. 1998. Memory modeling for system synthesis. In ISLPED-

98: ACM/IEEE International Symposium on Low Power Electronics and Design (Monterey, CA,
Aug.), 179–184.

DIPERT, B. 2001a. Exotic memories. EDN Mag. (Apr.).
DIPERT, B. 2001b. Banish bad memories. EDN Mag. (Nov.).
FARRAHI, A., TELLEZ, G., AND SARRAFZADEH, M. 1995. Memory segmentation to exploit sleep mode

operation. In DAC-32: ACM/IEEE Design Automation Conference (San Francisco, CA, June),
36–41.

FISK, B. R. AND BAHAR, R. I. 1999. The non-critical buffer: using load latency tolerance to improve
data cache efficiency. In ICCD-99: IEEE International Conference on Computer Design (Austin,
TX, Oct.), 538–545.

FRANK, D., DENNARD, R., NOVAK, E., SOLOMON, P., TAUR, Y., AND WONG, H. S. 2001. Device scaling
limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 3, 259–288.

GLASKOWSKY, P. 1999. MoSys explains 1T-SRAM technology, Microprocess. Rep. 13, 12.
GONZÀLEZ, A., ALIAGAS, C., AND VALERO, M. 1995. A data-cache with multiple caching strategies

tuned to different types of locality. In ICS-95: ACM International Conference on Supercomputing
(Barcelona, Spain, July), 338–347.

GRUN, P., DUTT, N., AND NICOLAU, A. 2001. Access pattern based local memory customization
for low-power embedded systems. In DATE-01: IEEE Design Automation and Test in Europe
(Munich, Germany, March), 778–784.

HALL, E. AND COSTAKIS, G. 2001. Developing a design methodology for embedded memories. ISD
Mag. (Jan.)

HORIGUCHI, M., ET AL. 1991. Dual-regulator dual-decoding-trimmer DRAM voltage limiter for
burn-in tests. IEEE J. Solid-State Circuits 26, 11, 1544–1549.

ISHIHARA, T. AND YASUURA, H. 2000. A power reduction technique with object code merging for
application specific embedded processors. In DATE’00: Design Automation and Test in Europe
(Paris, France, Mar.), 617–623.

ITOH, K. 1990. Trends in megabit DRAM circuit design. IEEE J. Solid-State Circuits 25, 778–789.
ITOH, K., SASAKI, K., AND NAKAGOME, Y. 1995. Trends in low-power RAM circuit technologies. Proc.

IEEE 83, 4, 524–543.
JOHN, L. K. AND SUBRAMANIAN, A. 1997. Design and performance evaluation of a cache assist to

implement selective caching. In ICCD-97: IEEE International Conference on Computer Design
(Austin, TX, Oct.), 510–518.

JOUPPI, N. 1990. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and pre-fetch buffer. In ISCA-90: ACM/IEEE International Symposium on
Computer Architecture (Seattle, WA, May), 364–373.

JUAN, T., LANG, T., NAVARRO, J. J. 1997. Reducing TLB power requirements. In ISLPED-97:
ACM/IEEE International Symposium on Low Power Electronics and Design (Monterey, CA, Aug.)
196–201.

KAMBLE, M. B. AND GHOSE, K. 1997. Analytical energy dissipation models for low-power caches.
In ISLPED-97: ACM/IEEE International Symposium on Low Power Electronics and Design
(Monterey, CA, Aug.), 143–148.

KEITEL-SCHULZ, D. AND WEHN, N. 2001. Embedded DRAM development: Technology, physical de-
sign and application issues. IEEE Des. Test Comput. 18, 3, 7–15.

KIMURA, K., ET AL. 1986. Power reduction technique in megabit DRAM’s. IEEE J. Solid-State
Circuits 21, 381–389.

KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. 1997. The filter cache: An energy efficient memory
structure. In MICRO-30: Annual IEEE/ACM International Symposium on Microarchitecture
(Research Triangle Park, NC, Dec.) 184–193.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Energy-Aware Design • 31

KO, U., BALSARA, P. T., AND NANDA, A. K. 1998. Energy optimization of multilevel cache architec-
tures for RISC and CISC processors. IEEE Trans. VLSI Syst. 6, 2 (June), 299–308.

KUNIMATSU, A., ET AL. 2000. Vector unit architecture for emotion synthesis. IEEE Micro 20, 2,
40–47.

LALA, P. 2001. Self-Checking and Fault-Tolerant Digital Design, Morgan-Kaufmann, San Mateo,
CA.

LEE, H. S. AND TYSON, G. S. 2000. Region-based baching: An energy-delay efficient memory archi-
tecture for embedded processors. In IEEE International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (Nov.), 120–127.

LEKATSAS, H. AND WOLF, W. 2000. Code compression for low power embedded systems. In DAC-37:
ACM/IEEE Design Automation Conference (Los Angeles, CA, June), 294–299.

LIAO, S. Y., DEVADAS, S., AND KEUTZER, K. 1998. Code density optimization for embedded DSP
processors using data compression techniques. IEEE Trans. CAD/ICAS 17, 7 (July), 601–608.

LU, N. C. C. AND CHAO, H. 1984. Half-VDD bit line sensing scheme in CMOS DRAM. IEEE J.
Solid-State Circuits 19, 451–454.

MAI, K., MORI, T., AMRUTUR, B., HO, R., WILBURN, B., AND HOROWITZ, M. 1998. Low-power SRAM
design usig half-swing pulse-mode techniques. IEEE J. Solid-State Circuits 33, 1659–1671.

MILUTINOVIC, V., MARKOVIC, B., TOMASEVIC, M., AND TREMBLAY, M. 1996. The split temporal/spatial
cache: A complexity analysis. In SCIzzL-6 Workshop (Santa Clara, CA, Sept.), 89–96.

MINATO, O., ET AL. 1984. A 20ns 64K CMOS RAM. ISSCC Dig. Tech. Papers (Feb.), 222–223.
NACHTERGAELE, L., CATTHOOR, F., AND KULKARNI, C. 2001. Random-access data storage components

in customized architectures. IEEE Des. Test Comput. 18, 3, 40–54.
NEMATI, F. AND PLUMMER, J. 1998. A novel, high density, low voltage SRAM cell with a vertical

NDR device. In IEEE Symposium on VLSI Technology, 66–67.
PANDA, P. R., CATTHOR, F., DUTT, N. D., DANCKAERT, K., BROCKMEYER, E., KULKARNI, C., VANDERCAPPELE, A.,

AND KJELDSBERG, P. G. 2001. Data and memory optimization techniques for embedded systems.
ACM Trans. Des. Autom. Electron. Syst. 6, 2 (April), 149–206.

PANDA, P. AND DUTT, N. 1999. Memory Issues in Embedded Systems-on-Chip Optimization and
Exploration, Kluwer, Dordrecht.

PANDA, P., DUTT, N., AND NICOLAU, A. 2001. On-chip vs. off-chip memory: The data partitioning
problem in embedded processor-based systems. ACM Trans. Des. Autom. Electron. Syst. 5, 3,
(July), 682–704.

PEDRAM, M. AND RABAEY, J. Power Aware Design Methodologies, Kluwer, Dordrecht.
POWELL, M., YANG, S. H., FALSAFI, B., ROU, K., AND VIJAYKUMAR, N. 2001. Reducing leakage in a

high-performance deep-submicron instruction cache. IEEE Trans. VLSI Syst. 9, 1 (Feb.), 77–89.
PRINCE, B. 1997. Semiconductor Memories, 2d ed., Wiley, New York.
RAJSUMAN, R. 2001. Design and test of large embedded memories: An overview. IEEE Des. Test

Comput. 18, 3, 16–27.
SARRAZIN, D. AND MALEK, M. 1984. Fault-tolerant semiconductor memories. IEEE Comput. 17, 8,

49–56.
SASAKI, K., ET AL. 1989. A 9-ns 1-Mbit CMOS RAM. IEEE J. Solid-State Circuits 24, 1219–1225.
SCHOBER, V., PAUL, S., AND PICOT, O. 2001. Memory built-in self-repair using redundant words. In

International Test Conference, 995–1001.
SEZNEC, A. 1993. A case for two-way skewed-associative caches. In ISCA-93: ACM/IEEE Inter-

national Symposium on Computer Architecture (San Diego, CA, May), 169–178.
SHIUE, W. AND CHAKRABARTI, C. 1999. Memory exploration for low power, embedded sys-

tems. In DAC-36: ACM/IEEE Design Automation Conference (New Orleans, LA, June), 140–
145.

STRAUSS, K. AND DAUD, T. 2000. Overview of radiation tolerant unlimited write cycle non-volatile
memory. In IEEE Aereospace Conference (Mar), 399-408.

SU, C. L. AND DESPAIN, A. M. 1995. Cache design trade-offs for power and performance optimiza-
tion: A case study. In ISLPD-95: ACM/IEEE International Symposium on Low Power Design
(Dana Point, CA, Apr.), 63–68.

SUZUOKI, M., ET AL. 1999. A microprocessor with a 128-bit CPU, ten floating-point MACs, four
floating-point dividers and an MPEG-2 decoder. IEEE J. Solid-State Circuits 34, 11, 1608–
1618.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

32 • L. Benini et al.

TAKAHASHI, M., ET AL. 2000. A 60-MHz 240-mW MPEG-4 videophone LSI with 16-Mb embedded
DRAM. IEEE J. Solid-State Circuits 35, 11, 1713–1721.

TAKASU, H. 2001. Ferroelectric memories and their applications. Microelectron. Eng. 59, 237–246.
TANAKA, H., ET AL. 1992. Stabilization of voltage limiter circuit for high-density DRAM’s using

pole-zero compensation. IEICE Trans. Electron. E75-C, 1 (Nov.), 1333–1343.
TANG, W., GUPTA, R., AND NICOLAU, A. 2002. Power savings in embedded processors through decode

file cache. In DATE’02: Design and Test in Europe (Paris, France, Mar.), 443–448.
USAMI, K. AND KAWABE, N. 2000. Low-power technique for on-chip memory using biased partition-

ing and access concentration. In IEEE Custom Integrated Circuits Conference (May), 214–220.
Virage Logic The STAR Memory System, www.viragelogic.com.
WALSH, S. J. AND BOARD, J. A. 1995. Pollution control caching. In ICCD-95: IEEE International

Conference on Computer Design (Austin, TX, Oct.), 300–306.
WATANABE, T., FUJITA, R., AND YANAGISAWA, K. 1997. Low-power and high-speed advantages of

DRAM-logic integration for multimedia systems. IECE Trans. Electron. E80-C, 12, 1523–1531.
WHITE, M., ADAMS, D., AND BU, J. 2000. On the go with SONOS. IEEE Circuits Devices 16, 4,

22–31.
YANG, J., ZHANG, Y., AND GUPTA, R. 2000. Frequent value compression in data caches. In MICRO-33:

IEEE/ACM 33d International Symposium on Microarchitecture (Monterey, CA, Dec.), 258–265.
YOSHIDA, Y., SONG, B., OKUHATA, H., ONOYE, T., AND SHIRAKAWA, I. 1997. An object code compression

approach to embedded processors. In ISLPED-97: ACM/IEEE International Symposium on Low
Power Electronics and Design. (Monterey, CA, Aug.), 265–268.

ZORIAN, Y. 2000. Yield improvement and repair trade-off for large embedded memories. IEEE
Des. Test Eur. 69–70.

Received January 2002; accepted July 2002

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

