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Abstract

Real-time operating systems have evolved over the years
from being simple executives using cyclic scheduling to
the current feature-rich operating environments. The stan-
dardization of POSIX 1003.1, ISO/IEC 9945-1 (real-time
extensions to POSIX) has contributed significantly to this
evolution, however, the specification leaves plenty of room
for individual implementations to both interpret and spe-
cialize their RTOSs. Accordingly, there has been a pro-
liferation of both commercial and free RTOSs, notably, the
�ITRON OS, the OSEK-VDX OS specification, commercial
RTOSs like VxWorks, VRTX, LynxOS, OSE and QNX, and
free RTOSs like RT-Linux (RTAI), and Windows CE.The
goal of the work reported in this paper is to draw the
real-time systems practitioner and researcher’s attention
to these choices and bring out the similarities and differ-
ences among them. Work is underway to, install, test and
benchmark the aforementioned OSs to draw a more objec-
tive assessment.

1 Introduction

The primary role of an operating system (OS) is to man-
age resources so as to meet the demands of target applica-
tions. Traditional timesharing operating systems target ap-
plication environments, that demandfairnessandhigh re-
source utilization. Real-time applications on the other hand
demandtimelinessand predictability , and the operating
systems targeting these applications meet these demands
by paying special attention to a host of OS features like: (i)
Multitasking (ii) Synchronization (iii) Interrupt and Event
Handling (iv) Input/Output (v) Inter-task Communication
(vi) Timers and Clocks (vii) Memory Management.

The design of a real-time operating system (RTOS) is
essentially a balance between providing a reasonably rich
feature set for application development and deployment
and, not sacrificing predictability and timeliness. In ad-
dition to timeliness and predictability some other desir-
able characteristics have been identified in the various stan-
dards [10, 7, 6] specifications. In this paper, we attempt
to demonstrate that the various RTOSs implementing these
standards, differ in their implementation choices and strate-
gies. This demonstration should allow a practitioner to
choose the right RTOS for a particular application.

The specific real-time operating systems that are con-
sidered in this paper are:LynxOS: A UNIX-compatible,
POSIX-conformant real-time operating system for embed-

ded applications from Lynx Real-Time Systems Inc. It is
scalable, fully re-entrant, preemptible, and ROMable [2].
�ITRON : An open RTOS specification for embedded sys-
tems resulting from the TRON (TheReal-TimeOperating
SystemNucleus) project. Participant companies that have
implemented the specification include, Fujitsu, Hitachi,
Mitsubhishi, Miyazaki, Morson, Erg Co., Firmware Sys-
tems, NEC, Sony Corp., Three Ace Computer Corp., and
Toshiba [10].
OSE: A commercial RTOS from Enea Data Systems that
boasts to have bridged the gap between applications and the
kernel by providing a rich set of features inside the kernel.
It’s message based architecture allows for efficient IPC and
synchronization [5].
OSEK-VDX : The “Open Systems in Automotive Net-
works” RTOS specification that has been adopted by the
following organizations in their embedded systems: Adam
Opel AG, BMW AG,DaimlerChrysler AG, University of
Karlsruhe - IIIT, PSA, Renault SA, Robert Bosch GmbH,
Siemens AG, Volkswagen AG [6].
QNX: A real-time, extensible POSIX compliant OS with a
lean micro-kernel and a team of optional cooperating pro-
cesses. [9].
RTAI : It evolved from NMTRTLinux (New Mexico Insti-
tute of Technology’s Real-Time Linux), and takes a unique
approach of running Linux as a task (lowest priority) that
competes with other real-time tasks for the CPU [3].
VRTX : A highly reliable RTOS from Mentor Graphics
that is the first to be certified under the US FAA’s strin-
gent RTCA/DO-178B level A standard for mission-critical
aerospace systems. It is based on a Nanokernel running on
top of a Hardware Abstraction Layer to provide fast and
predictable response [11].
VxWorks : The most popular (and complete) commercial
RTOS (from Wind River Systems) in the embedded indus-
try with ports for virtually all CPUs in the market [12].
Windows CE: Microsoft’s embedded operating system for
handheld PCs and small embedded processors. Though
it’s current version (2.0) does not really qualify as an
RTOS, both feature-wise and performance-wise, Microsoft
promises to fix these shortcomings in version 3.0 [13].

The above list is in no way exhaustive but is a reasonable
subset of more than 50 commercial, academic (research-
based) and free RTOSs currently available. We have not
included several excellent academic RTOSs which have
been very well reviewed in [4]. Further, we only picked
one of several (Lineo, ecos, Lynx Bluecat etc.) new RTOS
derivatives of the Linux operating system. We refer to the



POSIX standard extensively in this paper. The POSIX stan-
dards related to real-time OS’s (already ratified) consist of:
1003.1 for OS, process, filesystem and device API, 1003.2
for utilities, 1003.1b for real-time, and 1003.1c for threads.
POSIX 1003.1d, which defines additional real-time exten-
sions is not yet ratified.

The rest of the paper is organized as follows: Section 2
presents the motivation behind the study and reviews some
related studies. In Section 3, several desirable characteris-
tics of an RTOS are discussed in turn with a comparison
of how the various RTOSs meet these desirables. We com-
pare the performance of the various RTOSs in Section 4
with conclusions and future work in Section 5.

2 Motivation

A recent survey conducted by ITRON [10], among
Japanese real-time systems developers showed (refer to
Figure 1 in [10]) that one of the major concerns was the
lack of personnel familiar with real-time systems (and em-
bedded systems) technology. One major factor that is con-
tributing to this is the lack of a common standard and the
abundance of incompatible real-time operating systems in
the market, each targeted towards a specific segment of the
industry. There is a need therefore to draw the similarities
and differences between these operating systems, so that a
real-time system developer can make an intelligent choice
for the application at hand.

Another related survey conducted by the TRON associa-
tion reported that among Japanese companies using RTOSs
for embedded systems, on an average 30-40% of them use
an RTOS based on the ITRON specification. Other com-
mercial OSs together amount to less than 30%, with the
rest using either in-house RTOSs or no OS at all. It is inter-
esting to note that very few American (Tandem Computers
is one of select few) and European companies use RTOSs
based on the ITRON specification. In particular the Au-
tomotive industry in Europe has adopted the OSEK RTOS
[6] specification, while the rest of the world RTOS mar-
ket is split between popular commercial OSs like LynxOS,
QNX, VRTX and VxWorks.

Another motivation for the work reported in this paper
is the lack of such information in the public domain. The
only known source of such (Evaluation of RTOSs) infor-
mation is through the Real-Time Consult (RTC) group1

which charges a price that is only affordable by large cor-
porations. It is the understanding of this author that the
RTC report goes into finer details of RTOS performance
perhaps at the level described by the Annex G of the POSIX
1003.1 standard. While, this is the eventual goal of our
project, we have already made some progress in this direc-
tion to share the results with the academic community.

3 RTOS Feature Comparison

Figure 1 gives a functional diagram of an RTOS with its
various components. The following discussion delves into
these components, and their desirable functionality.

The main components in the functional diagram are the
hardware and the kernel of the RTOS running on top of it

1http://www.realtime-consult.com
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Figure 1. Real-Time Operating System: A
Functional Diagram)

and servicing tasks and interrupts that comprise the real-
time application. The OS has to provide, (i) task man-
agement (scheduling, dispatching, creation and termination
of tasks etc.), (ii) synchronization (for resource sharing)
(iii) interrupt handling (manipulate and monitor the inter-
rupt descriptor table-IDT) to service hardware interrupts
(iv) memory management (virtual memory and dynamic
memory allocation) (v) programmable clocks and timers,
and (vi) inter-task communication (sockets, pipes, FIFO,
shared memory etc.). The following sub-sections will de-
scribe the desirable functionality from each of these com-
ponents and how the various RTOSs compare.

Multitasking
It is essential for an RTOS to clearly distinguish between
schedulableandnon-schedulableentities. Schedulable en-
tities are typically characterized by a context (a control
block) and can make explicit requests for resources (CPU,
memory, I/O), further they are scheduled by ascheduler.
The scheduler itself and such entities like interrupt han-
dlers, and most system calls are non-schedulable by na-
ture. Often they are characterized by the fact that they can
execute continuously, periodically or in response to events.
Further, their use of the CPU is implicit.

Multi-tasking involves fast switching between tasks al-
lowing multiple tasks to be in a state of execution yet only
one task is executing at any instant. A RTOS must provide
(at a minimum) a multi-tasking mechanism that is priority-
based and preemptive in nature. It should provide sufficient
number of priority levels to be of practical use. For exam-
ple Windows CE provides only 8 priority levels making it
rather impractical for use in a majority of real-time scenar-
ios. All of the reviewed RTOSs support a priority-based

OSE OSEK-VDX LynxOS �ITRON

Prio. Sched. Preemptive Non-Preemptive Fixed. Prio. Fixed. Prio.
and Cyclic and Preemptive Preemptive Preemptive

Same-level Sched. RR FCFS RR/Quantum/FCFS FCFS
Threaded Single Single Multi Single
Priority Levels 32 � 8 256 + 3 � 256 –

QNX RTAI VRTX VxWorks Win-CE

Fixed. Prio. Fixed. Prio. Fixed. Prio. Fixed. Prio. Fixed. Prio.
Preemptive Preemptive Preemptive Preemptive Preemptive
RR/Adaptive FCFS RR RR RR (1-7) FCFS (0)
Single Single Single Single Single

32 230 256 256 8

Table 1. Multi-Tasking and Scheduling
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preemptive scheduling mechanism with OSE and OSEK
providing cyclic and non-preemptive scheduling in addi-
tion (see Table 1). A typical number of priority levels suffi-
cient for most real-time applications is 32, however VRTX
and VxWorks have 256 levels and LynxOS has 256 prior-
ity levels with another 256 levels each for the RR, Quantum
and FCFS schedulers. RTAI allows for230 potential prior-
ity levels with Linux operating at priority level231. OSEK
being a specification (with several implementations), re-
quires that any implementation provide at least 8 priority
levels (�ITRON does not specify any such limit). Lastly,
Windows CE as its major shortcoming provides only 8 pri-
ority levels.
Synchronization
Synchronization is necessary for real-time tasks to share
mutually exclusive resources (devices, memory areas,
buffers etc.), which is also needed for implementing task-
dependence (execute statementx in taskB after task state-
menty in taskA). Traditional solutions using semaphores
(and related constructs like monitors, critical regions) can
result in unbounded priority inversion. Priority inversion
is said to occur when a higher priority task is temporarily
forced to wait for a lower priority task. Such inversion of
priority can go unbounded when medium priority tasks pre-
empt the lower priority task (due to lack of resource con-
flicts).

Classical solutions to the problem are the simpleprior-
ity inheritance protocol(PIP) and the complexpriority ceil-
ing protocol(PCP) (popularly implemented as the highest
locker protocol(HLP)). Both protocols prevent unbounded
priority inversion where PCP provides a better (lower)
bound at a higher cost (implementation-wise). It is de-
sirable therefore that an RTOS provide at least PIP. Table
2 gives the synchronization mechanisms provided by the
various RTOSs. While a majority of the RTOSs support

OSE OSEK-VDX LynxOS �ITRON

Constructs Signals(with buffers) Semaphores Semaphores Semaphores
1 fast Sem Events Cond. Vars Event Flags
Bin Sems Preemptive Queued signals Mailboxes

Protocol None HLP PIP None

QNX RTAI VRTX VxWorks Win-CE

Semaphores Simulated Semaphores Interrupt Locks Critical Section
Message Passing with FIFOs Preemptive Locks Events
Signals Semaphores Mutexes
PIP None PIP HLP PIP

Table 2. Synchronization

semaphores, some of them have other preferred methods of
synchronization (see Table 2). For example, OSE has ex-
tensive support for signals which (unlike POSIX signals)
carry a buffer with them. Mutexes (used in Windows CE)
are similar to semaphores but less generic in that they are
used specifically to guard critical sections. RTAI does not
support semaphores, instead a programmer can use FIFOs
(file in file out) to simulate semaphores because they pro-
vide a similar functionality.
Interrupt and Event Handling
For maximum productivity (and performance) it is impor-
tant to allow application developers to, specify and write
interrupt handlers (Interrupt Service Routines -ISRs) for
Hardware Interrupts. A significant part of a embedded real-
time system development is writing device drivers, there-
fore the RTOS should provide low level control of inter-

rupts through interrupt handlers. Software interrupts like
signals (POSIX) are also desirable. OSE is the excep-

OSE OSEK-VDX LynxOS �ITRON

ISR Interrupt 3 types Preemptible Implementation
Processes of ISRs Int. Handlers specific

Signals Non-POSIX Non-POSIX POSIX None
Nested Interrupts Yes Yes Yes Yes

QNX RTAI VRTX VxWorks Win-CE

Preemptible 8259 Preemptible Special Interrupt
Int. Handlers RTHAL Int. Handlers Context Service Threads
POSIX None Queued POSIX Queued POSIX -
Yes No (queued) Yes Yes No

Table 3. Interrupt and Event Handling

tion to the rule that interrupt handlers be non-schedulable
entities (see Table 3). In OSE, interrupts are associated
with interrupt processes that are assigned high priority.
OSEK has elaborate support for interrupts (its primary tar-
get being automotive environments with numerous remote
sensors and actuators). LynxOS, QNX, VRTX and Vx-
Works provide preemptible ISRs. RTAI allows very prim-
itive interrupt handling which involves programming the
8259 interrupt controller through the RT Hardware Ab-
straction Layer. Lastly, though Windows CE supports writ-
ing ISRs (non-schedulable) the technical documentation by
Microsoft [13] describes the preferred method to be the use
interrupt service threads (IST) that run at priority level 0
(highest). Nesting of interrupts is allowed in all but RTAI
and Windows CE.
Communication
Inter process communication (IPC) in RTOSs is primarily
to exchange data on the same processor, however with an
increasing number of real-time systems taking a more dis-
tributed (networked) form of operation some RTOSs allow
process communication between processes resident on dif-
ferent processors. Popular forms of IPC include, shared
memory, message queues, pipes, FIFOs (file in file out)
and sockets. Desirable properties of IPC mechanisms in
the context of an RTOS include, provision for non-blocking
communication, bounded operation (r/w) latency and asyn-
chronous communication. All the RTOSs that provide an
IPC mechanism provide the above properties. While

OSE OSEK COM LynxOS �ITRON

Constructs Signals Messages, Msg. Queues, Mailboxes,
with buffers, Shared Mem Pipes,Sockets, Data Queues
Shared Mem Shared Mem

QNX RTAI VRTX VxWorks Win-CE

Messages, FIFOs Msg. Queues, Msg. Queues, Shared Mem
Pipes,Queues, Shared Mem Pipes,Sockets, Pipes,Sockets,
Socklets Shared Mem Shared Mem,RPC

Table 4. Inter-Process Communication

shared memory (physical addrs) is often an obvious mech-
anism for IPC it can be cumbersome and unsafe unless the
RTOS provides an API for it, which is the case with all
the studied RTOSs (see Table 4). Popular IPC mechanisms
in traditional OSs like sockets while being supported, have
been totally rewritten to provide real-time response. For
example, QNX provides a mechanism calledSockletthat
is a less memory intensive version of a traditional socket.
Though Linux itself has a rich IPC set, RTAI provides only
FIFOs which are used to communicate between real-time
tasks and also between real-time tasks and Linux tasks.
VxWorks supports RPC (remote procedure calls) for dis-
tributed system implementation.
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Timers and Clocks
All the RTOSs reviewed in this paper provide good support
for timers, time-triggered tasks and clocks. All of them al-
low access of clocks at nanosecond resolutions when sup-
ported by the hardware.
Memory Management
Most older RTOSs did not see the need for supporting
virtual memory, due to the lack of an MMU (memory
management unit) on the processor and, due to the non-
determinism introduced by it. However, most modern pro-
cessors (with the exception of small embedded processors)
come with a programmable MMU. Dynamic memory al-
location allows programming flexibility but introduces the
overhead of garbage collection. Therefore, calls tomal-
loc can block due to unavailability of memory. Several of
the RTOSs allow restricted use of dynamic memory alloca-
tion, for example (see Table 5)almost all of them disallow
dynamic memory allocation calls in interrupt service rou-
tines.

OSE OSEK-VDX LynxOS �ITRON

Virtual Memory(MMU) Segmented No Demand Paged No
Dynamic Allocation Pools/Blocks No Yes Fixed Pool

QNX RTAI VRTX VxWorks Win-CE

Yes No Yes Optional Segmented
Yes No Yes Yes Yes

Table 5. Memory Management

Providing support for virtual memory is often a very
difficult choice to make if the processor has an MMU be-
cause, not supporting VM would amount to a waste of the
MMU, while supporting it would have the downside of
non-determinism. VxWorks has dealt with this issue by
providing virtual memory as an optional add-on to the core
RTOS.

4 Performance Comparison

Several researchers and practitioners have passionately
argued [8, 1] that the oft-quoted performance metrics of
context switch latencyandinterrupt latencyare not the sole
measures of merit of an RTOS. However, almost all RTOS
publish these metrics as primary figures of merit. The
POSIX 1003.1 (optional Annex G) standard specification
goes to great lengths by elaborating a list of performance
metrics of interest in an RTOS, however, being an optional
component leaves no incentive for RTOS manufacturers to
adhere to it.

In addition to the context switch time and the interrupt
latency it is desirable to know the maximum time taken by
everysystem call. Such measures should be predictable
and independent of the current state of the operating sys-
tem. Context switch time is the delay incurred in saving
the context of the current running process and restoring
the context of the next process chosen by the dispatcher
to run. Interrupt latency is the time elapsed between the
occurrence of an interrupt and the execution of the first in-
struction of the corresponding interrupt handler. The fig-
ures reported in Table 6 have been extracted from various
sources [3, 13] of literature and therefore are incomparable
(due to the different environments under which they were

OSE LynxOS QNX

Environment M 68360 M 68030 Pentium
25 MHz 25 MHz 200 MHz

Disabled MMU,Cache
CS Lat.(�s) 136 180 2
Interrupt Latency - 13 -

RTAI VRTX VxWorks Win-CE

Pentium M 68030 M 68030 Pentium
100 MHz 25 MHz 25 MHz 200 MHz

MMU,Cache MMU,Cache
4 80 110 34.4
- 4 3 9.5

Table 6. Performance Comparison

observed). However, some inferences can be drawn from
these numbers: VRTX is a clear choice (in terms of per-
formance) in that it clearly outperforms OSE, LynxOS and
VxWorks in its context switch time and comes close to the
best in its interrupt latency. The comparison between QNX
and Windows CE shows that Windows CE needs improve-
ment which may be expected from the next version(3.0).

Note that several entries have “-”’s in them implying
unavailability of information. Further, we skipped both
OSEK-VDX and�ITRON from the table because there are
several implementations.

5 Conclusions and Future Work

In conclusion we have shown in this study that the world
of RTOSs is less chaotic than it appears on the surface.
Though only 9 RTOSs were covered in this study they are
a good representative set giving sufficient breadth to the
observations made. The performance comparison reported
gives some insight into the relative quality of these RTOSs.

We are currently continuing to investigate a few more
RTOSs of interest and have a detailed performance study
underway. The eventual goal of this study is to report per-
formance figures at the level of detail suggested in Annex
G of the POSIX 1003.1 standard.
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