
Adrian Kosmaczewski

University of Liverpool

MSc in IT, Software Engineering

The QNX Realtime
Operating System

April 4th, 2007

Contents

1 Introduction 3
1.1 About QNX . 3
1.2 Version History . 4
1.3 Pricing & Licensing . 4
1.4 Competitor Operating Systems . 4

2 Characteristics 6
2.1 Design Guidelines . 6
2.2 Architecture . 7
2.3 Process Management . 9
2.4 Resource Management . 10
2.5 Memory Management . 10
2.6 Device Management . 11
2.7 Storage Devices and File Management 11
2.8 Collaboration Between Management Areas 11

3 Support of Distribution, Networking and Object-Orientation 13
3.1 Distributed Computing . 13
3.2 Networking . 13
3.3 Object-Orientation . 14

4 Security & Protection 16

5 Conclusion 17

1

List of Figures

1.1 Photon microGUI Screenshot (Wikipedia, 2007) 5

2.1 QNX Architecture (QNX, 2007g) 7
2.2 Symmetric Multiprocessing in QNX (QNX, 2007e) 10

3.1 Distributed Computing(QNX, 2007m) 14
3.2 Supported Networking Protocols(QNX, 2007f) 15

2

Chapter 1

Introduction

This report provides an overview of the QNX operating system, highlighting its
main capabilities and scope, as well as some details about its inner mechanisms,
particularly in the five areas of management: Process, Resource, Memory, Devices
and Storage.

1.1 About QNX

QNX is a commercial, POSIX-compliant, realtime, embedded operating system,
developed by QNX Software Systems from Canada. Its development started in
1982, and its latest version1 is 6.3.2, released on September 28th, 2006 (Wikipedia,
2007).

QNX is a leading embedded operating system in several niche markets, and it is
used by many major corporations and organizations (QNX, 2007h):

• Automotive & Transportation: Cogent, BCI, JVC

• Communications: British Telecom, WorldSpace, Wavetek

• Consumer Electronics and Domotics: Epson, Teligent

• Defense & Security: Neptec, Lockheed Martin, NASA

• Industrial Automation & Control: Motorola, US Postal Service

• Medical Devices: Burdick, Siemens

QNX is a multi-purpose operating system, that can work not only as an embedded
system but also as a server or desktop operating system, as shown in figure 1.1,
showing the Photon microGUI, a desktop user interface bundled with QNX .

1At the time of writing

3

Chapter 1 / Introduction 4

NASA has trusted QNX enough to use it as the embedded operating system of
choice for its first Space Shuttle mission in 2005 after the 2003 Columbia acci-
dent:

“The LCS is a critical element of NASAs Return to Flight mission
and we have to be sure it is running on the most reliable operating
system available,” said Iain Christie, vice president of research and
development at Neptec. “Selecting the QNX Neutrino RTOS was an
easy decision because we already know that the system can handle the
extreme conditions found in space and that it meets our demands for
ultra-reliability. We will continue to use QNX technology in all of our
realtime embedded projects.” (QNX, 2005)

1.2 Version History

The following table shows the release dates of different versions of QNX (OSDP,
2007):

1981 QUNIX
1984 QNX 1.0
1987 QNX 2.0
1990 QNX 4.0
1996 QNX Neutrino 1.0 (RTP)
2001 Jan. QNX RTP 6.0, first time for private customers free of charge
2004 June QNX Neutrino 6.3.0

1.3 Pricing & Licensing

QNX 6.2 is free for private and non-commercial use, and can be freely downloaded
from the QNX Software Systems’ website. Single-processor licenses for the Profes-
sional edition of QNX are available from USD 8’000.-, and volume discounts are
available as well (OpenQNX, 2004).

1.4 Competitor Operating Systems

Among QNX competitors are VxWorks (http://www.windriver.com/), Integrity
(http://www.ghs.com/) and Nucleus RTOS (http://www.mentor.com/).

http://www.windriver.com/
http://www.ghs.com/
http://www.mentor.com/

Chapter 1 / Introduction 5

F
ig

u
re

1.
1:

P
h
ot

on
m

ic
ro

G
U

I
S
cr

ee
n
sh

ot
(W

ik
ip

ed
ia

,
20

07
)

Chapter 2

Characteristics

This chapter will provide an overview of the QNX realtime operating system,
showcasing its major features, architecture, and major management areas.

2.1 Design Guidelines

Given its extremely high requirements in terms of availability and security, QNX
has been designed with very specific guidelines in mind (QNX, 2007i):

• Embedded; QNX is designed to be used inside small hardware systems,
with strong quality and uptime requirements.

• Small footprint; QNX has extremely low requirements of memory and
disk space, making it ideal for embedded applications.

• Portable; QNX is available for a large range of different CPU architectures
(Wikipedia, 2007) such as the x86 family (Intel, AMD), MIPS, PowerPC,
SH-4, ARM, StrongARM, xScale and others.

• Message-based Microkernel; QNX is designed as a “pure” microkernel
system, with a small kernel which contains only CPU scheduling, interprocess
communication, interrupt redirection and timers.

• Secure; QNX is conceived to be one of the strongest and less vulnerable
operating systems in the market.

• Standard-compliant; QNX makes extensive use of standard and open-
source technologies, increasing its interoperability and reducing customer
lock-in:

– POSIX: QNX is POSIX-compliant (since version 4)

– OpenGL: QNX uses this portable open-source graphics library.

6

Chapter 2 / Characteristics 7

– Eclipse: the QNX developer toolkit is built around the Eclipse frame-
work & platform.

• SMP Support; QNX is able to handle and leverage the most recent mul-
tiprocessor architectures, and provides a developer toolkit to help in the
creation of SMP-compliant applications (QNX, 2007e).

• Multimedia; QNX offers advanced multimedia capabilities, making it a
strong choice in the desktop market.

2.2 Architecture

Figure 2.1 shows the microkernel architecture of QNX :

Figure 2.1: QNX Architecture (QNX, 2007g)

QNX has an “extreme” microkernel architecture: the kernel, also known as Neu-
trino in the QNX documentation, provides a small set of functionality (Ripoll,
Pisa, Gai, Lanusse, Saez & Privat, 2002):

Chapter 2 / Characteristics 8

• Thread services

• Signal services

• Message-passing services: the kernel handles routing of messages throughout
the entire system.

• Synchronization services

• Scheduling services: the kernel uses realtime scheduling algorithms.

• Timer services

• Process management services

A microkernel architecture,

“structures the operating system by removing all nonessential compo-
nents from the kernel and implementing them as system and user-level
programs. The result is a smaller kernel. There is little consensus re-
garding which services should remain in the kernel and which should be
implemented in user space. Typically, however, microkernels provide
minimal process and memory management, in addition to a communi-
cation facility.” (Silberschatz, Galvin & Gagne, 2005)

Moreover, QNX satisfies the core principles of a realtime operating system, as
specified by Silberschatz et al., (2005):

• Single purpose

• Small size

• Inexpensively mass-produced

• Specific timing requirements

All other common operating systems functions in QNX are provided by satellite
processes running in user space (QNX, 2007j); this brings great stability to the
system, since no other code than the above functions can work in Kernel mode, and
as such these services can be relaunched without crashing the kernel. This simple
yet extremely strong architecture makes QNX one of the most stable operating
systems ever designed:

“Like Windows or Linux, QNX’s program is an operating system, the
traffic cop that organizes and runs a computer’s many functions. But
this operating system is used mostly in highly specialized, realtime
industrial applications. QNX software directs “extreme” manufactur-
ing, such as guiding the flawless grinding of optical lenses–a process in

Chapter 2 / Characteristics 9

which the slightest software glitch can ruin a product worth $100,000.
It’s also used to control facilities such as nuclear power plants and
other critical installations where any software funny business could be
catastrophic.” (Bylinsky, 2003)

2.3 Process Management

QNX process management is based purely based in messaging (QNX, 2007g). Fig-
ure 2.1 shows an example of message-based collaboration among two processes (the
graphics driver and the fonts manager in this case). The kernel routes messages
using a single system call (MsgSend), which copies the message from one address
space onto the other. Messages can be passed synchronously and asynchronously;
in the case of synchronous transfers, the kernel passes the message and the control
of the CPU to the receiving process at the same time, without calling the CPU
scheduler kernel process. This kind of inter-process communication is unique to
QNX and provides high performance, since receiving processes waiting for mes-
sages do not have to wait to process them. This is one of the conditions stated by
Silberschatz et al., (2005) for realtime operating systems, since it helps reducing
latency: events are served as fast as possible by the appropriate process.

The QNX Neutrino kernel uses several scheduling algorithms (Wang, Bo Yao &
Zhu, 2001): FIFO, Round-Robin, Adaptive (which reduces the priority of processes
that already executed their time slice) & Sporadic (threads are allowed to execute
at periodic times). Periodic and priority-based scheduling are typical of real-
time operating systems (Silberschatz et al., 2005), since their timing requirements
are far stricter than “normal” operating systems. This capability makes QNX
a suitable choice for management of mission-critical equipment, where processes
must react immediately to hardware signals.

The QNX kernel also features preemptive multitasking (OSDP, 2007). QNX also
supports POSIX threads and their related system calls APIs, making it easier to
port multi-threaded applications to the QNX realtime operating system. However,
the official documentation of QNX does not explicitly specify whether QNX
features a preemptive kernel or not (specified as a conditio sine qua non by
Silberschatz et al., (2005) for a realtime operating system).

QNX supports Symmetric Multiprocessing natively since 1997 (money.cnn.com,
2007). Figure 2.2 shows the SMP architecture of the QNX operating system,
scalable up to 8 CPUs (OSDP, 2007).

Chapter 2 / Characteristics 10

Figure 2.2: Symmetric Multiprocessing in QNX (QNX, 2007e)

2.4 Resource Management

Resource management in QNX is provided through user-space processes that in-
teract with hardware or software resources (QNX, 2007c). There are no kernel-
level device drivers, which provides different advantages: ease of development and
debugging, increased isolation (a data corruption during a hardware operation
cannot affect the kernel), and ease of management (device drivers can be stopped
and started as needed by systems administrators).

2.5 Memory Management

The QNX Neutrino kernel offers a fully protected environment for applications
(Group, 2003), where processes are completely isolated from each other and from
the kernel, and no protection violation is permitted. QNX uses a complete POSIX
model for memory management, with 16 and 32-bit addressing. For new appli-
cations, 32-bit mode is recommended, while 16-bit mode is available for porting

Chapter 2 / Characteristics 11

legacy POSIX applications to the QNX operating system.

2.6 Device Management

QNX does not feature kernel device drivers, but manages devices using user-space
processes called “Device Resource Managers” (QNX, 2007k). These managers
register devices in the filesystem using “pathname-space mapping”, as referred to
in the QNX documentation (QNX, 2007c), so that they can be accessed using
POSIX-like devices, like “/dev/ser1” for example in the case of serial ports. The
processes communicate with device resource managers using the standard message-
based IPC mechanism provided by the Neutrino kernel.

2.7 Storage Devices and File Management

The QNX Neutrino kernel does not have support for file system operations; they
are implemented (as in other cases) as user-space processes, that can be started,
stopped, debugged and restarted as needed.

QNX supports a large range of different file systems, all of which run outside
from kernel space, and can coexist simultaneously (QNX, 2007a). The following
file systems are supported by QNX natively (Ripoll et al., 2002):

Embedded Disk Special Network
Flash Memory POSIX Compression NFS
RAM ext2 (Linux) Transactional Microsoft CIFS
EFTS FAT16 & FAT32 (DOS & NT)

CDROM (Joliet & ISO 9660)

2.8 Collaboration Between Management Areas

The microkernel architecture of QNX coupled with its pure messaging paradigm
provide a highly collaborative environment, where different “satellite” processes
collaborate with the kernel to provide the operating system services. This, in turn,
has many interesting outcomes for the QNX user:

• Cooperation: several file systems can coexist simultaneously in memory,
making QNX highly agnostic about the underlying support formats used

Chapter 2 / Characteristics 12

in the storage devices. Moreover, compression or encryption processes can
coexist with any file system, providing on-the-fly compression and decom-
pression, or data encryption, to provide more secure or more efficient usage
of storage systems. This “UNIX-like” pipelining architecture allows small
processes to cooperate in order to provide more complex high-level behav-
iors.

• Uptime: QNX is able to achieve high uptime rates, up to 99.999%, which
translate to about five minutes downtime per year (QNX, 2007b). This fea-
ture is called “High Availability” in the QNX documentation, and is highly
valuable in telecommunications, health services and realtime monitoring of
nuclear facilities. The microkernel architecture of QNX allows to guarantee
such uptimes, since the failure of a single satellite service does not compro-
mise the integrity of the kernel, and as such that of the whole system.

• Security: The process isolation, both in terms of memory and scheduling,
create an extremely secure environment, where the failure or the interruption
of a single process does not affect the kernel.

• Performance: Since different elements of the operating system are com-
pletely independent from the QNX Neutrino kernel, system administrators
can taylor them to suit specific performance needs and targets: for example,
QNX can be easily tweaked to provide high throughput (in the case of server
applications), fast disk access (in the case of database applications) or small
footprint (for embedded applications). The performance factor depends on
the quantity and quality of the different satellite processes that run around
the Neutrino kernel at any given time.

Chapter 3

Support of Distribution, Network-
ing and Object-Orientation

3.1 Distributed Computing

QNX supports distributed computing by design (QNX, 2007m). The pure micro-
kernel architecture of the system allows the kernel to proactively use the services
of similar kernels distributed in a local network, providing increased performance,
scalability and reliability. This is called “Transparent Distributed Processing”
in the QNX documentation, and provides a standard framework for dynamic
cooperation and sharing of resources (hardware or software) like file systems, mes-
sage queues or databases in remote nodes, using QNX standard messaging sys-
tem.

This infrastructure is available off-the-box, both to developers and systems ad-
ministrators, and leverages the existing hardware investments to provide increased
performance in distributed systems. Figure 3.1 shows how QNX is able to provide
distributed computing features natively.

3.2 Networking

QNX features a unified messaging subsystem, used for IPC communication, that
is also used for networking with other computers. QNX supports an impressive
amount of standard and proprietary protocols, as shown in figure 3.2, making it
able to connect to virtually any other system.

The networking features of QNX , as many other facilities in the system, are avail-
able as user-space processes that can be repaired and restarted independently from

13

Chapter 3 / Support of Distribution, Networking and Object-Orientation 14

Figure 3.1: Distributed Computing(QNX, 2007m)

the kernel, and as such a network-based attack cannot compromise the stability of
a QNX kernel (QNX, 2007f).

3.3 Object-Orientation

QNX provides a Java Runtime Environment off-the-box, allowing application de-
velopers to create and deploy Java applications, created on any other platform,
leveraging IT investments and reducing time-to-market. Both Java client and
server applications, as well as J2ME compliant applications are supported by
QNX thanks to the integration with IBM WebSphere programming and deploy-
ment model (QNX, 2007d).

Chapter 3 / Support of Distribution, Networking and Object-Orientation 15

F
ig

u
re

3.
2:

S
u
p
p
or

te
d

N
et

w
or

k
in

g
P

ro
to

co
ls

(Q
N

X
,
20

07
f)

Chapter 4

Security & Protection

The microkernel nature of QNX forces every process, including drivers or file
systems, to run outside of kernel space, in a memory-protected user space. This
isolation allows these individual processes to be restarted or healed individually,
without affecting neither other processes nor the kernel, without needing a full
restart.

Processes in QNX are securely isolated from each other, and being under tight
control from the kernel prevents them from stealing CPU time, creating a “denial
of service” situation. The kernel is able to “heal the system” automatically in
case of system faults, launching ad-hoc processes that restart individual services
if needed, guaranteeing the stability of the system as a whole.

The networking features of QNX are available as user-space processes as well, so
that a network-based attack cannot compromise the stability of the kernel (QNX,
2007l).

The strong security architecture of QNX is revealed by the small number of
security failures reported in the past few years, none of which was classified as
critical by Secunia (Secunia, 2006):

• 2006: 1

• 2005: 4

• 2004: 1

• 2002: 4

16

Chapter 5

Conclusion

QNX is an impressive example of an extremely optimized and secure operating
system. It provides an off-the-box features set unparalleled in other operating
systems, making it a privileged choice in the embedded market. It is praised as
one of the most secure and stable operating systems available, with a high degree of
flexibility, and it has shown through the years that it could be extended to support
new paradigms such as distribution and symmetric parallel processing.

The following quote from Money magazine shows clearly what is the reputation
that QNX has won on the market during the last 25 years:

Is software hopeless? Ask anyone whose computer has just confessed to
an illegal operation or whose screen has locked up. Despite decades of
effort, a wisecrack from the software industry’s early days still stings:
“If builders constructed buildings the way programmers write software,
the first woodpecker to come along would cause the collapse of civi-
lization.” There’s one notable exception. As far as anyone can tell,
software created by a Canadian company called QNX Software Sys-
tems simply doesn’t crash. QNX’s software has run nonstop without
mishaps at some customer sites since it was installed more than a
decade ago. As a delighted user has put it, “The only way to make
this software malfunction is to fire a bullet into the computer running
it.” (Bylinsky, 2003)

QNX will most probably continue its evolution towards the future, providing
more advanced services and keeping up with the latest trends in the realtime and
symmetric processing computing areas.

17

Bibliography

Bylinsky, G.; “Heroes of Manufacturing”, 2003 [Internet] http://money.cnn.com/
magazines/fortune/fortune archive/2003/03/17/339245/index.htm

(Accessed April 4th, 2007)

Group, A.; “QNX Architecture”, 2003 [Internet] http://www.arp.harvard.edu/
eng/sysman/systems/qnx/arch.html (Accessed April 4th, 2007)

money.cnn.com; “QNX Marks Tenth Anniversary of Symmetric Multiprocess-
ing”, 2007 [Internet] http://money.cnn.com/news/newsfeeds/articles/

prnewswire/CLTU16727032007-1.htm (Accessed April 4th, 2007)

OpenQNX; “How much are you paying for QNX? My quote is very high!”, 2004 [In-
ternet] http://www.openqnx.com/PNphpBB2-viewtopic-t3047-.html (Ac-
cessed April 4th, 2007)

OSDP; “QNX Operating System”, 2007 [Internet] http://www.

operating-system.org/betriebssystem/ english/bs-qnx.htm (Accessed
April 4th, 2007)

QNX; “QNX Gets on Board NASA’s Return to Flight Mission”, 2005 [Internet]
http://www.qnx.com/news/pr 1446 4.html (Accessed April 4th, 2007)

QNX; “File Systems”, 2007a [Internet] http://www.qnx.com/products/rtos/

fsys.html (Accessed April 4th, 2007)

QNX; “High Availability”, 2007b [Internet] http://www.qnx.com/developers/

docs/momentics621 docs/neutrino/sys arch/ham.html (Accessed April
4th, 2007)

QNX; “How QNX Neutrino compares to other operating systems”, 2007c [In-
ternet] http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/user
guide/os intro.html (Accessed April 4th, 2007)

18

http://money.cnn.com/magazines/fortune/fortune_archive/2003/03/17/339245/index.htm
http://money.cnn.com/magazines/fortune/fortune_archive/2003/03/17/339245/index.htm
http://www.arp.harvard.edu/eng/sysman/systems/qnx/arch.html
http://www.arp.harvard.edu/eng/sysman/systems/qnx/arch.html
http://money.cnn.com/news/newsfeeds/articles/prnewswire/CLTU16727032007-1.htm
http://money.cnn.com/news/newsfeeds/articles/prnewswire/CLTU16727032007-1.htm
http://www.openqnx.com/PNphpBB2-viewtopic-t3047-.html
http://www.operating-system.org/betriebssystem/_english/bs-qnx.htm
http://www.operating-system.org/betriebssystem/_english/bs-qnx.htm
http://www.qnx.com/news/pr_1446_4.html
http://www.qnx.com/products/rtos/fsys.html
http://www.qnx.com/products/rtos/fsys.html
http://www.qnx.com/developers/docs/momentics621_docs/neutrino/sys_arch/ham.html
http://www.qnx.com/developers/docs/momentics621_docs/neutrino/sys_arch/ham.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/user_guide/os_intro.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/user_guide/os_intro.html

BIBLIOGRAPHY 19

QNX; “Java Environments”, 2007d [Internet] http://www.qnx.com/products/

java/ (Accessed April 4th, 2007)

QNX; “Multi-Core”, 2007e [Internet] http://www.qnx.com/products/tech dev

kits/smp.html (Accessed April 4th, 2007)

QNX; “Networking Technologies”, 2007f [Internet] http://www.qnx.com/

products/rtos/network.html (Accessed April 4th, 2007)

QNX; “Process model”, 2007g [Internet] http://www.qnx.com/developers/

docs/6.3.0SP3/neutrino/prog/overview.html (Accessed April 4th, 2007)

QNX; “QNX Customer Stories”, 2007h [Internet] http://www.qnx.com/company/
customer stories/ (Accessed April 4th, 2007)

QNX; “QNX Neutrino RTOS - At a Glance”, 2007i [Internet] http://www.qnx.
com/products/rtos/glance.html (Accessed April 4th, 2007)

QNX; “QNX System Architecture”, 2007j [Internet] http://www.qnx.com/

developers/docs/momentics621 docs/neutrino/sys arch/about.html

(Accessed April 4th, 2007)

QNX; “Resource Managers”, 2007k [Internet] http://www.qnx.com/developers/
docs/momentics621 docs/neutrino/sys arch/resource.html (Accessed
April 4th, 2007)

QNX; “Secure. Realtime. Guaranteed.”, 2007l [Internet] http://www.qnx.

com/innovation/adaptive partitioning/index.html (Accessed April 4th,
2007)

QNX; “Transparent Distributed Processing”, 2007m [Internet] http://www.qnx.
com/products/rtos/distributed.html (Accessed April 4th, 2007)

Ripoll, I., Pisa, P., Gai, P., Lanusse, A., Saez, S. & Privat, B.; “WP1 - RTOS
State of the Art Analysis”, 2002 [Internet] http://mnis.fr/ocera support/

rtos/c2462.html (Accessed April 4th, 2007)

Secunia; “Search results about QNX vulnerabilities in Secunia”, 2006 [Internet]
http://secunia.com/search/?search=qnx (Accessed April 4th, 2007)

Silberschatz, A., Galvin, P. B. & Gagne, G.; “Operating System Concepts”, John
Wiley & Sons Inc, 2005, ISBN 0-471-69466-5

Wang, C. L., Bo Yao, Y. Y. & Zhu, Z.; “A Survey of Embedded Operating
System”, 2001 [Internet] http://www.cs.ucsd.edu/classes/fa01/cse221/
projects/group2.pdf (Accessed April 4th, 2007)

http://www.qnx.com/products/java/
http://www.qnx.com/products/java/
http://www.qnx.com/products/tech_dev_kits/smp.html
http://www.qnx.com/products/tech_dev_kits/smp.html
http://www.qnx.com/products/rtos/network.html
http://www.qnx.com/products/rtos/network.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/prog/overview.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/prog/overview.html
http://www.qnx.com/company/customer_stories/
http://www.qnx.com/company/customer_stories/
http://www.qnx.com/products/rtos/glance.html
http://www.qnx.com/products/rtos/glance.html
http://www.qnx.com/developers/docs/momentics621_docs/neutrino/sys_arch/about.html
http://www.qnx.com/developers/docs/momentics621_docs/neutrino/sys_arch/about.html
http://www.qnx.com/developers/docs/momentics621_docs/neutrino/sys_arch/resource.html
http://www.qnx.com/developers/docs/momentics621_docs/neutrino/sys_arch/resource.html
http://www.qnx.com/innovation/adaptive_partitioning/index.html
http://www.qnx.com/innovation/adaptive_partitioning/index.html
http://www.qnx.com/products/rtos/distributed.html
http://www.qnx.com/products/rtos/distributed.html
http://mnis.fr/ocera_support/rtos/c2462.html
http://mnis.fr/ocera_support/rtos/c2462.html
http://secunia.com/search/?search=qnx
http://www.cs.ucsd.edu/classes/fa01/cse221/projects/group2.pdf
http://www.cs.ucsd.edu/classes/fa01/cse221/projects/group2.pdf

BIBLIOGRAPHY 20

Wikipedia; “QNX”, 2007 [Internet] http://en.wikipedia.org/wiki/QNX (Ac-
cessed April 4th, 2007)

http://en.wikipedia.org/wiki/QNX

	Introduction
	About QNX
	Version History
	Pricing & Licensing
	Competitor Operating Systems

	Characteristics
	Design Guidelines
	Architecture
	Process Management
	Resource Management
	Memory Management
	Device Management
	Storage Devices and File Management
	Collaboration Between Management Areas

	Support of Distribution, Networking and Object-Orientation
	Distributed Computing
	Networking
	Object-Orientation

	Security & Protection
	Conclusion

