
Preemptibility in Real-Time Operating Systems

Clifford W. Mercer and Hideyuki Tokuda
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Real-time operating systems generally depend on some
form of priority information for making scheduling deci-
sions. Priorities may take the form of small integers or
deadline times, for example, and the priorities indicate the
preferred order for execution of the jobs. Unfortunately,
most systems suffer from some degree of priority inversion
where a high priority job must wait for a lower priority job
to execute. We consider the nature of the non-preemptible
code sections, called critical sections or critical regions,
which give rise to this priority inversion in the context of
a soft real-time operating system where average response
time for different priority classes is the primary perfor-
mance metric. An analytical model is described which is
used to illustrate how critical regions may affect the time-
constrained jobs in a multimedia (soft real-time) task set.

1 Introduction

The priority assignment in a real-time operating system
represents the importance that the programmer places on
each task. Because such systems must be responsive to
external events, the tasks to be scheduled and their priority
ordering can change very quickly. The scheduler and vari-
ous mechanisms that provide input to the scheduler must be
able to react quickly to the changing task mix if the prior-
ities are to be honored. The problem is that circumstances
in the actual operating system may hinder an immediate
response to external events. For example, in the code for
the scheduler it is often necessary to disable hardware in-
terrupts to prevent interrupt handlers from invoking the

This research was supported in part by a National Science Foundation
Graduate Fellowship, by the U.S. Naval Ocean Systems Center under
contract number N66001-87-C-0155,by the Office of Naval Research un-
der contract number N00014-84-K-0734,by the Federal Systems Division
of IBM Corporation under University Agreement YA-278067, and by the
SONY Corporation. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of NSF, NOSC, ONR, IBM,
SONY, or the U.S. Government.

scheduler again (schedulers are typically not re-entrant).
During the time that interrupts are disabled, the system is
oblivious to external events, and the external events will get
no response from the system until after the interrupts have
been enabled again. This part of the code where interrupts
are disabled is called a critical region.

1.1 Critical Regions and Priority Inversion

Critical regions play havoc with the intended priority
ordering of the tasks in the system. For the duration of the
critical region, the priority structure is suspended, and the
executing task essentially transforms itself into the highest
priority task. Thus a low priority task may take, for some
duration, the highest priority in the system. If no high
priority activity becomes ready during this time, there is
no problem. However, if a high priority activity arises, the
corresponding external event would not cause an immediate
interrupt, and the high priority (external) activity would be
delayed while the lower priority internal activity executes.
This is a priority inversion (using a broad interpretation of
the term used in [13]) since the effective priorities of the
two activities have been inverted.

Sections of code where interrupts are disabled are ex-
amples of critical regions where the effects are felt by all
the tasks in the system. Critical sections protected by
semaphores that are shared by a small number of tasks are
another source of priority inversion on a limited scale. Intu-
itively, the duration of the critical sections should be small
so as to avoid priority inversion and enhance response time.
On the other hand, non-preemptive processing reduces con-
text switching overhead and improves cache performance
and pipeline performance. Critical sections are also needed
to ensure data integrity in programs using shared memory.
We now consider some of the issues involved in this trade-
off.

1.2 Necessity of Critical Regions

Interrupt handlers for various devices are sources of
critical regions where interrupts are disabled for some pe-
riod of time. There is a tradeoff between doing buffering

1



and other data processing in interrupt handlers and paying
the overhead for scheduling a job to do the work. Some
systems do character buffering, network packet buffering,
and even network protocol processing in hardware inter-
rupt handlers. 4.3 BSD [8], for example, does network
protocol processing at a “software interrupt level” which
has a higher priority than any of the schedulable activities
in the system (and a lower priority than hardware interrupt
handlers). This is an example of a critical region which
is not preemptible by normal processes, which is not pre-
emptible by other network protocol processing activities,
but which allows preemption by hardware device inter-
rupt handlers. This approach avoids scheduling events and
context switches and therefore yields better throughput for
equally important messages. If messages have priorities,
however, this approach (with FIFO queueing) will result in
very poor performance for the high priority messages.

Interrupts are also disabled during memory operations
affecting the address space of a process, during interpro-
cess communication (IPC), and during some systems calls
such as I/O primitives. In these cases, disabling interrupts
is a fast, simple form of mutual exclusion for system activ-
ities. But again, priority inversion will occur if low priority
activities disable interrupts for long periods of time.

Critical regions in user programs are generally protected
by semaphores or some other synchronization mechanism.
These have a lesser impact on overall system performance,
but the non-preemptible nature of such critical regions has
implications among the synchronizing activities. For ex-
ample, high priority and low priority activities might share
a database, and the scheduling of transactions performed
on that database becomes very important from the perspec-
tive of the high priority job. Among user programs, the
duration of the critical region may vary widely, depending
on the specific application.

1.3 Reducing the Size of Critical Regions

There are many incentives for reducing the size of the
critical regions. In time-sharing systems, the critical re-
gions where interrupts are disabled are kept as small as
(conveniently) possible so as to avoid the loss of data com-
ing in on external devices. Allowing the device interrupt
handler to at least buffer the data will save the data from be-
ing lost. In real-time systems, the maximum critical region
is carefully bounded so that the response time to external
interrupts can be bounded [2]. For example, the scheduler
in iRMX uses additional data structures and software lock-
ing to avoid disabling interrupts for long periods of time
when manipulating internal lists of arbitrary length [12].

Other incentives for increased preemptibility (or, equiv-
alently, the reduction of the size of critical regions) are
derived from scheduling theory. The rate monotonic prior-

ity assignment for scheduling periodic activities depends on
the complete preemptibility of the task set [9]. Extensions
to this theory for allowing critical sections with bounded
execution times show a reduction in real-time performance
guarantees (based on a worst-case analysis) [13, 14]. This
degradation increases with increases in critical region size.

1.4 Preemptibility and Packet Multiplexing

Packet switching communications systems derive much
of their appeal from the efficiency of multiplexing several
bursty data streams. If the size of packet is very large,
other packets will be delayed while waiting for the non-
preemptible handling of the large packet. The effect of
allowing large packets is that the average response time
is increased. For this reason, packets are often restricted
in size [15]. This reasoning does not take into account,
however, the case where priorities are associated with the
packets. The question of whether a long, high priority
packet should have the power to increase the average re-
sponse time of all the packets still remains. The problems
encountered with large packets also appear in the context
of multimedia communication systems. For example, a
network which is multiplexing voice packets, interactive
data, and bulk data messages may suffer from the non-
preemptibility of long facsimile transmission [3]. In the
scheduling of multimedia operating systems, the reduction
of critical region size is important as well.

1.5 Preemptibility and Queueing Analysis

The idea of priority queueing has been around for quite
some time, and preemption is commonly associated with
prioritized service. Queueing theory models typically treat
the following types of service: non-preemptive, preempt-
resume, and preempt-restart [7]. But these models are
greatly simplified compared to actual operating systems.
Most operating systems allow for some form of preemp-
tion, but no operating system provides a fully preemptible
environment. More detailed models are needed to more
precisely evaluate the importance of preemptibility in mod-
ern operating systems.

2 Modeling Critical Regions

In multimedia operating systems, preemptibility and
response time are much more important than in time-
sharing systems. Time-sharing systems tend to sacrifice
predictability and response time for average throughput.
Commercial real-time systems, on the other hand, sacri-
fice higher-level services for fast interrupt response time.
We want to find a middle ground where the advantages

2



of preemptibility are realized and where the level of so-
phistication of the services is comparable to workstation
operating systems. The problem is one of evaluating de-
sign alternatives to determine the level of preemptibility
that is most appropriate for the application domain.

2.1 Non-Preemptive and Preemptive Queueing
Models

Common queueing models do not reflect the various
preemptibility characteristics that appear in actual operat-
ing systems, although queueing theory results do provide
some general insight. To demonstrate the limitations of
queueing models for evaluating preemptibility character-
istics, we consider a simple system with 2 tasks. One
is a high-priority task that is meant to be periodic like a
multimedia data stream, and the other is a low priority
task corresponding to background activity in the system.
Both tasks have a Poisson arrival process and deterministic
(constant) service time. Their parameters are given in the
following table.

Task 1=� s Description�1 40 ms 1 ms high priority task�2 var ms 10 ms low priority task

The column labeled 1=� gives the average interarrival
time for each arrival process. The interarrival time of �2

is variable and is computed given a target load, and we
evaluate the average response time of the tasks for various
loads.

We use the queueing theory results presented in [1] to
evaluate the average response time of these tasks under
three different system configurations:� M/D/1 with a FIFO queueing discipline and a non-

preemptible server,� M/D/1 with a priority queueing discipline and a non-
preemptible server, and� M/D/1 with a priority queueing discipline and a pre-
emptible server.

In Figure 1, we show the results for the case using FIFO
queueing with a non-preemptible server. The tasks are
divided into 2 classes which have different parameters for
the arrival process and service time, but the service policy
is FCFS without regard for the class. The load is the total
utilization of the server; the load varies with the average
interarrival time of the low priority task. We see that, under
high load, the high-priority�1 gets caught in the queue with
the lower priority activity and suffers in terms of response
time.

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 1: M/D/1, Classes, FIFO Queueing

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 2: M/D/1, Non-Preemptive Priority Queueing

If the classes are serviced based on their priority, we can
expect much better results from the high priority activities.
Figure 2 shows the results for priority queueing with a non-
preemptible server. In this case, the entire computation of
the low priority activity is a critical region, and the high
priority activity suffers only from this effect. �1 no longer
suffers from FIFO queueing delays as in the previous case.

If the service were preemptible, we would expect an
improved response time in the high priority activity. With
perfect preemptibility (i.e. no critical regions) and the
simplifying assumption that there is no cost in preemption,
we get the results in Figure 3. This is the case with priority
queueing and a preemptible service.

A major problem with these analyses is that real tasks
in a real system are never completely non-preemptible or
completely preemptible. Most tasks are composed of some

3



0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 3: M/D/1, Preemptive Priority Queueing

sections of code which are preemptible and others which
are non-preemptible. Our goal is to develop a model to
evaluate the performance of tasks in this middle ground.

An additional problem with queueing models is that the
usual arrival processes and service time distributions are
not necessarily representative of workload on networked
personal workstations. This is particularly true when mul-
timedia applications are considered. We expect that the
computational load on multimedia workstations will con-
sist of a small number of periodicactivities (such as audio or
compressed video data streams) along with the usual mix of
network file transfer activity, compilation, text formating,
etc.

2.2 A Queueing Model with Critical Regions

We have developed a model which allows us to evaluate
the importance of preemptibility and critical region size
in the context of task sets which might be characteristic
of multimedia workstations. The model approximates the
queueing system of interest. We assume that� there is a small number of periodic tasks concerned

with audio or video data streams,� the periods are synchronized, i.e. the phase offset is
zero (this is a worst case assumption),� the computation time for these tasks is fixed and the
computation is preemptible (this assumption frees us
from the tedious analysis of interactions between pe-
riodic tasks when the primary focus is the interaction
of periodic tasks with the background load),� the periodic tasks’ busy period is shorter than the
smallest period,

� only one background arrival process is present; the
computation time of the background activities may
contain one or more preemptible regions and non-
preemptive critical regions, and� the background arrival process is Poisson with deter-
ministic service time.

Suppose we have a task set �1; �2; � � � ; �n where the tasks�1; �2; � � � ; �n�1 are periodic and �n describes the back-
ground arrival process. For a periodic task, �i, we denote
the period by Ti and the computation time by Ci. The back-
ground activity has a Poisson arrival process with the mean
interarrival time of Tn and a deterministic service time, Cn.
The critical regions in the computation time of the back-
ground activity are specified by Sn;k which is the duration
of the kth segment of computation. These segments of
computation may be preemptible or non-preemptible. We
denote the set of preemptible segments by Pn and the set
of non-preemptible segments by Nn. We assume that peri-
odic tasks are in order of increasing period, that priorities
are assigned in rate monotonic fashion, and that Tn�1 < Tn.

The model predicts the average response time for each
priority class. The response time for a task, �i, has four
components:

1. the task’s computation time (Ci),

2. delay due to higher priority tasks (Di;>),

3. delay due to equal priority tasks (Di;=), and

4. delay due to lower priority tasks (Di;<).

For periodic tasks, the delay due to lower priority tasks does
not include any component from lower priority periodic
tasks since the periodic tasks are all preemptible. Thus for
periodic tasks, the delay due to lower priority tasks comes
only from the background activity.

For a periodic task �i, we compute the delay due to higher
priority tasks (Di;>) by calculating the number of times
each higher priority task will have an arrival that coincides
with the arrival of the current task. When the arrivals are
coincident, �i will be delayed; other interference is avoided
due to the assumption that the periodic tasks’ busy period
is smaller than the smallest period. The delay due to higher
priority tasks is given by

Di;> =
X

j:Tj<Ti

Cj
Ti

lcm(Tj;Ti)
: (1)

where lcm is the least common multiple.
The delay due to tasks of the same priority is based on

the assumption that the tasks are synchronized. We make
the assumption that �i will have to wait for other tasks of

4



Time

Delay

S

Tn

n,k

S
n,k

Figure 4: Delay Suffered by Higher Priority Arrival

equal period that fall before it in the (arbitrary) priority
ordering. The delay due to equal priority tasks is

Di;= =
X

j:Tj=Ti^j<i

Cj: (2)

The delay due to lower priority tasks depends only on the
background activity. We take the sum of expected delay due
to all critical regions in the low priority task. The expected
delay due to a critical region Sn;k is calculated by integrating
the delay suffered by a high priority activity contending
with the critical region during the expected interarrival time
of the critical region. Figure 4 shows the shape of the
function of delay due to the critical region. During the
critical region, the delay suffered by a higher priority task
decreases linearly; if the higher priority task arrives during
time that the critical region is not running, the delay is zero.
The expected delay due to lower priority tasks is computed
as follows:

Di;< =
X

Sn;k2Nn

S2
n;k

2Tn
: (3)

The delay due to other periodic activities cannot be ne-
gotiated in general, and the design decisions of interest will
revolve around the size and number of the critical regions
in the background activity. So the total delay suffered by
periodic task �i is then:

Di = Di;> + Di;= + Di;<: (4)

Adding the computation time for �i to Di would then give
us the total response time.

We use a rough estimate for the delay experienced by the
background task since this measure is not a primary focus
of this study. This delay is calculated using the M/D/1
result for queueing delay along with a degradation factor
that slows down the execution of the low priority activity
based on the periodic task load. We calculate the queueing
delay as

Dn;q = (1 + �p)
�nCn

2(1� �n)
: (5)

where �p is the utilization of the periodic tasks and �n is the
utilization of the background task. We can then compute

the total delay as the sum of the queueing delay and the
computation time (degraded based on the periodic load).

Dn = Dn;q + Cn(1 + �p): (6)

We are now in a position to analyze the simple task set
described above for cases where the low priority activity is
composed of one or more critical sections. This analysis
will, for example, indicate whether reprogramming the low
priority activity to yield at one or more preemption points
will have a significant impact on the response time of the
high priority activity.

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 5: Limited Preemption, Priority Queueing (1 Large
Critical Region)

Figure 5 shows results of this model for the case where
the low priority task consists of a single critical region that
lasts for the entire computation time. This case is identi-
cal to the non-preemptive priority queueing case shown in
Figure 3, and the results are the same.

We now consider what would happen if the critical re-
gion were divided into two critical regions, each half the
size of the original. In other words, we consider the effect
of inserting a preemption point in the middle of the com-
putation. Figure 6 shows that the average response time of
the high priority task still increases linearly with the load.
But with the critical region divided into two parts, the slope
of the line is smaller.

A further decrease in the size of the critical regions (with
resulting increase in the number of smaller regions) results
in even smaller average response times for a given load,
as shown in Figure 7. In this case, the critical region was
divided into five equal parts.

In the next section, we summarize some of the implica-
tions of this model.

5



0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 6: Limited Preemption, Priority Queueing (2
Smaller Critical Regions)

3 Implications of the Model

This model gives us a framework in which to think about
the effects of critical regions on the performance of tasks in
a soft real-time operating system. We will discuss several
observations about the model:� delay due to fixed-size critical regions in the back-

ground activity increases linearly with the background
load (in this case only Tn varies as the load increases),� delay due to the kth critical region scales linearly with
Sn;k (with constant load across the variation),� dividing a single critical region into 2 equal parts re-
duces the expected delay due to that critical region by
a factor of 2,� more generally, dividing a single critical region into m
equal parts reduces the delay due to that critical region
by a factor of m, and� dividing a single critical region into 2 equal parts re-
sults in a minimal delay compared with division into
2 unequal parts.

In the following paragraphs, we will explore these impli-
cations in more detail.

Delay due to fixed-size critical regions in the background
activity increases linearly with the background load. This
property is evident in Figures 5-7. We can observe this
from (3) in the previous section. The delay due to the kth

critical region is:
S2

n;k
2Tn

: (7)

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 7: Limited Preemption, Priority Queueing (5
Smaller Critical Regions)

We consider the effect of an increasing load when the crit-
ical region size remains the same, i.e. Sn;k is constant. If
the load is increasing, then Tn is decreasing. We note that
Sn;k=Tn is the contribution of the kth critical region to the
load, denoted �n;k. So we can re-write (7) as

Sn;k�n;k
2

: (8)

From this expression, it is clear that as �n;k increases, the
delay term will increase linearly.

Delay due to the kth critical region scales linearly with
Sn;k (with constant load across the variation). It is clear
from (8) above that when �n;k is constant and Sn;k varies, the
corresponding delay term increases linearly with increases
in Sn;k.

Dividing a single critical region into 2 equal parts re-
duces the expected delay due to that critical region by a
factor of 2. Suppose we have a critical region Sn;k. The
delay term for that critical region is S2

n;k=2Tn. If we split
the critical region into two parts, each of duration Sn;k=2,
the delay term becomes�

Sn;k

2

�2

2Tn
+

�
Sn;k

2

�2

2Tn
=

S2
n;k

4Tn
=

1
2

 
S2

n;k
2Tn

! : (9)

And from this we see that the delay term smaller than the
original delay term by a factor of 2.

Dividing a single critical region into m equal parts re-
duces the delay due to that critical region by a factor of m.
By extending (9), we can see that if the critical region is

6



divided into m equal parts, the delay term becomes�
Sn;k

m

�2

2Tn
+ � � � + � Sn;k

m

�2

2Tn
= m

1
m2

S2
n;k

2Tn
=

1
m

 
S2

n;k
2Tn

! : (10)

So the expected delay term is a factor of m smaller than
the original delay term. We can also see from this equation
that if we consider the limit as m goes to1, the delay goes
to zero. This indicates that the background task is fully
preemptible.

lim
m !1 1

m

 
S2

n;k
2Tn

!
= 0: (11)

Dividinga single critical region into 2 equal parts results
in a minimal delay compared with division into 2 unequal
parts. To illustrate this, we consider the case where a
single critical region of duration Sn;k is divided into two
parts: �Sn;k and (1� �)Sn;k. The delay term is then

(�Sn;k)2

2Tn
+

[(1� �)Sn;k]2

2Tn
= [�2 +(1��)2]

 
S2

n;k
2Tn

! : (12)

And the expression [�2 + (1 � �)2] is minimized when� = 1=2. So the delay term is minimized when the critical
region is divided into 2 equal parts.

4 Application of the Model

In this section, we illustrate the use of this model in
analyzing the performance in two areas: packet length in
networks and protocol processing software.

4.1 Modeling Packet Length Effects

The packet length allowed by a network protocol deter-
mines the multiplexing characteristics of the network [15].
A small packet length will allow fine-grain multiplexing,
ensuring fairness in a time-sharing system and promoting
proper prioritized handling in protocols with priority infor-
mation. A large packet length will allow a single activity
to monopolize the network resources.

Limitations on packet length are particularly impor-
tant in a system which integrates different types of time-
constrained and non-time-constrained traffic. For example,
mixing voice packets, interactive and bulk data, and fac-
simile packets on a single network can give rise to delay
problems, especially where the voice packets are concerned
[3]. In this section, we consider the delay characteristics of
small high-priority voice packets which contend with large
bulk data packets. And we compare the performance in

that case to the situation where the packet size is limited.
Arguments along these lines are the motivation for the short
packet length in ATM networks where the cell (or packet)
size is fixed at 53 bytes [15].

Phone-quality voice data consists of 8-bit samples with
a sampling rate is 8000Hz. This generates 64kbps. A
typical packetization time is about 50ms [3], so the voice
packet size is 400 bytes. On a 100Mbps local area network
medium, the voice packet stays on the medium for 32 �s.
If we take the bulk data packet size to be 4500 bytes, a
data packets stays on the medium for 360 �s. We now
construct a task set with one voice task as defined above
and a background data task with a variable period (to vary
the load), and we consider the delay characteristics within
a local area network. The specification is as follows.

Task 1=� s Description�1 50 ms .032 ms voice task�2 var ms .360 ms bulk data task

Figure 8 shows the result from this task set. The voice
packet delay increases significantly as the load increases.
At high loads, the delay is about 4 times the delay at low
load.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 8: Voice/Data with Long Packets

We now consider the case where the maximum packet
length is on the order of the voice packet length. With a
maximum packet size of 400 bytes, no packet stays on the
network medium for more than 32 �s. Again we vary the
period of the background activity to vary the load. The
revised specification is:

Task 1=� s Description�1 50 ms .032 ms voice task�2 var ms .032 ms bulk data task

7



In Figure 9, we can see the improvement in the response
time of voice packets. The response time is almost constant
while the load increases. The result is that even at high load,
the voice packets are able to bypass the background bulk
data activity.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Task 1
Task 2

Figure 9: Voice/Data with Short Packets

This comparison provides an illustration of the reason-
ing behind the choice for 53-bytes fixed-size cells in ATM
[15]. The small packet size is particularly important in the
context of a Wide Area Network (WAN) where there may
be many gateways and links between communicating end-
points. If low priority contention at each resource delayed
the packet significantly, the sum of delay at all resources
would accumulate very quickly.

4.2 Modeling Preemptibility in Protocol Software

Many network operating systems use non-preemptive
protocol processing engines where the processing for each
packet is a single critical section (to simplify coding and
stream-line execution). The value of priority queueing
and preemptibility in the protocol processing software of
a distributed operating system was explored by means of
simulation in [10]. This study considered the performance
of several protocol processing techniques in terms of aver-
age response time, variance in response time, and priority
inverted utilization. In this section, we will illustrate the
use of this model in analyzing contention for protocol pro-
cessing resources, including processor cycles. The current
analysis is only in terms of average response time as pre-
dicted by the model.

We use the task set of [10] which specifies the arrival of
packets to the protocol processing software. The following
describes the task set which differs from the original task
set in the arrival process of the background traffic. In the

original task set, we use a deterministic arrival process to
generate spikes of contention. In the current model, we use
a Poisson arrival process for the background activity.

Task 1=� s Description�1 20 ms 1 ms high priority task�2 20 ms 1 ms high priority task�3 40 ms 1 ms medium priority task�4 var ms 1 ms low priority task

The protocol processing software architectures that we
will evaluate are described in more detail in [10]. Briefly,
they are:� T1P – The T1P structure uses a single thread to process

packets, but the packets are queued in priority order.
The service is non-preemptible since there is only one
thread.� TnP – This approach uses n threads to provide pre-
emptible service to packets which are queued in pri-
ority order 1. The number n is the number of packet
priority levels.

And we also consider two additional techniques that fall
between the T1P and TnP techniques. T1P is completely
non-preemptible, and TnP is completely preemptible. We
want to consider techniques with limited preemption:� T1S2P – This refers to the single-threaded approach

with 2 critical regions (instead of 1 large critical re-
gion). Queueing is in priority order.� T1S4P – In this approach, we have 4 critical regions
instead of 2. Queueing is again in priority order.

Figure 10 shows the case where the protocol processing
service is non-preemptible. The curve labeled “Task 1&2”
is the average of the response times of the two high priority
tasks. And the curves for Task 3 and Task 4 are labeled
accordingly. In this case, the interference due to lower
priority traffic is quite small. The average response time
curve for �1 and �2 is at 1.5 ms for 20% load and only
increases to about 2 ms at 100% load. The fact that the
critical region size of the low priority background traffic is
the same as the computation time for the high priority tasks
means that the average interference will be limited.

For comparison, Figure 11 shows the case where the
high priority tasks’ average response time is almost con-
stant. This case is approximated using the model with the
background activity split into 10 critical regions with possi-
ble preemption points between each one. Using 10 critical
regions yields relatively high preemptibility.

1The use of threads for protocol processing does not imply preemptive
service, e.g. the x-kernel [5, 11] assigns a thread to each packet, but the
protocol processing in the threads is still non-preemptive.

8



0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Tasks 1&2
Task 3
Task 4

Figure 10: Protocol Processing, T1P

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Tasks 1&2
Task 3
Task 4

Figure 11: Protocol Processing, TnP

In Figure 12, we show the effect of splitting the critical
region of the background task in 2 parts. This gives us a
slight improvement over the case where we have a single
critical region. Figure 13 shows the result when the critical
region of the background task consists of 4 parts. Again,
the high priority tasks’ average response time is almost
constant.

From this analysis, we can conclude that using priority
queueing in the protocol processing software goes a long
way toward improving the response time of high priority
activities. However, if the computation times of the low pri-
ority tasks are on the order of the computation times of the
high priority tasks, the additional benefits of preemptibility
are limited. This is in contrast to the case where the low
priority tasks have a large computation time compared with
the high priority tasks, as was the case in the examples in

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Tasks 1&2
Task 3
Task 4

Figure 12: Protocol Processing, T1S2P

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e 
T

im
e

Load

Tasks 1&2
Task 3
Task 4

Figure 13: Protocol Processing, T1S4P

Section 2.2 and in Section 4.1. Under those conditions,
preemptibility is a much more important factor.

5 Discussion

The model described in this paper provides an initial
assessment of the effects of preemptibility in soft real-time
systems. However, an important factor has been left out.
Preemptibility is not free in real systems; there is a context
switch cost for each preemption. A more complete model
would incorporate the cost of context switching and would
providea means to compare the response time improvement
from the preemptibility and the utilization degradation due
to the additionaloverhead ofcontext switching. The current
study provides a basis for future investigation in this area.

9



While this model does, in some sense, reflect a more de-
tailed view of the system, the difficulty in finding a suitable
arrival process to represent traffic in a real system limits
the ability of this model to produce results that directly
predict the performance of the system. This objective of
this work is to provide a means to study the value of pre-
emptibility in a general sense. In particular, we recognize
that common scheduling techniques and software structur-
ing methodologies work well in most cases. The problem
in a time-constrained system is that occasional performance
anomalies cannot be tolerated, at least in the high priority
traffic. So we want to provide a means to evaluate the
performance of particular scheduling policies and software
structures under the stress of transient overload.

A better traffic arrival specification that exhibits the
bursty behavior that gives rise to transient overloads would
improve the usefulness of the model. Recently, some at-
tempts have been made to characterize and model network
traffic [4, 6], but it is impossible to characterize the traffic
on a multimedia network without much more experience in
the operation of such networks.

6 Conclusion

The importance of preemptibility in soft real-time oper-
ating systems is clear, and the model described in this paper
provides some insight into the performance differences in
systems which are highly preemptible vs. systems which
are lazy with regard to preemptibility. The model fills the
void in traditional queueing systems between completely
preemptible and completely non-preemptible servers by
providing a method to analyze the behavior of servers
which have limited preemptibility. Several implications
of the model are discussed, and the usefulness of the model
in evaluating design tradeoffs is demonstrated using two
example application areas.

References

[1] A. O. Allen. Probability, Statistics, and Queueing
Theory. Academic Press, Boston, MA, 2nd edition,
1990.

[2] D. R. Cheriton, M. A. Malcolm, L. S. Melen, and
G. R. Sager. Thoth, a Portable Real-Time Operating
System. CACM, 22(2):105–115, February 1979.

[3] S. S. Gaitonde, D. W. Jacobson, and A. V. Pohm.
Bounding Delay on a Multifarious Token Ring Net-
work. CACM, 33(1):20–28, January 1990.

[4] R. Gusella. A Measurement Study of Diskless Work-
station Traffic on an Ethernet. IEEE Transactions
on Communications, 38(9):1557–1568, September
1990.

[5] N. C. Hutchinson and L. L. Peterson. The x-Kernel:
An Architecture for Implementing Network Proto-
cols. IEEE Transactions on Software Engineering,
17(1):64–76, January 1991.

[6] R. Jain and S. A. Routhier. Packet Trains – Mea-
surements and a New Model for Computer Network
Traffic. IEEE Journal on Selected Areas in Commu-
nications, 4(6):986–995, September 1986.

[7] L. Kleinrock. Queueing Systems, Vol. 2: Computer
Applications. Wiley Interscience, 1976.

[8] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley,
1989.

[9] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real Time Environ-
ment. JACM, 20(1):46–61, 1973.

[10] C. W. Mercer and H. Tokuda. An Evaluation of Prior-
ity Consistency in Protocol Architectures. In Proceed-
ings of the IEEE 16th Conference on Local Computer
Networks, pages 386–398, October 1991.

[11] S. O’Malley. Private communication.

[12] T. G. Saponas and R. B. Demuth. The Distributed
iRMX Operating System: A Real-Time Distributed
System. In A. K. Agrawala, K. D. Gordon, and
P. Hwang, editors, Mission Critical Operating Sys-
tems, chapter 16, pages 208–231. IOS Press, Amster-
dam, 1992.

[13] L. Sha and J. B. Goodenough. Real-Time Scheduling
Theory and Ada. IEEE Computer, 23(4):53–62, April
1990.

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers,
39(9):1175–1185, September 1990.

[15] F. Tobagi. Fast Packet Switch Architectures For
Broadband Integrated Services Digital Networks.
Proceedings of the IEEE, 78(1):133–167, January
1990.

10


