
Real Time Operating System design for
Multiprocessor system-on-a-chip

Tesi per il consegumento del diploma di perfezionamento

Anno Accademico 2004/2005

Paolo Gai (pj@sssup.it)

Collegio dei docenti

Prof. Paolo Ancilotti Prof. Giorgio C. Buttazzo

Prof. Marco Di Natale Ing. Giuseppe Lipari

RETIS Lab,

Scuola Superiore S. Anna,

Piazza Martiri della Libertà

56100 Pisa - Italy

to Giorgio and Assunta.

Acknowledgements

This thesis describes some research I have done during this PhD, that is a little thing com-
pared to the many things I did in the same period of time (included many silly photos and
dinners and . . .). I always thought that this page of my thesis would be probably the most
difficult to write (and in fact it has been the last one I wrote!), because many are the friends
that I should thank, little the space I have in a single page, and still little my knowledge of
the English language to cite them in the appropriate way. In any case, let me try:

First of all, Beatrice, that really supported me during these years.
Then, my supervisors Giuseppe, Marco, Paolo, Giorgio and Luigi: I really would like

to thank them, for their friendship and for their advice. Alberto, that has been the light
for many inspirations, tolerant in many occasions and of course a good fiend. Lui, that
convinced me to start this journey, and Sanjoy, who always surprised me for his elegance
in research and life.

Then, Tomas, good friend from the icy Sweden, Peter, Gerhard, Radu, Damir, Paulo,
Luis, Lucia, Giancarlo, Roberto, Rodrigo, Anton, Shelby, Alan, Guillem, Ian, Julio, Mario,
Michael, Tullio, Nino, Clara, John, Joan, Bjorn, Jakob, and many other friends I met
jumping around universities and conferences.

After that, people I worked with since a while in Magneti Marelli, Walter, Giovanni,
Paolo, Claudio, Enrico, Giacomo, and others, who gave me the opportunity to work on the
Janus architecture.

And, last but not least, all the ReTiS Lab and the PSV (in random order): Paolo (to-
gether again after a long time), Nicola, Francesco, Alessandro, Marko, Giacomo, Shiva,
Davide, Igor, Luca, Gerardo, Tonino, Claudio, Marco, Gianluca, Bruno, Sachin, Simon-

etta, Mara, Michael, Rodolfo (that highlighted some bugs in my proofs), Enrico, Gabriele,
Chiara, Antonio, Elisabetta, Fabrizio, Barbara, Giampiero, Mario, Michele, Bruno, and of
course all the other people that I should have cited but I just forgot. . .

PJ

Summary

The primary goal for real-time kernel software for single and multiple-processor on a chip
is to support the design of timely and cost-effective systems. The kernel must provide time
guarantees, in order to predict the timely behavior of the application, an extremely fast
response time, in order not to waste computing power other than the application cycles and
save as much RAM as possible in order to reduce the overall cost of the chip.

The research on real-time software systems has produced algorithms that allow to ef-
fectively schedule system resources while guaranteeing the deadlines of the application
and to group tasks in a very short number of non-preemptive sets which require much less
RAM memory for stack. Unfortunately, up to now, the research focus has been on time
guarantees rather than the optimization of memory usage. Furthermore, these techniques
do not apply to multiprocessor architectures which are likely to be widely used in future
microcontrollers.

This thesis presents innovative scheduling and optimization algorithms, which solve the
problem of guaranteeing schedulability with an extremely short operating system overhead
and minimizing RAM usage.

I developed a fast and simple algorithm for sharing resources in homogeneous multipro-
cessor systems, together with an innovative procedure for assigning a preemption threshold
to tasks. When used in conjunction with a preemption threshold assignment algorithm, the
algorithm further reduces the RAM usage in multiprocessor systems.

Finally, I discuss the problem of multiprocessor scheduling for asymmetric architec-
tures composed by a general purpose CPU and a DSP. The challenging issue addressed in
this part is to verify whether the use of a dedicated processor can effectively enhance the
performance of an embedded system still maintaining some kind of real-time guarantee. In
particular, I provide a method for increasing the schedulability bound both for fixed and
dynamic scheduling, allowing a more efficient use of the computational resources.

Yes, as usual this document has been made using LATEX and LYX.

Contents

1 Introduction 17
1.1 Why multiprocessors? . 19

1.2 Saving RAM space . 21
1.3 Thesis contributions . 21
1.4 Thesis outline . 22

2 Background 23
2.1 Reference Hardware architecture . 23
2.2 Reference software architecture . 24
2.3 Basic assumptions and terminology . 26

2.4 RT Scheduling on single processors . 26
2.4.1 RM and EDF . 27

2.4.2 Priority Ceiling . 27
2.4.3 Stack Resource Policy (SRP) . 28
2.4.4 Preemption Thresholds . 30

2.5 RT scheduling on Multiprocessors . 30
2.5.1 Classifications . 31
2.5.2 Why Real-Time Multiprocessor scheduling is difficult? 32

2.5.3 Bin-Packing Algorithms . 34
2.5.4 Resource sharing protocols . 34

2.5.4.1 Classical blocking approaches 35
2.5.4.2 Wait Free approaches 35
2.5.4.3 Spin-lock and mixed approaches. 35

2.5.5 Task Migration . 36

3 Single processor architectures 37
3.1 Integrating Preemption Threshold with the SRP 37
3.2 Optimizing stack usage in Uniprocessors 41

3.3 Experimental evaluation . 47

4 Homogeneous multiprocessors architectures 51
4.1 Background . 52

4.1.1 Basic assumption and terminology 52

4.1.2 The MPCP Multiprocessor Priority Ceiling Protocol 52

9

10 CONTENTS

4.2 Sharing Resources in Multiprocessors . 54
4.2.1 Multiprocessor Stack Resource Policy (MSRP) 54
4.2.2 Schedulability analysis of the MSRP 56

4.3 Optimizing stack usage in Multiprocessors 60
4.4 Comparing MSRP and MPCP . 63

4.4.1 Comparing the blocking factors of MSRP and MPCP 64
4.4.2 Comparing the implementation of MSRP and MPCP 64

4.5 Experimental evaluation . 65
4.5.1 Multiprocessor experiments . 65
4.5.2 MPCP vs. MSRP comparison on generic task sets 66
4.5.3 MPCP vs. MSRP comparison on a power-train case 69

4.5.3.1 The Power-train Control Application 69
4.5.3.2 Experimental setup . 72
4.5.3.3 Results . 73

4.5.4 Final comments . 75

5 Heterogeneous multiprocessors architectures 77
5.1 System Model . 77
5.2 Task Model . 79
5.3 Problem definition . 79
5.4 DSP scheduling under fixed priorities . 82

5.4.1 Enhancing schedulability under fixed priorities 83
5.4.2 Allowing interleaving DSP requests 86
5.4.3 Simulation results . 86

5.5 DSP scheduling under dynamic priorities 90
5.5.1 EDF with Checkpoints . 92
5.5.2 Resources and checkpoints . 94
5.5.3 Implementation issues . 98
5.5.4 Using CEDF+SRP for DSP scheduling 98

5.5.4.1 Collecting Bandwidth 98
5.5.4.2 Using collected bandwidth for DSP scheduling 101

5.5.5 Simulation results . 104

6 Conclusions 109

List of Figures

1.1 The Janus Dual Processor system. 20

2.1 V-shaped methodology. 25

2.2 The task set is composed by nine tasks with precedence constraints and a
priority proportional to their sequence number. The execution time of each
task is shown near the balls. 32

2.3 The optimal schedule (finishing time = 12). 33

2.4 The schedule obtained changing task priorities (the order now is T1, T2,
T4, T5, T6, T3, T9, T7, T8) (finishing time = 14). 33

2.5 The schedule obtained adding a new processor (finishing time = 15). 33

2.6 The schedule obtained reducing the execution times by 1 (finishing time =
13). 33

3.1 Two different schedules for the same task set: a) full-preemptive schedule;
b) preemption is disabled between τ1 and τ2. 38

3.2 An example: The minimum total stack size does not corresponds to the
minimum number of non-preemptive groups: a) Initial task set b) com-
putation of the preemption thresholds c) reordering d) computation of the
maximal groups) . 42

3.3 Algorithm for finding the maximal groups. 43

3.4 The create_group() recursive function. 45

3.5 Mean number of explored solutions for different task set sizes. 47

3.6 Mean number of cuts for different task set sizes. 48

3.7 Average number of preemption groups. 49

3.8 Average number of preemption groups for different task set sizes. 49

3.9 Ratio of improvement given by my optimization algorithm. 50

4.1 Structure of the example. 56

4.2 An example of schedule produce by the MSRP on two processors. 57

4.3 Non feasible solutions must be accepted in order to reach the optimal solution. 62

4.4 Simulated Annealing Algorithm. 63

4.5 Ratio of improvement given by my multiprocessor optimization algorithm
when varying the utilization of shared resources. 66

11

12 LIST OF FIGURES

4.6 Average computation times for the simulated annealing algorithm as a func-
tion of the problem size. 67

4.7 Percentage of schedulable solutions, random periods, variable percentage
of local resource utilization. 68

4.8 Percentage of schedulable solutions, harmonic periods, variable percentage
of local resource utilization. 68

4.9 Comparison of MPCP and MSRP with the performance boundary (Y=percentage
of schedulable solutions, X=percentage of local critical sections). 69

4.10 Boundary obtained considering 2 CPUs with various resource usages. . . . 70

4.11 A thread contains the implementation of several functional blocks 71

4.12 Percentage of schedulable task sets with randomly selected periods on Janus
by MPCP/MSRP. 74

4.13 Percentage of schedulable task sets with harmonic periods on Janus by
MPCP/MSRP. 74

5.1 Block diagram of the system architecture. 79

5.2 Structure of a DSP task. 80

5.3 A task set that cannot be feasibly scheduled by RM and EDF (jobs of task
τ1 are numbered to facilitate interpretation): task τ1 misses all its deadlines. 80

5.4 A feasible schedule achieved by a different priority assignment (P1 > P2). . 81

5.5 EDF does not work always. 82

5.6 Also EDF with modified deadlines does not work always. 82

5.7 My scheduling approach. When the DSP is active, the scheduler selects
tasks from the regular queue only. 83

5.8 Example of scenario where task τ3 is blocked by some high priority (τ1 and
τ2) and low priority (τ4) tasks. 85

5.9 Schedulability results of my approach when varying the total utilization
factor and the number of tasks in the task set (using Equation (5.3)). 87

5.10 Schedulability results of DPCP when varying the total utilization factor and
the number of tasks in the task set (using Equation (5.3)). 88

5.11 Difference between the two approaches (using Equation (5.3)). 88

5.12 Improvement achieved using the Hyperbolic Bound. 89

5.13 Difference between the two approaches (using response time analysis). . . . 89

5.14 Performance of the two approaches and their difference as a function of the
utilization factor for task sets composed by 30 tasks. 90

5.15 Difference in the percentage of scheduled tasks set between my approach
and DPCP when considering the influence of DSP utilization. 91

5.16 Influence of DSP utilization on the schedulability. 91

5.17 A task scheduled by EDF and CEDF. The task has the following structure:
Di = 20, Ci = 8, mi = 3, Ci1 = 3, Ci2 = 3, Ci3 = 2. 93

5.18 A single transformation step. 93

5.19 A typical checkpoint assignment used in the CEDF+SRP Algorithm. 95

LIST OF FIGURES 13

5.20 Task executions are not nested under CEDF+SRP. Note that task τi post-
pones its deadline at time 2; task τj postpones its deadline at time 6. 96

5.21 An example. The Figure shows only two instances (numbered with ’1’ and
’2’) of the periodic task. 99

5.22 The lower bound on the collected time γi(t) of a task τi with Ti = 10 and
Ci = 4; task τi is divided in three chunks (the second runs on a DSP) with
capacities Ci1 = 1, Ci2 = 2, and Ci3 = 1. 100

5.23 If the exact distribution of the DSP computation is not known, a conserva-
tive approach can be applied (compare this figure with Figure 5.22). 100

5.24 An acceptance test that consider more than one DSP task. 103
5.25 A function µ(t) for a task with execution time Ci = 2 and period Ti = 5. . 103
5.26 Percentage of DSP time collected by γi(t) using the settings on Figure 5.22. 105
5.27 Percentage of DSP Time collected with different task settings. 106
5.28 Comparison between the collected DSP time using CEDF+SRP and SRP

with a big relative deadline. The parameter of the DSP task were P = 100,
Ci1 = 5, Ci3 = 45, Ci2 = 25. 106

5.29 Difference between the two plots of Figure 5.28. 107
5.30 An example showing the constructive method of Section ??: a) Γ(t) =

γ1(t) after accepting τ1; b) the function −µ3(t); c) Γ(t) = γ1(1) − µ3(t)

after accepting τ3. 108

14 LIST OF FIGURES

List of Tables

1.1 Typical memory sizes for system-on-a-chip. 21

2.1 A Simple classification of parallel programming styles. 31

4.1 The example task set. 56

5.1 Periods and CPU utilization for tasks τ4to τ11. 107

15

16 LIST OF TABLES

Chapter 1

Introduction

The Digital Revolution that is happening in the last twenty years is slowly changing the way
products are designed and used. We live in a world of increasingly intrusive information
technology, requiring informations to be always available in the right places, asking more
and more features to the final products.

Tight requirements and new features are now common also in mechanical systems,
where different objectives (ecological reasons for pollution reduction, integration of differ-
ent subsystems, higher requirements for control performance) constantly adds complexity
to the embedded controllers used to control the physical systems.

All these electronic systems needs to have some kind of relationship with the environ-
ment they are working in, because in some way they have to communicate informations
(e.g., the temperature of a room, the weight of the people that are on a lift) or to directly
control some mechanical parts (e.g., they have to set the spark timing in a car engine). This
interaction is related to giving the result of the computation in time, that intuitively means
the results have to be somehow synchronized with the response times of the external en-
vironment. For example, if you press the brake pedal of a car while driving, you would
like to reduce the speed of the car as soon as possible; if you watch a movie using a DVD
player, you probably want to see the movie and to ear the sound in a synchronized way.

All these implicit requirements are translated at design time in temporal constraints.
For example, in the case of the brake pedal, the time elapsed between the press of the pedal
by the the driver and the start of the brake action on the wheel should be in the order of the
response time of the human brain that is driving the car, that is, probably, a few milliseconds
(ms). That time sets an end-to-end requirement, that have to be met by properly choosing
the mechanics and the electronics composing the braking system. In the example of the
movie, once the sound of the movie started the DVD player has to display one frame every
40 ms, to give the idea to the human brain that is watching the TV set that he is seeing a
movie and not a set of still frames.

All these computing environments that have to interact with the outside environment
are called real-time systems. There are different kind of real-time systems, depending on
the criticality of the synchronization that have to be reached with the environment. It is
out of the scope of this thesis to make a comprehensive enumeration of real-time systems;

17

18 CHAPTER 1. INTRODUCTION

however, an important distinction between the so-called hard real-time systems (where
the violation of a time requirement may be catastrophic) and other kind of systems, often
called soft real-time-systems (where the consequence of a bad timing is just a performance
degradation) is needed.

Furthermore, it is worth noting that real-time features only become a problem when
the available resources are limited. For example, in a DVD player, cost and thermical
reasons may force the use of less powerful computing architectures that are cheap and do
not require a fan. These architectures may need an adequate resource scheduling policy to
make efficient use of the (little) computing power available.

Real-time systems are often concurrent systems. The notion of concurrency (that means
the ability of doing many things at the same time) is again linked to the lack of physical
resources. For example, a microwave oven have to perform different concurrent tasks while
heating up your hamburger: it has to produce the microwaves that cooks your food, rotate
the dish to perform a proper uniform cooking, countdown and update the LCD with the
remaining cooking time, and check if the user opens the oven’s door, to eventually stop
producing the microwaves.

Such a small embedded device like a microwave oven is probably controlled by a single
CPU embedded behind the buttons and the LCD display of the man-machine interface. The
software running on that CPU has to schedule properly different activities, and make them
behave as they each run on a dedicated CPU.

The software that runs on the CPU is often divided in different layers. A common dis-
tinction is made between the application (the cooking algorithms, that are specific for each
microwave oven) and the firmware (that is the infrastructure on which the application runs,
that typically can be reused to design other embedded systems, such as coffee machines).

Most of the real-time systems academic research deals with the basic question of “what
is the best way to design the firmware of a real-time system?”. Many answers have been
found for different kind of systems, related to different design parameters like:

• the number of entities (CPUs) available in the system;

• the kind of scheduling algorithm that is chosen for running the different tasks of the
application;

• the kind of synchronization mechanisms of the different activities;

• the kind of cooperation required to accomplish a task (are these tasks all independent
or do they need to share information?);

• the kind of communication between different tasks in the system (we consider only
shared memory architectures or also distributed systems connected through a net-
work?);

• the amount of resources available (can advanced features be implemented or should
we save as much resources as possible to have a cheaper final product).

This thesis addresses some solutions for the design of a firmware for real time systems that
takes in account the design parameters just listed.

1.1. WHY MULTIPROCESSORS? 19

In particular, the thesis proposes some techniques for the design of the firmware of
embedded system-on-a-chip (SoC) that in general are composed by more than one CPU,
and that have to be designed taking in account the amount of available resources (in my
case, the RAM space used for stacks).

1.1 Why multiprocessors?

The first question which needs an answer is why there is a real need for multiprocessor
SoC. If we analyze the trend for the integration of future applications in the embedded
market, and especially in the automotive market [28], it is clear that a standard uniprocessor
microcontroller architecture will not be able to support the needed computing power even
taking into account the IC technology advances.

To increase computational power in embedded real-time systems there are then two
possible ways:

• to increase the processor speed;

• to increase the parallelism of the architecture.

The first option requires the use of caching, deep pipelining or other advanced architectures.
This solution suffers from serious drawbacks in the context of real-time embedded systems:
caching makes very hard or impossible to determine the worst case execution times of pro-
grams; deep pipelining is not effective because of the large number of stalls caused by
reactions to asynchronous events. Also, parallelism at the instruction level (VLIW archi-
tectures) requires large silicon areas and drastically increases code size.

Therefore, the best option and the future of many embedded applications seems to rely
on the adoption of multiple-processor-on-a-chip architectures.

This idea, that was a seminal idea only four years ago, now has reached some kind of
maturity; in fact, many multiprocessor SoC are now available on the marketplace.

The Janus microcontroller (see the scheme of Figure 1.1), developed by PARADES, ST
Microelectronics and Magneti Marelli in the context of the MADESS[45] project, is an ex-
ample of a dual-processor platform for power-train applications. Two 32-bit ARM7TDMI
processors connected by a crossbar switch to 4 memory banks and two peripheral buses
for I/O processing (low and high bandwidth) provide twofold computational power, com-
pared to a single (ARM7TDMI) processor architecture, at very low increment of the silicon
area, i.e. at comparable system costs. Both CPUs share the same address space. The main
memory is organized in different modules and types: SRAM and FLASH. In architectures
with multiple processors, memory access is the most important bottleneck of the system.
Almost any communication flow is between the memory and other system components.
To allow a correct synchronization and communication among tasks allocated to different
processors, the architecture provides hardware support for inter-processor communication
by interrupt inter-processor mechanisms and for shared memory by atomic test-and-set.

Although Janus implements a symmetric multiprocessor, there are other promising
symmetric architectures composed by a RISC processor (or a microcontroller) and one

20 CHAPTER 1. INTRODUCTION

Figure 1.1: The Janus Dual Processor system.

or more DSPs [55, 35]. For example, the Texas Instruments SMJ320C80 is a single-chip
MIMD1 parallel processor that consists of a 32-bit RISC master processor, four 32-bit
parallel DSPs, a transfer controller, and a video controller. All the processors are tightly
coupled through an on-chip crossbar switch that provides access to a shared on-chip RAM.

Recently, Altera Corporation released a new version of its Nios II embedded processor
[22], that is a 32 bit platform designed to be mapped on FPGA devices. In that way, the
user can build a system with several processors, each one doing its specific job. Just to give
an idea of the level of parallelism that can be implemented with those systems, a NIOS
II processor can use from 700 to 2000 logic elements (depending on its configuration),
whereas Altera’s FPGAs for NIOS systems range from 3 to 40K logic elements, meaning
that these FPGAs may potentially have tens of processors on a single chip.

Many other designs will be also available on the market soon, bringing the possibility
to really use and take advantage of the increased power provided by multiprocessor.

The applications running on these new single-chip platforms require predictable (and
fast) scheduling algorithms. In addition, kernels must fit in a few kilobytes of memory, and,
together with the application, they must use the smallest possible amount of RAM memory.
Resource sharing must be carefully handled and all communication primitives on shared
memory must be designed in order to allow only a limited blocking time.

Moreover, the main problem with these systems is that there there is not a common
way of exploiting these multiprocessor architectures in an efficient and scalable way. The
purpose of this thesis is to find ways to use these systems without wasting the computing
power available.

1Multiple Instruction Multiple Data.

1.2. SAVING RAM SPACE 21

Chip name Description ROM RAM
AT91M40800 Atmel 32 bit ARM7 SoC - 4 Kb
AT91F40816 Atmel 32 bit ARM7 Soc 3 Mb 8 Kb

H8/3297 Hitachi 8 bit microcontroller 60 Kb 2 Kb
ST10F269 Siemens 16 bit microcontroller 256 Kb 12 Kb

Janus Double ARM7 by ST, PARADES, MM 256 Kb 64 Kb

Table 1.1: Typical memory sizes for system-on-a-chip.

1.2 Saving RAM space

Many embedded applications are designed on SoC architectures to reduce the cost of the
final product. In these systems, RAM is extremely expensive in terms of chip space, and
it heavily impacts on the cost of the final product (it is often necessary to re-design part of
the application just to save a few RAM bytes).

Table 1.1 shows the memory space on a set of microcontrollers available on the market.
As it can be seen, ROM memory (typically flash memory) is ten times bigger than the
available RAM. That fact is justified because each cell of RAM can be implemented using
6 transistors, whereas a cell of Flash memory can be implemented with only one, allowing
higher density.

Since, in general, there is a limited memory (both ROM and RAM) on a SoC, the
application and the firmware must use the smallest possible amount of RAM memory.

In the design of the kernel mechanisms for such small embedded systems, it has been
clear from the beginning that the choice of the real-time scheduling discipline influences
both the memory utilization and the system overhead. For example, selecting a non pre-
emptive scheduling algorithm can greatly reduce the overall requirement of stack memory
whereas using a preemptive algorithm could increase the processor utilization.

For this reason, it has been very important to exploit different combinations and con-
figurations of scheduling algorithms and services and to develop new ones in order to find
the best kernel mechanisms for minimizing the memory requirements without jeopardizing
the timing constraints.

To reduced the RAM space, proper design techniques (like the preemption threshold
techniques) have been successfully developed in the past years, allowing a significant re-
duction of the stack usage in the entire system.

This thesis addresses the problems of memory optimization for multiprocessors SoC,
extending the existing techniques for stack minimization to multiprocessors and to dynamic
scheduled systems.

1.3 Thesis contributions

The main contributions of this thesis to the state of the art in design of the firmware for
mono and multiprocessor system-on-a-chip is that I developed a complete methodology for
minimizing the memory utilization of real-time task sets, communicating through shared

22 CHAPTER 1. INTRODUCTION

memory, in uniprocessor and multiprocessor systems. Moreover, I developed new tech-
niques for scheduling in heterogeneous multiprocessors.

The contributions are detailed in the following points (points 1 to 4 are related to mono
processor architectures, the rest for multiprocessor architectures):

1. I designed a novel scheduling algorithm, called SRPT, that allows the use of one
single stack for all the real-time tasks under dynamic priority scheduling (Earliest
Deadline) schemes.

2. I designed an optimization procedure for assigning the scheduling parameters (pre-
emption thresholds and grouping of tasks in non-preemptive sets) so that the maxi-
mum stack size is minimizedwithout jeopardizing the schedulability of the task set.

3. I designed a novel scheduling algorithm called MSRP, that allows real-time tasks,
allocated on different processor, to communicate/interact through shared memory;
each task is statically allocated to one processor, and all tasks on one processor share
the same stack.

4. I designed and implemented an optimization procedure for assigning tasks to pro-
cessors and for assigning the scheduling parameters, so to minimize the overall stack
size.

5. I designed a new scheduling algorithm for scheduling heterogeneous multiprocessor
systems using fixed priorities.

6. I designed a new scheduling algorithm for scheduling heterogeneous multiprocessor
systems using EDF scheduling.

1.4 Thesis outline

The remainder of this thesis is structured as follows.
Chapter 2 presents some of the techniques used as a basis for the results described in

this thesis. Chapter 3 details the results found in single processor scheduling, such as the
SRPT algorithm, and the stack minimization procedures. Chapter 4 describes the results
obtained for homogeneous multiprocessors, must notably the MSRP scheduling algorithm,
its comparison with the MPCP algorithm, and the allocation procedure that assigns tasks to
processors. Chapter 5 describes the results on heterogeneous multiprocessors, and finally
Chapter 6 gives the implications of the results in this thesis, and some possible future works
on these topics.

Chapter 2

Background

The purpose of this chapter is to give a background knowledge that will help the reader
understanding the rest of the thesis.

2.1 Reference Hardware architecture

Chapter 3 to Chapter 5 propose different scheduling algorithms developed on top of various
abstract hardware architectures.

In general, for the purpose of this thesis I am not interested on hardware details of a
specific architecture, but only to an abstract description of the hardware in terms of the
following main blocks:

CPU. The CPU is typically a microcontroller or a general purpose processing unit. In the
case of multiprocessor architectures, an instance of the architecture may have one or
more CPUs.

DSP. A DSP is typically a specialized hardware that can be programmed to perform some
sets of computations in a very efficient way; for that reason, in Chapter 5 I will use
the simplistic hypothesis that activities on a DSP can be better executed in a non
preemptive fashion to avoid pipeline flushes.

Memories. Memory in general will be present on a system in two fashions: RAM and
ROM. RAM will be used to store global variables that needs to be modified by the
application, and to store the stacks of the tasks in execution; ROM will contain the
object code of the application, and all the constant values. Please note that this thesis
will not consider any kind of support for cache memories.

Bus. The bus in general will be viewed as an interconnection between the different units.
The only important feature is that it connects different elements of an architecture
together.

Interfaces. Interfaces are used by the CPU or the DSP to interact with the environment.
In general, I suppose these interfaces will be programmed putting appropriate val-
ues into some internal registers. Then, the interfaces will interact with the rest of

23

24 CHAPTER 2. BACKGROUND

the architecture raising flags on some registers, or raising interrupts to signal the
completion of its job.

I will not go in further detail about hardware architectures. It is sufficient to say that the
architectural blocks just introduced are general enough to describe the architecture of many
multiprocessor SoC available now and in development in the near future.

2.2 Reference software architecture

A multiprogrammed system is basically an abstraction of different computational flows
each one executing concurrently. In reality, there a mechanism which transparently gives
the impression to the applications to execute simultaneously, even if the computational
flows are more than the physical entities available on the HW architecture.

To better understand these concepts, I introduce the following definitions:

Algorithm. An algorithm is a sequence of computational steps which has to be executed
to solve a particular problem.

Program. A program is an algorithm coded using a particular programming language.

Thread. A thread is a single flow of execution, characterized by a program that specifies
its behavior, and a set of resources (like some memory for data and stacks, a copy of
the registers of the CPU, and so on).

Process. A process is the aggregation of many threads. Each thread inside a process shares
the same address space with the other threads. Each process also has some private
informations, such as the address space, descriptor tables, and so on.

Task. In this thesis, the difference between threads and processes is not relevant, and for
that reason the word task will be used to identify an executable entity, that can be a
thread or a process.

When developing a concurrent application for an embedded system, designers face a set of
objectives which imposes several constraints. For this reason, a typical methodology for the
development of an embedded system is a V-shaped methodology similar to that described
in Figure 2.1.

In particular after a first specification phase, the system is decomposed in smaller sub-
systems designed, implemented and tested in isolation. At the end, all the subsystems are
composed together to test the system as a whole, to verify that the initial global require-
ments are met.

In embedded system design it often happens that the hardware architecture is specified
first (for cost and other constraints). Then, the designers have to fit the software into some
predefined requirements (typically CPU power and footprint). Typical constraints could
be of different types, raising from power management issues to software memory footprint
and response times, and so on.

2.2. REFERENCE SOFTWARE ARCHITECTURE 25

System Validation

Software Design

Specifications

Component Validation

SW testing

Functional (Control)
Design

Figure 2.1: V-shaped methodology.

In particular, the focus of this thesis is on the design of software embedded systems that
have to reduce the memory footprint without jeopardizing the real time guarantees imposed
at design time.

The reference software architecture will be composed by two main layers:

The application layer, which basically contains the application software.

The firmware layer, which hides the details of the underlying hardware to the application
layer exposing the features of a concurrent machine.

The firmware layer typically exports a common Application Program Interface (API), sim-
ilar for both mono and multiprocessors, which is mainly composed by a set of components
such as:

Boot code. The boot code is the set of routines that executes at power-on or when a SW
reset or an exception is raised.

RTOS. The RTOS is responsible of exporting the abstraction of concurrent machine to
the application layer. Typical abstractions exported by the RTOS are the concept of
thread/process, the context change infrastructure, and atomic instructions for imple-
menting mutual exclusion and synchronization.

Device Drivers. The device drivers are probably one of the most complex part of the
firmware layer, because each embedded system-on-a-chip in practice implements
its own set of peripherals and interfaces, and for that reason is the part that is most
difficult to maintain when porting a firmware layer from an architecture to another.

Communication infrastructure. The communication infrastructure is responsible of ex-
changing messages between tasks located on the same or on remote CPU. Different
industrial standard exists for the communication infrastructure , e.g. [34].

The purpose of this thesis is to focus on the design principles that controls the behavior
of an RTOS, in particular for the part of the scheduling and synchronization algorithms
between threads.

26 CHAPTER 2. BACKGROUND

If we look in detail at the structure of a minimal RTOS for an embedded system, we
can divide a generic RTOS in the following sub-components:

• interrupt handling;

• scheduling and thread/process handling;

• management of synchronization and shared resources;

• periodic reactivation handling;

• exception and error handling.

This methodology of designing the embedded system firmware has been used in several
industrial standards. In particular, in this context it is worth citing the following standards:

OSEK/VDX: This is a standard for the operating system in the automotive fields, divided
in different parts:

OS [33]: specifies the RTOS interface for threads, mutual exclusion, synchroniza-
tion, error handling, and interrupt management.

COM: specifies a communication layer for messages inter and intra CPU.

HIS [5]: This is a working group composed by automotive car makers that aims to the
production of a set of joint standards. In particular, they proposed a set of API to
standardize the most common peripherals and interfaces.

2.3 Basic assumptions and terminology

The system consists of a set T = {τ1, τ2, . . . , τn} of real time tasks to be executed on a
single processor. A real time task τi is a infinite sequence of jobs (or instances) Ji,j . Every
job is characterized by a release time ri,j , an execution time ci,j and a deadline di,j .

A task can be periodic or sporadic. A task is periodic if the release times of two con-
secutive jobs are separated by a constant period; a task is sporadic when the release times
of two consecutive job are separated by a variable time interval, with a lower bound, also
called minimum interarrival time.

Without loss of generality, I use the same symbol θi to indicate the period of a periodic
task and the minimum interarrival time of a sporadic task τi. In the following a task will
be characterized by a worst case execution time Ci = max{ci,j} and a period θi. I assume
that the relative deadline of a task is equal to θi: thus, di,j = ri,j + θi.

Tasks can access mutually exclusive resources through critical sections. Let R =

{ρ1, . . . , ρp} be the set of shared resources. The k–th critical section of task τi on resource
ρj is denoted by ξj

ik and its maximum duration is denoted by ωj
ik.

2.4 RT Scheduling on single processors

This section recalls the main results on real-time scheduling for single processors embed-
ded systems that will be used in the next chapters.

2.4. RT SCHEDULING ON SINGLE PROCESSORS 27

2.4.1 RM and EDF

The Rate Monotonic (RM) Scheduling algorithm is a simple rule that assigns priorities to
tasks according to their request rates. Specifically, tasks with higher request rates will have
higher priorities. Since periods are constant, RM is a fixed priority assignment. Moreover,
RM is intrinsically preemptive: the currently executing task is preempted by a newly ar-
rived task with shorter period. In 1973, Liu and Layland [44] showed that RM is optimal
among all fixed-priority assignments in the sense that no other fixed-priority algorithms can
schedule a task set that cannot be scheduled by RM.

Given a task set, we can also define:

• the utilization of a single task, Ui = Ci

θi
;

• the processor utilization (that is a misure of the processor load), U =
∑

i Ui;

Although the processor utilization can be increased increasing the computation times Ci,
or reducing the periods Ti, it exists an upper bound Ub, over which the schedule is no
more feasible. That upper bound depends in general on the task set and on the scheduling
algorithm used. Given a task set, the least upper bound Ulub is the minimum upper bound
of all the task sets.

Liu and Layland also derived the following least upper bound of the processor uti-
lization factor for a generic set of n periodic tasks using the Rate Monotonic algorithm:
Ulub = n(2

1

n − 1)

This bound decreases with n, and for high values of n, the least upper bound converges
to Ulub = ln 2 ∼= 0.69.

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that selects
tasks according to their absolute deadlines. Specifically, tasks with earlier deadlines will
be executed at higher priorities. EDF is a dynamic priority assignment. As RM it is in-
trinsically preemptive, and is also optimal in the sense stated by the following theorem (its
proof can be found in [17]).

Theorem: A set of periodic tasks is schedulable with EDF if and only if

n
∑

i=1

Ci

θi
≤ 1

2.4.2 Priority Ceiling

The Priority Ceiling protocol (PCP) has been developed by Sha, Rajkumar and Lehoczky
[59] to bound the priority inversion phenomenon1 and prevent the formation of deadlocks
and chained blocking.

The Priority Ceiling protocol can be defined as follows:

• Each semaphore Sk is assigned a priority ceiling C(Sk) equal to the priority of the
highest-priority job that can lock it.

1The Priority inversion phenomenon appears every time preemption is allowed and two tasks share an exclu-
sive resource. In this case, the lower priority task access a shared resource and then is preempted; the higher
priority task that shares the resource with the preempted task may be blocked also by a medium priority task that
preempt the task locking the resource, blocking in this way also the higher priority task..

28 CHAPTER 2. BACKGROUND

• Let Ji be the job with the highest priority among all jobs ready to run; thus, Ji is
assigned the processor.

• Let S∗ be the semaphore with the highest priority ceiling among all the semaphores
currently locked by jobs other than Ji and let C(S∗) be its ceiling.

• To enter a critical section guarded by a semaphore Sk, Ji must have a priority higher
than C(S∗). If Pi ≤ C(S∗) the lock on Sk is denied and Ji is said to be blocked on
semaphore S∗ by the job that holds the lock on S∗.

• When a job Ji is blocked on a semaphore, it transmits its priority to the job, say Jk,
that holds that semaphore. Hence, Jk resumes and executes the rest of its critical
section with the priority of Ji. Jk is said to inherit the priority of Ji. In general, a
task inherits the highest priority of the jobs blocked by it.

• When Jk exits a critical section, it unlocks the semaphore and the highest-priority
job, if any, blocked on that semaphore is awakened. Moreover, the active priority of
Jk is updated as follows: if no other jobs are blocked by Jk, pk is set to the nominal
priority Pk ; otherwise, it is set to the highest priority of the jobs blocked by Jk.

• Priority inheritance is transitive; that is, if a job J3 blocks a job J2, and J2 blocks a
job J1, then J3 inherits the priority of J1 via J2.

It can be proved that the Priority Ceiling Protocol prevents deadlocks and that a job can be
blocked for at most the duration of one critical section.

2.4.3 Stack Resource Policy (SRP)

The Stack Resource Policy was proposed by Baker in [8] for scheduling a set of real-
time tasks on a uniprocessor system. It can be used together with the Rate Monotonic
(RM) scheduler or with the Earliest Deadline First (EDF) scheduler. According to the SRP,
every real-time (periodic and sporadic) task τi must be assigned a priority pi and a static
preemption level λi, such that the following essential property holds:

task τi is not allowed to preempt task τj , unless λi > λj .

Under EDF and RM, the previous property is verified if preemption levels are inversely
proportional to the periods of tasks:

∀τi λi ∝
1

θi
.

When the SRP is used together with the RM scheduler, each task is assigned a static pri-
ority that is inversely proportional to its period. Hence, under RM, the priority equals the
preemption level. Instead, when the SRP is used with the EDF scheduler, in addition to the
static preemption level, each job has a priority that is inversely proportional to its absolute
deadline.

2.4. RT SCHEDULING ON SINGLE PROCESSORS 29

Every resource ρk is assigned a static2ceiling defined as:

ceil(ρk) = max
i

{λi | τi uses ρk}. (2.1)

Finally, a dynamic system ceiling is defined as

Πs(t) = max[{ceil(ρk) | ρk is currently locked} ∪ {0}]. (2.2)

Then, the SRP scheduling rule states that:

“a job is not allowed to start executing until its priority is the highest among

the active jobs and its preemption level is greater than the system ceiling”.

The SRP ensures that once a job is started, it cannot be blocked until completion; it can only
be preempted by higher priority jobs. However, the execution of a job Ji,k with the highest
priority in the system could be delayed by a lower priority job, which is locking some
resource, and has raised the system ceiling to a value greater than or equal to the preemption
level λi. This delay is called blocking time and denoted by Bi. Given the maximum
blocking time for each task, it is possible to perform a schedulability test, depending on the
scheduling algorithm.

In [8] Baker proposed the following schedulability condition for the EDF scheduler:

∀i, 1 ≤ i ≤ n

n
∑

k=1

Ck

θk
+

Bi

θi
≤ 1 (2.3)

A tighter condition, proposed in [43], is the following:

∀i, 1 ≤ i ≤ n ∀L, Ti ≤ L ≤ Tn L ≥
i

∑

k=1

⌊

L

θk

⌋

Ck + Bi. (2.4)

In all cases, the maximum local blocking time for each task τi can be calculated as the
longest critical section ξk

jh accessed by tasks with longer periods and with a ceiling greater
than or equal to the preemption level of τi.

Bi = max
τj∈T ,∀h

{ωk
jh |λi > λj ∧ λi ≤ ceil(ρk)}. (2.5)

The Stack Resource Policy has several interesting properties. It prevents deadlock,
bounds the maximum blocking times of tasks, reduces the number of context switches and
can be easily extended to multi-unit resources. From an implementation viewpoint, it al-
lows tasks to share a unique stack. In fact, a task never blocks its execution: it simply
cannot start executing if its preemption level is not high enough. Moreover, the implemen-
tation of the SRP is straightforward as there is no need to implement waiting queues.

However, one problem with the SRP is the fact that it does not scale to multiprocessor
systems. In Chapter 4 I propose an extension of the SRP to be used in multiprocessor

2In the case of multi-units resources, the ceiling of each resource is dynamic as it depends on the current
number of free units.

30 CHAPTER 2. BACKGROUND

systems.

2.4.4 Preemption Thresholds

Given a non-interleaved execution of the application tasks (obtained, for example, by using
the SRP), the use of a preemptive scheduling algorithm makes the maximum number of task
frames on the stack equal to the number of priority levels, whereas using a non-preemptive
algorithm there can be only one frame on the stack. However, a non-preemptive algorithm
in general is less responsive and could produce an infeasible schedule. Hence, the goal is to
find an algorithm that selectively disables preemption in order to minimize the maximum
stack size requirement while respecting the schedulability of the task set.

Based on this idea, Wang and Saksena, [58, 63] developed the concept of Preemption

Threshold: each task τi is assigned a nominal priority πi and a preemption threshold γi

with πi ≤ γi. When the task is activated, it is inserted in the ready queue using the nominal
priority; when the task begins execution, its priority is raised to its preemption threshold;
in this way, all the tasks with priority less than or equal to the preemption threshold of
the executing task cannot make preemption. According to [58], I introduce the following
definitions:

Definition 1 Two tasks τi and τj are mutually non-preemptive if (πi ≤ γj) ∧ (πj ≤ γi).

Definition 2 A set of tasks G = {τ1, τ2, . . . , τm} is a non-preemptive group if, for every

pair of tasks τj ∈ G and τk ∈ G, τj and τk are mutually non–preemptive.

By assigning each task the appropriate preemption threshold, the number of preemp-
tions in the system can be reduced without jeopardizing the schedulability of the tasks set.
Given an assignment of preemption thresholds, the task set can be partitioned into non–

preemptive groups. Obviously, a small number of groups results in a lower requirement for
the stack size.

In Chapter 3, I will show how it is possible to efficiently implement the Preemption
Threshold mechanism using the SRP, and extend it to be used under EDF.

2.5 RT scheduling on Multiprocessors

This section gives an survey of the main results on multiprocessor real-time scheduling.
These results are cited in this thesis to let the reader to understand the complexity of the
problem, and to position the work presented in this thesis in a broader set of research is-
sues on multiprocessor scheduling. Although availability of inexpensive microprocessors
has made practical to employ large number of processors in real-time applications, the pro-
gramming of multiprocessor systems presents a rather formidable problem. In fact, Michael
Dertouzos and Aloysius Ka-Lau Mok in [25] analyzed the problem of hard-real-time task
scheduling in a multiprocessor environment. Representing the problem of scheduling on a
multiprocessor as a game, they showed that optimal scheduling without a priori knowledge
is impossible in the multiprocessor case even if there is no restriction on preemption owing
to precedence or mutual exclusion constraints.

2.5. RT SCHEDULING ON MULTIPROCESSORS 31

Communication pattern
Thread Creation Static Dynamic

Static DAG Single Program, Multiple Data (SPMD)
Dynamic Dataflow Unix fork/join

Table 2.1: A Simple classification of parallel programming styles.

Moreover, there is not a clear agreement on which, what and how a multiprocessor
scheduler should work. In fact, the biggest problem in multiprocessor scheduling is the
complexity of the solutions that have to be adopted to have good performances, since often
the problem of scheduling a multiprocessor system is known to be NP-hard.

2.5.1 Classifications

To better understand the chosen solution for multiprocessor scheduling in SoC, I briefly
introduce some notations and classifications of the various multiprocessor scheduling ap-
proaches proposed during the years.

The programming styles used to program threads and processes may in general be out-
lined in Table 2.1.

Moreover, the paradigm of coding and the implementation of the scheduler depends
heavily on the communication architecture (Shared memory or Message passing) and on
the visibility to the programmer of the interconnection network.

In [27], the authors analyze the characteristics of the scheduling algorithms for parallel
computers identifying the four most commonly used or advocated techniques for program-
ming, that are global queue, variable partitioning, dynamic partitioning and gang schedul-
ing. Then, a system usually schedules its tasks using time slicing techniques (jobs share
the use of the same processors) and space slicing techniques (each processor is allocated
to a specific job until completion), or a combination of both. Usually, preemptive real-time
systems uses time slicing techniques, without space slicing. Systems using time slicing
techniques can also be classified on their implementation approach: in fact, there exist
systems where all the CPUs are considered independent (approaches such as global or lo-
cal queues are used), and systems where the CPUs are not considered independent (gang
scheduling is used).

The schedulers can also be divided depending on the fact they allow or not the migration

of the tasks. The term migration is related to the ability to resume a job on another processor
after preemption. Usually this capability depends heavily on the performance and on the
architecture of the system: allowing migration means also that the contents of the CPU
cache have to be thrown away every time a job change processor. For this reason, the
literature has developed a class of schedulers, called cache-affinity schedulers, that tries
to optimize the cache performance scheduling a task on the same processor it executed
when it was preempted. Tasks are partitioned on the various CPUs using bin-packing like
schedulers when migration is not allowed.

32 CHAPTER 2. BACKGROUND

T1 T2 T3 T4

3 2 2 2

T9 T5 T6 T7

9 4 4 4

T8

4

Figure 2.2: The task set is composed by nine tasks with precedence constraints and a
priority proportional to their sequence number. The execution time of each task is shown
near the balls.

2.5.2 Why Real-Time Multiprocessor scheduling is difficult?

When the problem of Real-Time scheduling is applied to multiprocessors, a number of
difficulties arises. While Rate-Monotonic (RM) and Earliest deadline First (EDF) schedul-
ing [44] are optimal for uniprocessor systems with fixed-priority and dynamic-priority as-
signment, it is, unfortunately, not so for multiprocessor systems. In fact, the problem of
optimally scheduling a set of periodic tasks on a multiprocessor system using either fixed-
priority or dynamic priority assignment is known to be NP-complete [42]. Hence, any
practical solution to the problem of scheduling real-time tasks on multiprocessor systems
presents a trade-off between computational complexity and performance.

Moreover, a negative result comes also from [25]. In particular, if we do not have a
priori knowledge of any one of the following parameters:

• deadlines

• computation time

• start-times

then for any algorithm one might propose, one can always find a set of tasks which cannot
be scheduled by another algorithm. The authors proved this assertion by a set of adversary
arguments using then a nice scheduling game. Moreover, they proved that EDF is optimal
if all the tasks have unit computation time.

The complexity of the multiprocessor scheduling is also showed by some counterexam-
ples and some nice situations, like that reported by [32, 17], that we report here in Figures
2.2, 2.3, 2.4, 2.5, and 2.6.

Moreover, the scheduling problem may also be complicated if precedence relations,
resource sharing and distributed systems are taken into account; to solve these problems
some type of heuristics are used. For example in [21], heuristics putting communication
overhead and other items into the objective function can result in a good trade-off.

Recently, the periodic scheduling problem has been solved using the notion of propor-
tionate progress, or PFairness, and also interesting bounds have been found in the case of
uniform multiprocessors (e.g.,[11, 9], and other marvelous works by the same authors).

2.5. RT SCHEDULING ON MULTIPROCESSORS 33

T1

T2

T3

T4

IDLE

T9

T5

T6

T7

T8

Figure 2.3: The optimal schedule (finishing time = 12).

T1

T2

T3

T4

IDLE

T9

T5

T6

T7

T8 IDLE

Figure 2.4: The schedule obtained changing task priorities (the order now is T1, T2, T4,
T5, T6, T3, T9, T7, T8) (finishing time = 14).

T1

T2

T3

T4

IDLE

T9T5

T6

T7

T8

IDLE

IDLE

Figure 2.5: The schedule obtained adding a new processor (finishing time = 15).

T1

T2

T3

T4

IDLE

T9

T5

T6

T7

T8

IDLEI

Figure 2.6: The schedule obtained reducing the execution times by 1 (finishing time = 13).

34 CHAPTER 2. BACKGROUND

Another good work have been done by Bjorn Andersson his PhD Thesis [4] on the the-
oretical limits for the utilization in task sets for non-partitioned and partitioned scheduling
in multiprocessors.

2.5.3 Bin-Packing Algorithms

This class of Real-Time scheduling algorithms is characterized by the absence of migration
(because the overhead of a migrative solution may impose), and usually they consider the
multiprocessor system as a set of CPU that have to be “filled” with independent tasks.

The various scheduling algorithms tries to schedule each processor with the classical
uniprocessor scheduling schemes, like RM and EDF, partitioning the task set using heuris-
tics to reduce the computation time (that remain NP-hard as the bin-packing problem).

Usually the goodness of the heuristics is measured using the ratio between the number
of processors used by the proposed heuristic and the optimal (clairvoyant) schedule (see
[16]).

In the next paragraphs, some results about bin-packing schedulers are summarized. In
[32] a set of classical bin-packing heuristics are presented. The authors also analyze the
cases of precedence relationships and resource constraints. In [49] the authors first did
an extension of the guarantee test proposed by Liu and Layland (the same formula was
recently found also by Bini et al. in [15]) and they use the result as the guarantee test for
the classical First Fit and Best Fit bin packing heuristics. They propose another variant in
which the tasks are divided in two subsets depending on their utilization factor Ui = Ci

Ti
,

where Ci is the worst case execution time of the task τi and Ti is its period. In [38] the
authors proposed a technique in which a bin-packing technique is computed off-line and
then applied every GCD of the task’s periods. As PFair schedulers this scheme allow to
obtain a full utilization of all the processors, but retain the problems of the use of a big
number of preemptions and the heavy use of migration.

2.5.4 Resource sharing protocols

The bin-packing heuristics introduced in the previous Section usually consider the tasks
to schedule as independent. While this assumption helps bounding the complexity of the
problem to well-known techniques, on the other hand the scenario is not as real as it should
to be used in real systems. In particular, these works do not consider the need of coopera-
tion and synchronization between tasks.

The Real-Time literature proposed a number of solutions which solve the problem of
sharing resources between tasks on multiprocessor systems. The solutions can be grouped
fundamentally in three categories, briefly described in the following subsections:

• Classical blocking approaches.

• Wait-free approaches.

• Spin-lock and mixed approaches.

2.5. RT SCHEDULING ON MULTIPROCESSORS 35

2.5.4.1 Classical blocking approaches

These approaches are based on extensions of Priority ceiling and Dynamic Priority Ceiling
for uniprocessors.

Usually a new protocol is derived, the blocking factors are quantified, giving then a
guarantee test similar to uniprocessors. These protocols subsumes either a shared memory
multiprocessor or a distributed multiprocessor. Tasks are statically assigned to the proces-
sors and scheduled with RM or EDF. The resources are also divided in local resources or
global resources depending on the fact that the tasks that use the resource are assigned to
one or more than one processor.

The main algorithms that falls in this class are the MPCP and the DPCP resource shar-
ing protocols [51]. I will describe these two protocols in chapters 4 and 5, comparing
their performance against my scheduling algorithms for multiprocessor scheduling. Other
interesting works in this field are [19, 46].

2.5.4.2 Wait Free approaches

The Wait-free approaches offers an attractive alternative to lock-based schemes because
they eliminate priority inversion and its associated problems. The problem with such ap-
proaches is that access to such objects are not guaranteed to complete in a bounded time.
Nonetheless, schedulability conditions are developed in [54] to demonstrate the applicabil-
ity of lock-free objects in hard real-time systems.

Another way to implement a lock-free resource sharing protocol is to apply the con-
cept of processor consensus. Basically the writer and the reader come to an agreement on
accessing the shared data before proceeding to carry out their respective operations. For ex-
ample, in [20] the authors propose a lock-free protocol based on processor consensus very
similar to the uniprocessor CAB protocol used by some uniprocessor Real Time Kernels
(see [18, 40, 30]).

2.5.4.3 Spin-lock and mixed approaches.

The orthogonal approach to the lock-free protocols and to the lock protocols for resource
sharing is the spin-lock approach. When a process want to lock a resource and the resource
is currently used, the blocked process is not preempted but it still remain into execution
busy waiting the release of the lock. This protocol is very useful if the critical sections are
very short, whereas it is not usable when they are long, since the task simply waste time that
can be used for other processes. There exist a lot of protocols that are based to the basic
spin lock idea. For example, in [47] the authors proposes a configurable lock protocol
that may adapt the locking behavior from spin lock to blocking to fulfill the application
needs. Another interesting result is obtained in [60], in which the authors propose a spin
lock protocol whose performances are independent from the preemption overhead that the
blocked tasks have to experience due to the preemption of a task that, while busing waiting
for the lock, is preempted by another high priority task. The proposed solution is called
SPEPP and it is based on the idea that a spinning processor may execute the critical section
of another task that is currently preempted on another processor.

36 CHAPTER 2. BACKGROUND

In Chapter 4 I will describe the MSRP protocol, that extends the SRP protocol to mul-
tiprocessor using spin-lock techniques.

2.5.5 Task Migration

The term migration is related to the ability of an operating system to resume a job on
another processor after preemption. It is useful to implement an operating system that allow
task migration. Intuitively a CPU, when it finishes the tasks currently allocated on it for
scheduling, can resume the execution of a preempted thread that was previously executed
on another processor. In that way, the system load can be balanced, reducing the mean
response time of the system.

Unfortunately, the task migration has some disadvantage due to different factors, like:

• Incremented system complexity (some architectures as, for example, the NUMA
architecture, does not allow simple task migration).

• Communication overhead (if the architecture does not support directly task migra-
tion, a lot of data has to be passed through the communication network).

• Incremented number of cache miss (when a task migrates from a CPU to another, the
new cache does not contain any memory reference for the new task).

In large-scale supercomputers traditionally all the two approaches (migratory and non-
migratory) have been pursued (see [27]), whereas the literature of Real-Time Scheduling
tried to use fundamentally a non-migratory approach.

The other algorithms usually fall in two categories: a category that includes a set of
algorithms that are intrinsically preemptive with migration (such as [11] and [38]) and
other algorithms such as partitioned approaches based on bin-packing that usually tries not
to use migration. The latter solution allow to reduce the multiprocessor scheduling problem
to a uniprocessor scheduling problem that has been studied over the years and for that exists
optimal results.

Other works have also shown the influence of migration on the schedulability of real-
time systems. In [39] the authors analyzes the power of the scheduling algorithms which do
not allow migration, giving an upper and a lower bound based on a worst case behavior and
based on an algorithm that build non migratory schedules. Then, in [37], the cited results
have been improved using a conflict graph and a theorem of the extremal graph theory.
In that work, the authors gives a way to build a non-migratory schedule starting from a
migratory one. They also prove that a migrative scheduler on m processor can always be
transformed in a non-migrative scheduler on 3m-2 processors.

Finally, recently there have been some work on systems with restricted interproces-
sor migrations ([10], and successive works by the same authors). These works may be
promising for small multiprocessor systems (such as Janus [28] or Altera NIOS II [22])
that cannot allow efficient migration of a job during its execution, but that can migrate
instances of tasks between processors if needed.

Chapter 3

Single processor architectures

This chapter describes the design of a novel scheduling algorithm, called SRPT, that allows
the use of one single stack for all the real-time tasks under dynamic priority scheduling
(Earliest Deadline) schemes, and integrates preemption threshold techniques to minimize
the preemptiveness between tasks.

After that, an optimization procedure for assigning the scheduling parameters (pre-
emption thresholds and grouping of tasks in non-preemptive sets) will be described. The
technique aims to the minimization of the maximum stack size without jeopardizing the
schedulability of the task set.

This chapter is composed by three sections: Section ?? introduces the terminology and
the basic assumptions made in this chapter; Section 3.1 describes the integration of SRP
with the preemption threshold technology, and finally Section 3.2 describes the optimiza-
tion algorithm I developed to find a grouping of tasks with minimal stack utilization.

3.1 Integrating Preemption Threshold with the SRP

The idea behind this work is based on the concept of non-interleaved execution. As ex-
plained in Section 2.4.3, using a protocol called Stack Resource Policy (SRP) [8], task
executions are perfectly nested: if task A preempts task B, it cannot happen that B executes
again before the end of A. In this way, it is possible to use a single stack for all the exe-
cution frames of the tasks. An example of this behavior is depicted in Figure 3.1.a where
three periodic tasks τ0, τ1 and τ2 are scheduled by SRP. In the upper part of the figure, the
ascending arrows denote the task activations, whereas the descending arrows denote the
task deadlines. In the lower part, the system stack size is plotted against the time.

Next, comes the following observation: if task preemption is limited to occur only
between selected task groups, it is possible to bound the maximum number of task frames
concurrently active in the stack, therefore reducing the maximum requirement of RAM
space for stack (which is the only way the OS can limit RAM requirements). In the example
of Figure 3.1.b, preemption is disabled between τ2 and τ1 and, consequently, only two task
frames can be active at the same time: thus I can decrease the amount of memory to be
reserved for the system stack. This behavior can be obtained using the preemption threshold

37

38 CHAPTER 3. SINGLE PROCESSOR ARCHITECTURES

Stack Size

b)a)

0 2 4 6 8 10 12 0 2 4 6 8 10 12

2
τ

τ
0

τ
1

τ
0

τ
1

2
τ

2
ττ

1

τ
0

������������������������
������������
��������������������

������������������������

	�		�	
�

�

����������������������������

��������������������

���������������������������� ����������
������

Figure 3.1: Two different schedules for the same task set: a) full-preemptive schedule; b)
preemption is disabled between τ1 and τ2.

technique, that has been formulated by Saksena and Wang [63, 58] in the context of the
fixed priority scheduling of independent tasks in uniprocessor systems. The mechanism
has been implemented (in a proprietary form) in the SSX kernel from REALOGY [24] and
the ThreadX kernel from Express Logic [26], both targeted to embedded system with small
code requirements, and has been integrated into the OSEK/VDX standard [33].

This thesis extends these ideas along many directions. First, I consider dynamic priority
scheduling instead of fixed priority. In particular, the algorithms presented in this chapter
are based on the Earliest Deadline First (EDF) scheduling algorithm, which achieves better
processor utilization with respect to fixed priority schedulers. Second, the objective of the
algorithm presented in Section 3.2 is not to find the smallest number of non-preemptive
groups that keep the set schedulable, but rather to assign tasks to non-preemptive groups
in such a way that the overall requirement of stack space is minimized (which means in-
troducing the stack requirements of each task as a factor). Third, tasks are not considered
independent but are allowed to interact through mutually exclusive critical sections (i.e.
shared memory).

Note that the techniques presented in this chapter will be extended in Chapter 4 to
homogeneous multiprocessor systems, where tasks allocated on different processors can
interact through shared memory.

My approach is based on the observation that the threshold values used in the Pre-
emption Threshold mechanism are very similar to the resource ceilings of the SRP. In the
SRP, when a task accesses a critical section, the system ceiling is raised to the maximum

3.1. INTEGRATING PREEMPTION THRESHOLD WITH THE SRP 39

between the current system ceiling and the resource ceiling. In this way, an arriving task
cannot preempt the executing task unless its preemption level is greater than the current
system ceiling. This mechanism can be thought as another way of limiting preemptability.

Thus, if I want to make task τi and task τj mutually non-preemptive, I can let them share
a pseudo-resource ρk: the ceiling of resource ρk is the maximum between the preemption
levels of τi and τj . At run time, instances of τi or τj will lock ρk when they start executing
and hold the lock until they finish.

Suppose task τi needs a set of pseudo-resources ρ1, . . . , ρh. When τi starts execu-
tion, it locks all of them: in the SRP, this corresponds to raising the system ceiling to
maxk ceil(ρk). I define this value as the preemption threshold γi of task τi. Now, the
problem of finding an optimal assignment of thresholds to tasks is equivalent to finding the
set of pseudo-resources for each task. In the remaining of this thesis, I will indicate this
modification of the SRP as SRPT (SRP with Thresholds).

Since SRPT can be thought as an extension of the SRP that add pseudo-resources com-
patibles with the traditional SRP resources, it can be easily shown that SRPT retains all the
properties of SRP.

The feasibility test for SRPT is given by one of Equations (2.3) and (2.4) in Section
2.4.3, except for the computation of the blocking time, that is:

Bi = max(Blocal
i , Bpseudo

i)

where Blocal
i and Bpseudo

i are respectively the blocking time due to local resources and the
blocking time due to pseudo-resources.

Blocking due to local resources. Assuming relative deadlines equal to periods, the max-
imum local blocking time for each task τi can be calculated using Equation (2.5) in
Section 2.4.3. This can be easily proved: supposing the absence of pseudo-resources,
the SRPT reduces to the SRP, and the blocking times can be calculated using equa-
tion 2.4 in Section 2.4.3.

Blocking due to pseudo-resources. A task τi may experience some additional blocking
time due to the non-preemptability of lower priority tasks. This blocking time can be
computed as follows:

Bpseudo
i = max

τj∈T
{Cj |λi > λj ∧ λi ≤ γj}

The non-preemptability of lower task is due to the use of pseudo-resources. The
formula of Bpseudo

i is another way of writing formula 2.5 in Section 2.4.3, because:

• γi is maxk ceil(ρk) = ceil(ρk′

) where k′ ∈ {k : γi = ceil(ρk)}

– Ci is the critical section duration for resource k′ (remember that pseudo-resources
are locked when an instance starts and is unlocked when an instance finish);
moreover, I can consider only the k′ critical section for each task since they all
have length equal to Ci and ∀ k, ceil(ρk) ≤ ceil(ρk′

) = γi.

40 CHAPTER 3. SINGLE PROCESSOR ARCHITECTURES

Example. Consider the example of Figure 3.1.b. The three tasks τ0, τ1 and τ2 are
sporadic, and their computation times and minimum interarrival times are respectively
C0 = 3, T0 = 12, C1 = 3, T1 = 8, C2 = 2, T2 = 6. By definition of preemption
level, we have λ0 < λ1 < λ2. I want to make τ1 and τ2 mutually non preemptive, so
I introduce a pseudo-resource ρ0. Every time τ1 (or τ2) starts executing, it locks ρ0, and
holds the lock until it finishes. The ceiling of ρ0 is max(λ1, λ2) = λ2. By definition of
preemption threshold, γ1 = γ2 = ceil(ρ0) = λ2, whereas γ0 = λ0.

In this way, we have two preemption groups, the first consists of tasks τ1 and τ2, the
second contains only τ0. Hence, the blocking time of τ2 is:

B2 = Bpseudo
2 = C1 = 3

and, substituting in Equation(2.3), the system results schedulable.

The algorithm works as follows (see Figure 3.1.b):

• At time t = 0, task τ0 is activated and starts executing. The system ceiling Πs is
equal to γ0.

• At time t = 2, task τ1 arrives, and since its priority is the highest and Πs = γ0 < λ1,
it preempts task τ0. Now the system ceiling is equal to Πs = γ1.

• At time t = 3, task τ2 arrives, and even though it has the highest priority, its preemp-
tion level λ2 is not higher than the current system ceiling. Hence, according to SRP
it is blocked, and τ1 continues to execute.

• At time t = 5, task τ1 finishes, and the system ceiling returns to the previous value
(γ0). At this point, task τ2 can start executing. The system ceiling is raised to γ2.

Notice that, if τ0 is also included in the same preemption group as τ1 and τ2, the system
remains schedulable and the stack size can be reduced further. �

The SRPT algorithm presents two main advantages:

• it seamlessly integrates access to mutually exclusive resources and preemption thresh-
old with a very little implementation effort and with no additional overhead;

• it permits to implement the preemption threshold mechanism on top of EDF.

The last issue can lead to further optimizations: the EDF scheduling algorithm has been
proven optimal both in the preemptive [44, 12, 13] and in the non-preemptive1 version
[36]; furthermore, in [43] the authors claim that EDF+SRP is an optimal algorithm for
scheduling sporadic task sets with shared resources. Since EDF is optimal, it is more likely
that a given assignment of preemption thresholds produces a feasible schedule. Therefore,

1The non-preemptive version of the EDF algorithm is optimal for sporadic task sets among all the non-idle
(work conserving) non-preemptive scheduling algorithms.

3.2. OPTIMIZING STACK USAGE IN UNIPROCESSORS 41

I expect a better chance to trade processor utilization with a reduction in the maximum
stack space requirement by reducing preemption.

It is clear that in this methodology I am sacrificing task response time versus memory
size. However, the response time of some task could be critical and should be maintained
as low as possible. In this case, it is possible to reduce the relative deadline of that task
to increase its responsiveness. For simplifying the presentation, I do not consider here the
case of tasks with deadline smaller than the period.

3.2 Optimizing stack usage in Uniprocessors

In this section I present an algorithm that allows the optimization of the total stack space
requirement of a set of tasks using the SRPT protocol on uniprocessor systems. The al-
gorithm presented in this section implicitly uses pseudo resources to raise the threshold of
a task. To simplify the presentation, I do not consider here the use of shared resources.
Shared resources can be taken into account using the techniques presented in Section 2.4.4.

An extension to this algorithm that includes an allocation algorithm for multiprocessors
will be presented in Section 4.3.

The algorithm requires each task to be characterized by its worst case execution time
Ci, its period θi, its maximum stack requirement (in bytes) si and its preemption level
λi. At the end of the optimization algorithm, each task τi will be assigned a preemption
threshold γi and will be inserted in a non-preemptive group Gk. The goal of the optimiza-
tion algorithm is:

step 1 to find an assignment of preemption thresholds to tasks, maintaining the feasibility
of the schedule and

step 2 to find an optimal set of non-preemptive groups that minimizes the total stack size,
maintaining the feasibility of the schedule.

Notice that unfortunately a preemption threshold assignment does not determine univocally
a set of non-preemptive groups. Hence, after assigning the preemption threshold I still do
not know the maximum number or tasks that can be present on the stack at the same time
and how much memory must be allocated for the stack. For this reason, I need to perform
step 2.

The optimization algorithm works as follows:

• Tasks are ordered by decreasing preemption level;

• Step 1: I use the algorithm described in [58] to explore the space of possible threshold
assignments2: starting with the task having the highest preemption level, I try to raise
the preemption threshold γi of each task τi, to the maximum level that allows to
preserve the schedulability of all tasks. (i.e. incrementing the preemption threshold
is allowed only if the task set remains schedulable.) The algorithm stops when a
further increment on any task makes the system not schedulable.

2Since EDF is optimal, there is no need to find an initial priority assignment for the task set.

42 CHAPTER 3. SINGLE PROCESSOR ARCHITECTURES

τ 1

τ 2

τ 3

τ 4

τ 5

τ 6

τ 7

τ 8 0

2

1

4

5

7

6

3

is iγ Mi
τ 1

τ 2

τ 3

τ 4

τ 5

τ 6

τ 7

τ 81

2

3

4

5

6

7

8

4
5

6
7

8

3

1

1

1

1

1

1

100

100

γ i

3

5

4

6

7

7

8

8

τ 1

τ 2

τ 3

τ 4

τ 5

τ 6

τ 7

τ 8

{}

{7}

{3}

index

{6}

{5,6}

{4,5}

{3,4}

{1,2}

iγ index

0

2

1

4

5

7

3

5

4

6

7

7

8

6

3

8

λ i

a) b) c) d)

Figure 3.2: An example: The minimum total stack size does not corresponds to the mini-
mum number of non-preemptive groups: a) Initial task set b) computation of the preemption
thresholds c) reordering d) computation of the maximal groups)

• Step 2: Given a feasible assignment of preemption thresholds, I partition the task set
into non-preemptive groups and compute the maximum required stack size.

My algorithm differs from the one in [58] in the final optimization objective: while the
algorithm in [58] tries to minimize the number of non-preemptive groups, my algorithm
accounts for the stack usage of each task and tries to minimize the total amount of required
stack. In fact, there are cases in which the maximum overall stack requirement does not
correspond to the minimum number of groups, as shown in the example of Figure 3.2. In
this example there are 8 tasks, all having a stack frame size of 1 except τ5 and τ7 which
have a stack frame size of 100 (Figure 3.2.a). The partition in non-preemptive groups
provided by algorithm OPT-PARTITION in [58] is G1 = {τ1, τ2}, G2 = {τ3, τ4, τ5},
G3 = {τ6, τ7, τ8}, which leads to a total stack size of 201. However, note that task τ7 and
task τ5 are mutually non-preemptive (in fact, λ5 < γ7 and λ7 < γ5). If we consider groups
G1 = {τ1}, G2 = {τ2, τ3}, G3 = {τ4, τ5, τ7}, G4 = {τ6, τ8} the total stack requirement
is 103. Note that, in this case, by using the solution with the minimum number of groups,
we would have overestimated the maximum stack requirement by a factor of 2.

Figure 3.2.b shows the result of the preemption threshold assignment phase for the
example. The preemption thresholds of all tasks (except τ1) are raised to the values in the
column marked as γi. The algorithm used to partition the task set into preemption groups
(step 2) is described in the remaining of this section. First some definition:

Definition 3 A representative task for a non-preemptive group is the task having the the

smallest threshold among all the tasks in the group.

In the following, Gi will denote a non-preemptive group with representative task τi.

Definition 4 A maximal group for task τi is the biggest non-preemptive group that can be

created having τi as a representative task.

3.2. OPTIMIZING STACK USAGE IN UNIPROCESSORS 43

Algorithm: FindMaximalGroups
foreach τi in T {

Mi = emptylist;

foreach τj in {τk : τk ∈ T and k > i}

if (λj ≤ γi) insert(Mi, j);

}

Figure 3.3: Algorithm for finding the maximal groups.

In the following, I denote with Mi the maximal group for task τi minus τi. For example,
if the maximal group for task τ1 is {τ1, τ2, τ3}, I denote M1 = {τ2, τ3}.

With this definitions, the algorithms in step 2 is the following:

• Tasks are ordered by increasing preemption thresholds, ties are broken in order of
decreasing stack requirements. For clarifying the algorithm, after ordering I rename
each task using an increasing index (see the example in Figure 3.2.c); this index will
be used from now on for identifying the tasks. Thus, is τi is assigned index j, in the
following it will be referred to as τj . Hence, according to the new ordering,

i < j ⇒ γi < γj ∨ (γi = γj ∧ si ≥ sj)

where si is the stack requirement for task τi.

• The algorithm starts by finding the set Mi for each task τi. Maximal groups are com-
puted with the algorithm shown in Figure 3.3. In Figure 3.2.d, the Mi are computed
for each task and are shown in the last column.

• Then, the algorithm calls a recursive function that allocates all tasks to non–preemptive
groups. The function, called create_group(), recursively computes all possible par-
titions of the tasks into non-preemptive groups, and computes the maximum stack
requirement for each partition. The minimum among these requirements will be the
maximum memory for the stack that we need to allocate in the system.

Enumerating all possible partitions in non-preemptive groups clearly takes exponential
time. I claim that the problem of finding the required stack memory size, given a pre-
emption threshold assignment, is NP-hard. This claim is supported by the observation that
the problem is somewhat similar to a bin-packing problem, which is known to be NP-hard.

Hence, a great effort has been devoted in trying to reduce the mean complexity of
Algorithm creategroup by pruning as soon as it is possible all the solutions that are
clearly non-optimal. In the following, I give a description of Algorithm creategroup, and
proof sketches of its correctness.

The pseudo-code for creategroup is shown in Figure 3.4. The algorithm is recursive:
at each level of recursion a new non-preemptive group is created. The following global
variables are used: minstack contains the value of the candidate optimal solution and is
initialized to the sum of the stack requirements of all tasks; F is the set of tasks that have
not yet been allocated; G1, . . . , Gn are the non-preemptive groups that will be created by

44 CHAPTER 3. SINGLE PROCESSOR ARCHITECTURES

the function; M1, . . . , Mn are the maximal groups. The parameters of creategroup are
τg , which is the representative task based on which a new group Gg will to be created and
sum that is the sum of the stack requirement of the already created groups.

The key point in understanding how creategroup works is that the space of candidate
solutions is explored in a well defined order: in particular, all the task sets mentioned so
far are ordered by increasing preemption threshold (ties are broken in order of increasing
stack requirements).

creategroup is first invoked with τ1 (that is the task with the lowest preemption
threshold) and sum = 0.

When invoked (at the k-th level of recursion), function creategroup builds a non-
preemptive group for task τg by inserting all tasks from Mg that are not allocated yet (lines
3 - 10).

Now, if there are still tasks to be allocated (line 12), creategroup tries to recursively
call itself in order to compute the next group. However, this recursion is not performed if
I am sure that no better solution can be found in this branch (Condition 1 at line 13 and
Condition 2 at line 15).

Then, the algorithm does backtracking, by extracting tasks from Gg and inserting them
back in F , in order to explore all possible configurations for this branch (lines 21 - 26).
Condition 3 at line 22 further reduces the number of solution to be checked by pruning
some configuration of Gg that cannot improve the optimal solution.

If this is the last level of recursion for this branch (it happens when F is empty), I
check whether the current candidate solution is optimal, and if it is the case, I save the
value of this solution in minstack and the current group configuration by calling function
NewCandidate(). Notice that, before returning to the previous recursion level, all tasks
are removed from Gg (lines 36 - 37).

Now I describe the conditions that allow creategroup to prune non-optimal branches.
Let me define the required tasks as the representative tasks of the non-preemptive groups
found by Algorithm OPT-PARTITION (described in [58]). These tasks are important be-
cause in every possible partition, they will always be in different non-preemptive groups.
Hence, the solution is bounded from below by the sum of the stack sizes of the required

tasks.

Condition 1 is false if the sum of newsum and the size of the stack of the required tasks
that have not been allocated yet is greater than or equal to minstack.

The correctness of this condition is trivially proven.

Condition 2 is false when γg = γf .

Theorem 1 If Condition 2 does not hold, (i.e. γg = γf), then any solution with τf as

representative task of a new non-preemptive group cannot achieve a solution with a lower

stack requirement than the already explored solutions.

Proof.
First I will prove that Gf ⊂ Mg. Consider τi ∈ Gf , it follows that λi ≤ γf , λf ≤ γi

and γf ≤ γi.1 Since γf = γg , it follows that λi ≤ γf ≤ γg, and λg ≤ γg = γf ≤ γi.

3.2. OPTIMIZING STACK USAGE IN UNIPROCESSORS 45

int minstack =
P

si;
F = T ;
∀i Gi = {};
1: creategroup(τg, sum) {
2: int newsum;
3: Gg.insert(τg);
4: τi = Mg.queryFirst();
5: end = false;
6: do {
7: ∀τj ∈ Mg if (τj ∈ F and j ≥ i) {
8: Gg.insert(τj);
9: F.remove(τj);

10: }
11: newsum = sum + stackUsage(Gg);
12: if (!empty(F)) {
13: if (condition1) {
14: τf = F.removeFirst();
15: if (condition2)
creategroup(τf,newsum);
16: else {
17: F.insert(τf);
18: end = true;
19: }
20: }
21: if (Gg != {τg} and !end) {
22: while (Gg 6= τg and condition3) {
23: τh = Gg.removeLast();
24: F.insert(τh);
25: }
26: τi = Mg.queryNext(τh);
26: } else end = true;
28: } else {
29: if (newsum < minstack) {
30: minstack = newsum;
31: NewCandidate();
32: }
33: end = true;
34: }
35: } while (!end);
36: F.insertAll(Gg);
37: Gg.removeAll();
38: }

Figure 3.4: The create_group() recursive function.

46 CHAPTER 3. SINGLE PROCESSOR ARCHITECTURES

As a consequence, τi and τg are mutually non preemptive, and that τi is in Mg. Hence,
Gf ⊂ Mg.

Since the current iteration that have τg as a representative tasks visits all the subsets of
Mg, and Gf ⊂ Mg it follows that any configuration produced by calling recursively the
creategroup algorithm with representative task τf leads to an overall stack usage that
is bounded from below by the following expression:

stackUsage(Gg) + stackUsage(Gf) ≥

≥ stackUsage(Gg ∪ Gf) ≥ stackUsage(Mg).

However, Mg is a branch that has already been explored (it is the first branch that
algorithm creategroup explores). Hence, the theorem follows. �

Condition 3 is true when the task with the maximum stack requirement in Gg has been
removed, that is when the stack usage of Gg has been reduced.

Theorem 2 All the branches in which the task with the maximum stack requirement has

not been removed from Gg cannot lead to a better solution than the already explored ones.

Proof Sketch.
The basic idea is based on the fact that solutions are explored in a certain order. In particu-
lar, the first solution is the greedy solution, where Gg is the biggest non-preemptive group
that can be built.

When considering the next configuration for Gg, it must have a lower stack requirement
than the previous one. In fact, all solutions in which Gg has the same stack requirement are
bounded from below by the first solution explored. Hence, Condition 3 forces the removal
of tasks from Gg until its stack requirement is reduced. �

As an example, a typical run of the algorithm on the task set of Table 3.2 will work as
follows:

• To find the first solution, three recursive calls are needed, creating groups G0 =

{τ0, τ1, τ2}, G3 = {τ3, τ4, τ5}, and G6 = {τ6, τ7}, with a total stack of 201. This
first solution is equal to that found by the algorithm OPT-PARTITION proposed in
[58].

• Then, group G6 is rolled back. Task 5 is removed from group G3, and τi is set
to the next task (τ5 will not be reconsidered for inclusion in the next group con-
figuration). The recursive calls produce groups G0 = {τ0, τ1, τ2}, G3 = {τ3, τ4},
G5 = {τ5, τ6}, G7 = {τ7}.

• Group G7 is rolled back and τ6 is removed from group G5. The recursive calls
produce groups G0 = {τ0, τ1, τ2}, G3 = {τ3, τ4}, G5 = {τ5}, G6 = {τ6, τ7}.

• Then, groups G6 and G5 are rolled back, and τ4 is removed from G3. Now τi is
moved past τ4, and τ5 is re-inserted into G3. Next, τ4 and τ7 are chosen as rep-

3.3. EXPERIMENTAL EVALUATION 47

0

20

40

60

80

100

120

140

160

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
ea

n
nu

m
be

r o
f l

ea
fs

Utilization Factor

Ntask = 30
Ntask = 40
Ntask = 50

Figure 3.5: Mean number of explored solutions for different task set sizes.

resentative tasks giving groups G0 = {τ0, τ1, τ2}, G3 = {τ3, τ5}, G4 = {τ4, τ6},
G7 = {τ7}.

• Again, G7 is emptied and τ6 is removed from G4. Group G6 is created, giving groups
G0 = {τ0, τ1, τ2}, G3 = {τ3, τ5}, G4 = {τ4}, G6 = {τ6, τ7}.

• At this point, groups G6 and G4 are removed; τ5 is also removed from G3. Then,
groups G4 and G7 will be created, giving groups G0 = {τ0, τ1, τ2}, G3 = {τ3},
G4 = {τ4, τ5, τ6}, G7 = {τ7}.

• After some other non optimal solutions, the first recursive call of creategroup() will
remove τ2 from G0, letting the creation of group G2 = {τ2, τ3, τ4} that will bring
the algorithm to the optimal solution.

As already mentioned, the complexity of the algorithm is exponential in the number of
tasks. However, since the number of groups in the optimal solution is often small, the
number of combinations to evaluate is limited. Thanks to the efficiency of the pruning,
the number of solutions is further reduced. In Figure 3.5 and 3.6 the average number of
explored solutions (leafs) is plotted against the load of the system and for different number
of tasks: the resulting average number is quite low even for large task sets. I conclude that,
for typical embedded systems in the domain of automotive applications where the number
of tasks is relatively small, the problem is tractable with modern computers.

3.3 Experimental evaluation

I extensively evaluated the performance of the optimization algorithms on a wide range of
task set configurations. In every experiment, tasks’ periods are randomly chosen between
2 and 100. The total system load U ranges from 0.5 to 0.99, with a step of 0.01: the worst

48 CHAPTER 3. SINGLE PROCESSOR ARCHITECTURES

0

2000

4000

6000

8000

10000

12000

14000

16000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
ea

n
nu

m
be

r o
f c

ut
s

Utilization Factor

Ntask = 30
Ntask = 40
Ntask = 50

Figure 3.6: Mean number of cuts for different task set sizes.

case execution time of every task is randomly chosen such that the utilization factors sums
up to U. The number of tasks in the task set ranges from 1 to 100, and the stack frame
size is a random variable chosen between 10 and 100 bytes excepts for the experiments of
Figure 3.9 in which the stack size ranges between 10 and 400 bytes.

In Figure 3.7 the average number of preemption groups is shown. Figure 3.8 is a cross-
cut section of Figure 3.7.

Note that:

• The figure has a maximum for NTASK = 4 and U=0.99. As the number of tasks
increases, the number of preemption groups tends to 2; this can be explained with
the fact that, when the number of tasks grows, each task has a smaller worst case
execution time; hence, the schedule produced by a non-preemptive scheduler does
not differ significantly from the schedule produced by a preemptive scheduler. On
the contrary, with a small number of tasks, the worst case execution time of each
task is comparable with the period; hence it is more difficult to find a feasible non-
preemptive schedule.

• Figure 3.7 shows how the average number of preemption groups is almost indepen-
dent of the utilization factor and of the number of tasks, except for a very limited
number of tasks (< 10) and a high utilization factor (> 0.8).

• The average number of groups is not only constant but also very close to 2. This
means that the application of Preemption Threshold techniques, together with EDF,
allows a great reduction in the number of preemption levels and great savings in the
amount of RAM needed for saving the task stack frames. RAM reduction in the
order of 3 to 16 times less the original requirements can easily be obtained.

3.3. EXPERIMENTAL EVALUATION 49

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Task set total utilization factor 0

10
20

30
40

50
60

70
80

90
100

Number of tasks

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3

Mean number
of non preemptive groups

Figure 3.7: Average number of preemption groups.

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
ea

n
nu

m
be

r o
f n

on
 p

re
em

pt
iv

e
gr

ou
ps

Task set total utilization factor

Ntask=4
Ntask=8

Ntask=16
Ntask=30
Ntask=60
Ntask=99

Figure 3.8: Average number of preemption groups for different task set sizes.

50 CHAPTER 3. SINGLE PROCESSOR ARCHITECTURES

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
er

ce
nt

ag
e

of
 ta

sk
 s

et
 fo

r t
ha

t a
 fi

rs
t o

pt
im

iz
at

io
n

gi
ve

s
an

 o
pt

im
al

 re
su

lt

Task set total utilization factor

Stack size from 10 to 20
Stack size from 10 to 50

Stack size from 10 to 100
Stack size from 10 to 200
Stack size from 10 to 400

Figure 3.9: Ratio of improvement given by my optimization algorithm.

In Figure 3.9, I compare the optimization algorithm presented in [58] (which does not
take into account the stack frame size of the tasks) and the algorithm, to show the improve-
ment in the optimization results. The figure shows the fraction of experiments where the
optimal solution has been found by the original algorithm. The ratio appears as a function
of the system load and for different stack sizes. In most cases (from 60% to 80%), the
algorithm proposed in [58] finds the optimal partition of the task set in preemption groups.
This ratio decreases as the load increases and as the range of the stack size requirements is
widened.

Chapter 4

Homogeneous multiprocessors
architectures

This chapter describes the design of the MSRP algorithm, a scheduling algorithm for ho-
mogeneous multiprocessors. MSRP allows tasks to share the stack on the same CPU re-
ducing the memory footprint needed on the global system, and allows the use of local and
global resources without jeopardizing the real-time scheduling guarantees imposed in the
design of the real-time application. The algorithm can be easily extended to use preemption
thresholds to further reduce stack usage. An allocation algorithm is also proposed to allow
tasks to be statically mapped on the various processors with the final goal of reducing the
overall memory required by the system.

This chapter also contains an experimental evaluation that compares the performance
of my algorithm with a solution based on Rate Monotonic and MPCP in the context of
the Janus multiple processor architecture. I report on two sets of experiments: the first
addresses a range of generic task configurations to see if one of the algorithms can clearly
outperform the other. The results show MSRP to be better for random task periods but
are probably not conclusive. Later, I focus on a more application-specific (also more re-
strictive) architecture design representing a typical automotive application: a power-train
controller. In this case, MSRP clearly performs better. The performance gap between
the two policies can be further increased when considering that MSRP is much simpler to
implement, it has a lower overhead, and it allows RAM memory optimization.

This chapter is composed by three sections: Section 4.1 introduces the terminology and
the basic assumptions made in this chapter, and recalls the basics of MPCP scheduling;
Section 4.2 describes the MSRP algorithm and the related schedulability analysis; Section
4.3 describes the allocation algorithm; Section 4.4 presents a comparison between MPCP
and MSRP, and finally Section 4.5 describes an evaluation of MSRP, and its comparison
with MPCP on synthetic loads and on an automotive application scenario.

51

52 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

4.1 Background

This section is divided in two parts: the first part of this section introduces the terminology
used through this chapter, and it is an extension of the terminology described in Section
??; the second part recalls the MPCP scheduling algorithm that will be later used for a
comparison with MSRP.

4.1.1 Basic assumption and terminology

The system consists of a set T = {τ1, τ2, . . . , τn} of real time tasks to be executed on a
set P = {P1, . . . , Pm} of processors. The subset of tasks assigned to processor Pk will be
denoted by TPk

⊂ T .

A real time task τi is a infinite sequence of jobs (or instances) Ji,j . Every job is char-
acterized by a release time ri,j , an execution time ci,j and a deadline di,j and a priority
pi.

A task can be periodic or sporadic. A task is periodic if the release times of two con-
secutive jobs are separated by a constant period; a task is sporadic when the release times
of two consecutive job are separated by a variable time interval, with a lower bound, also
called minimum interarrival time.

Without loss of generality, I use the same symbol θi to indicate the period of a periodic
task and the minimum interarrival time of a sporadic task τi. In the following a task will
be characterized by a worst case execution time Ci = max{ci,j} and a period θi. I assume
that the relative deadline of a task is equal to θi: thus, di,j = ri,j + θi.

Tasks can access mutually exclusive resources through critical sections. Let R =

{ρ1, . . . , ρp} be the set of shared resources. The k–th critical section of task τi on resource
ρj is denoted by ξj

ik and its maximum duration is denoted by ωj
ik.

Finally, I suppose that tasks have already been allocated to processors. Depending on
this allocation, resources can be divided in local and global resources. A local resource
is used only by tasks belonging to the same processor, whereas a global resource is used
by task belonging to different processors. A critical section protecting a global resource is
called global critical section or gcs.

4.1.2 The MPCP Multiprocessor Priority Ceiling Protocol

The Multiprocessor Priority Ceiling Protocol (MPCP) has been proposed by Rajkumar in
[52] for scheduling a set of real-time tasks with shared resource on a multi-processor. It
extends the Priority Ceiling Protocol [59] for global resources. Since this policy is the term
of comparison for the MSRP policy I will spend some extra time discussing its features.

If tasks block on semaphores protecting global resources, the concept of blocking needs
to include also remote blocking (when a job has to wait for the execution of a task of
any priority assigned to another processor.) MPCP extends the priority ceiling protocol to
multiprocessor systems with the assumption that tasks are statically bound to processors
and scheduled according to the rate monotonic policy.

4.1. BACKGROUND 53

The goal of MPCP is to bound the remote blocking duration of a job as a function
of the duration of critical sections of other jobs and not as a function of the duration of
non-critical code. As a direct consequence, it is necessary that global critical sections are
assigned a ceiling that is higher than the priority of any other task in the system. If pH is
the highest priority among all tasks, a priority of pH + 1 + maxi{pi | τi uses ρk} is
the priority ceiling for the semaphore protecting the global resource ρk. Other important
design choices of MPCP are the following:

• jobs are suspended when they try to access a locked gcs;

• when a higher priority task is blocked on a global critical section local tasks can be
executed and may even try a lock on local or global critical sections;

• when a global resource is released the task waiting on top of the semaphore list is
awakened and inherits the priority of the global critical section.

One very important consequence of letting lower priority local tasks execute and possibly
inherit the priority of global critical sections is the possibility of priority inversion occurring
while a high priority task is blocked on a gcs. Other assumptions are the following: local
critical sections do not make nested access to global resources and vice versa, furthermore,
nested accesses to global critical sections are prohibited.

MPCP allows for a bounded blocking time and a formula exists for checking the schedu-
lability of real-time tasks. The formula is an adaptation of Formula 2.3 (to be evaluated for
each processor) with the only difference that the blocking factor Bi must account for local
and global priority inversions. In order to simplify the formulation of the five factors that
add up to form the factor Bi the following additional definitions are introduced.

Task τi can access local (i.e. allocated on the same processor) or global resources. The
number of global critical sections executed by τi is nG

i . NLi,j is the number of jobs with
a lower priority than Ji on its processor. {J ′

(i)r
} is the set of jobs on processor Pr with

gcs having priority higher than global critical sections that can directly block Ji. NHi,r,j

is the number of global critical sections of job Jj ∈ {J ′
(i)r

} with higher priority than a
global critical section on processor Pr, which can directly block Ji. {nGSi,j} is the set
of global semaphores locked by both Ji and Jj . Finally, NCi,j is the number of global
critical sections entered by Jj and guarded by elements of {nGSi,j}.

The blocking time for a job Ji on processor Pj consists of up to five different factors:

Bi = Bi1 + Bi2 + Bi3 + Bi4 + Bi5

where

• Bi1 = nG
i ωlocal

i (where ωlocal
i is the longest critical section accessed by jobs with a

priority lower than Ji executing on the same processor), since each time Ji needs a
global semaphore may suspend, letting lower priority jobs execute on its processor.
These low priority jobs can lock local semaphores and block Ji when it resumes its
execution.

54 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

• Bi2 = nG
i ωglobal

j (where ωglobal
j is the longest global critical section accessed by

jobs with a priority lower than Ji executing on other processor) when job Ji tries
to access a global critical section and finds it is accessed by a lower priority job on
another processor.

• Bi3 = NCi,jdTi/Tjeω
global
j for each higher priority job executing on a processor

different from Pi and requesting the same global semaphore as Ji.

• Bi4 = NHi,r,jdTi/Tjeω
global
j for higher priority global critical sections, which can

preempt the global critical sections of lower priority jobs directly blocking Ji.

• Bi5 = min(nG
i + 1, nG

k)ωglobal
j each time Ji tries to access a global critical section

it can suspend letting lower priority jobs execute on its processor. These jobs can
lock or queue on global semaphores and eventually execute at a priority higher than
Pi and preempt it when it executes non global code.

4.2 Sharing Resources in Multiprocessors

When considering multiprocessor symmetric architectures, I wish to keep the nice prop-
erties of EDF and SRP, that is high processor utilization, predictability and perfectly nested
task executions on local processors. Unfortunately, the SRP cannot be directly applied to
multiprocessor systems.

In this section, I first propose an extension of the SRP protocol to multi-processor
systems and a schedulability analysis for the new policy. In the next section, I propose a
simulated annealing based algorithm for allocating tasks to processors that minimizes the
overall memory requirements.

4.2.1 Multiprocessor Stack Resource Policy (MSRP)

I concentrate my efforts on the policy for accessing global resources. If a task tries to
access a global resource and the resource is already locked by some other task on another
processor, there are two possibilities:

• the task is suspended (as in the MPCP algorithm);

• the task performs a busy wait (also called spin lock).

I want to maintain the properties of the SRP: in particular, I want to let all tasks belonging
to a processor to share the same stack. Hence, I choose the second solution. However,
the spin lock time is wasted time and should be reduced as much as possible (the resource
should be freed as soon as possible). For this reason, when a task executes a critical section
on a global resource, its priority is raised to the maximum priority on that processor and
the critical section becomes non-preemptable.

In order to simplify the implementation of the algorithm, the amount of information
shared between processors is minimal. For this reason, the priority assigned to a task when

4.2. SHARING RESOURCES IN MULTIPROCESSORS 55

accessing resources does not depend on the status of the tasks on other processors or on
their priority. The only global information is the status of the global resources.

The MSRP algorithm works as follows:

• For local resources, the algorithm is the same as the SRP algorithm. In particular,
I define a preemption level for every task, a ceiling for every local resource, and a
system ceiling Πk for every processor Pk.

• Tasks are allowed to access local resource through nested critical sections. It is
possible to nest local and global resources. However, it is not possible to nest global
critical sections, otherwise a deadlock can occur.

• For each global resource, every processor Pk defines a ceiling greater than or equal
to the maximum preemption level of the tasks on Pk.

• When a task τi, allocated to processor Pk accesses a global resource ρj , the system
ceiling Πk is raised to ceil(ρj) making the task non–preemptable. Then, the task
checks if the resource is free: in this case, it locks the resource and executes the crit-
ical section. Otherwise, the task is inserted in a FCFS queue on the global resource,
and then performs a busy wait.

• When a task τi, allocated to processor Pk, releases a global resource ρj , the algorithm
checks the corresponding FCFS queue, and, in case some other task τj is waiting, it
grants access to the resource, otherwise the resource is unlocked. Then, the system
ceiling Πk is restored to the previous value.

Example. Consider a system consisting of two processors and five tasks as shown in
Figure 4.1. Tasks τ1, τ2 and τ3 are allocated to processor P1: task τ3 uses local resource
ρ1, task τ2 uses resources ρ1 and ρ2 through nested critical sections, and τ1 does not use
any resource. Tasks τ4 and τ5 are allocated to processor P2: task τ4 uses the global resource
ρ1 and τ5 does not uses resources. The parameters of the tasks are reported in Table 4.1.
The ceiling for resource ρ1 is 2. The ceiling for resource ρ2 on processor P1 is 3, and on
processor P2 is 2. A possible schedule is shown in Figure 4.2. Notice that:

• At time t = 3, task τ2 is blocked because its preemption level λ2 = 2 is equal to the
current system ceiling Π1 = 2 on processor P1.

• At time t = 5, task τ3 locks resource ρ2 and raises the system ceiling Π1 to 3.

• At time t = 6, task τ4 tries to access the global resource ρ2 which is currently locked
by τ2. Thus, it raises the system ceiling of processor P2 to 2 and performs a busy
wait.

• At time t = 7, both τ1 and τ5 are blocked, because the system ceilings of the two
processors are set to the maximum.

56 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

Ci λi ω1
ij ω2

ij tsi C ′
i Blocal

i Bglobal
i

τ1 2 3 0 0 0 2 0 7
τ2 6 2 2 0 0 6 9 7
τ3 11 1 9 4 3 14 0 0
τ4 7 1 0 3 4 11 0 0
τ5 2 2 0 0 0 2 0 7

Table 4.1: The example task set.

τ 2

τ 1 τ 3

1P P 2

τ 5τ 4ρ 1 ρ 2

Figure 4.1: Structure of the example.

• At time t = 8, task τ3 releases the global resource ρ2 and task τ4 can enter the critical
section on ρ2. At the same time, the system ceiling of processor P1 is set back to 2,
and task τ1 can make preemption.

4.2.2 Schedulability analysis of the MSRP

First, I give an upper bound on the time that task τi, allocated to processor Pk, can spend
waiting for a global resource ρj . In the following, I refer to this time as spin lock time and
denote it as spin(ρj , Pk).

Lemma 1 The spin lock time that every task allocated to processor Pk needs to spend for

accessing a global resource ρj ∈ R is bounded from above by:

spin(ρj , Pk) =
∑

p∈{P−Pk}

max
τi∈Tp,∀h

ωj
ih.

Proof.
On each processor, only one task can be inside a global critical section or waiting for a
global resource. In fact, when a task tries to access a critical section on a global resource, it
first raises the system ceiling to the maximum possible value, becoming non–preemptable.
Tasks that are waiting on a global critical section are served in a FCFS order: hence, a task
allocated to Pk that tries to access ρj , has to wait for at most the duration of the longest
global critical section on ρj for each processor p 6= Pk. This condition does not depend on
the particular task on processor Pk. Hence, the lemma follows. �

4.2. SHARING RESOURCES IN MULTIPROCESSORS 57

2 4 6 8 10 12 14 16 18 20 22 24

τ

2

1τ

4τ

5τ

Legenda

No resource

crit. sect. on

crit. sect. on

spin lock on

2

2

1ρ

ρ

ρ

0

3

τ ����������������
�� ���������������������

���������������

��������������������
��������������������

Figure 4.2: An example of schedule produce by the MSRP on two processors.

Basically, the spin lock time increments the duration ωj
ih of every global critical section

ξj
ih, and, consequently, the worst case execution time Ci of τi. Moreover, it also increments

the blocking time of the tasks allocated to the same processor with a preemption level
greater than λi.

I define totalspini as the maximum total spin lock time experienced by task τi. From
the previous lemma,

totalspini =
∑

ξj

ih

spin(ρj , Pi)

I also define the actual worst case computation time C ′
i for task τi as the worst case

computation time plus the total spin lock time:

C ′
i = Ci + totalspini

Now, I demonstrate that the MSRP maintains the same basic properties of the SRP, as
shown by the following theorems.

Lemma 2 When task τj starts executing:

1. all the local resources required by the τj are unlocked;

2. all the local resources required by every task that can preempt τj are unlocked.

Proof.
By contradiction.

1. Suppose that, after τj starts executing, it needs resource ρk which is locked by some
other task. Since τj is executing, λj > Πs. Moreover, since τj needs ρk, ceil(ρk) ≥

λj . But ρk is locked, so Πs ≥ ceil(ρk) ≥ λj , and this is a contradiction.

58 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

2. Suppose that at time t a task τH preempts τj , and that it needs a local resource ρk

which is locked. By hypothesis, λH > λj > Πs (because τH can preempt τj) and
Πs ≥ ceil(ρk) (because ρk is locked). The lemma follows because τH uses ρk, that
implies ceil(ρk) ≥ λH .

�

Theorem 3 Once a job starts executing it cannot be blocked, but only preempted by higher

priority jobs.

Proof.

I prove the theorem by induction. Suppose there are n tasks that can preempt τj .

If n = 0, no task can preempt τj . Since when τj started executing λj > Πs(t), Lemma
2 guarantees that all the resources required by task τj are free, so it can run to completion
without blocking.

If n > 0, suppose that a task τH preempt τj . By induction hypothesis τH cannot be
blocked, so when it finishes it will release all the resources that it locked, and the task τj

will continue until the end since it has all the resources free. �

Note that a job can be delayed before starting execution by the fact that the system
ceiling is greater than or equal to its preemption level. This delay is called blocking time.
The following theorem gives an upper bound to the blocking time of a task.

Theorem 4 A job can experience a blocking time at most equal to the duration of one

critical section (plus the spin lock time, if the resource is global) of a task with lower

preemption level.

Proof.
By contradiction. Suppose that a task τj is blocked for the duration of at least 2 critical
sections corresponding to resources ρ1 and ρ2. First, suppose that ρ1 is a local resource (ρ2

can be either local or global). It must be the case that there are two lower priority tasks (τL1

and τL2). The first task locked a resource ρ1 and, while in critical section, it is preempted
by τL2 that locked another resource ρ2. While τL2 is still in critical section, τj arrives, and
it has to wait for ρ1 and ρ2 to be free. This scenario cannot happen, because I have that
ceil(ρ1) ≥ λj > λL2 (since τj uses ρ1 and preempted τL2), and λL2 > ceil(ρ1) (since
τL2 preempted τL1, when τL1 locked ρ1).

Now suppose ρ1 is a global resource and consider the previous scenario. When τL1

locked ρ1, τL1 become non-preemptable, so τL2 cannot preempt τL1, and any scenario like
that cannot apply.

Finally note that every global critical section has a length that is composed by the
critical section itself, plus the spin-lock time due to the access to global resources. �

4.2. SHARING RESOURCES IN MULTIPROCESSORS 59

It is noteworthy that the execution of all the tasks allocated on a processor is perfectly
nested (because once a task starts executing it cannot be blocked), therefore all tasks can
share the same stack.

For simplicity, the blocking time for a task can be divided into blocking time due to
local and global resources. In addition, if I consider also the preemption threshold mecha-
nism, I have to take into account also the blocking time due to the pseudo-resources:

Bi = max(Blocal
i , Bglobal

i , Bpseudo
i)

where Blocal
i , Bglobal

i and Bpseudo
i are:

Blocking time due to local resources: This blocking time is equal to the longest critical
section ξk

jh among those (of a task τj) with a ceiling greater than or equal to the
preemption level of τi:

Blocal
i = max

j,h,k
{ωk

jh | (τj ∈ TPi
)∧ (ρk is local to Pi)∧ (λi > λj)∧ (λi ≤ ceil(ρk))}

Blocking time due to global resources: Assume the task τi, assigned to processor Pi, is
blocked by a task τj (λj < λi) which is assigned to the same processor Pi, and which
is waiting for, or it is inside to, a global critical section ξk

jh. In this case, the blocking
time for task τi is,

Bglobal
i = max

j,h,k
{ωk

jh + spin(ρk, Pi) | (τj ∈ TPi
) ∧ (ρk is global) ∧ (λi > λj)}

Blocking time due to pseudo resources: As explained in the previous sections, this block-
ing time is due to the fact that a task τi can be mutually non–preemptive with other
tasks on the same processor: here, the only difference with the SRPT is that I have
to consider the actual worst case execution time instead of the worst case execution
time.

Bpseudo
i = max

τj∈TPi

{C ′
j | λi > λj ∧ λi ≤ γj}

Theorem 5 Suppose that tasks on processor Pk are ordered by decreasing preemption

level. The schedulability test is as follows:

∀ Pk ∈ P TPk
= {τ1, τ2, . . . , τnk

} ∀i = 1, . . . , nk

i
∑

l=1

C ′
l

θl
+

Bi

θi
≤ 1 (4.1)

Proof.
Consider a generic task τi on processor Pi. To be schedulable under MSRP with preemp-
tion thresholds, it must be schedulable under EDF considering all blocking times and spin
locks. Hence, a guarantee formula for task τi can be written as

60 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

i−1
∑

l=1

C ′
l

θl
+

C ′
i

θi
+

Bi

θi
≤ 1

where the first part is the bandwidth stolen by tasks that preempted τi, and C ′
l consider

also the effect of the wasted bandwidth of the spin-lock time for each preempter task.
The second part accounts for the execution time and the spin-lock time of the task to be
guaranteed. The third part accounts for the largest blocking time experienced by τi due to
the use of resources by lower priority tasks. �

In the same way, I can rewrite Equation (2.4) as follows:

∀ Pk ∈ P TPk
= {τ1, τ2, . . . , τnk

} ∀i, 1 ≤ i ≤ nk

∀L, θi ≤ L ≤ θnk
L ≥

∑i
l=1

⌊

L
θl

⌋

C ′
l + Bi

(4.2)

Please note that the blocking factor influences only one element of the guarantee formula,
whereas the spin lock time influences both the blocking time and the worst case execution
time. This implies that, when designing an allocation algorithm, one of the goals is to
reduce the spin lock time as much as possible. Another noteworthy observation is that,
using the MSRP, each processor works almost independently from the others. In particular,
it is possible to easily apply this algorithm to non–homogeneous multiprocessor systems.

Example. For the task set of the previous example, the total spin lock time tsi, the actual
worst case execution time C ′

i , the local and global blocking times are reported in Table
4.1.�

The main differences between the MSRP and the MPCP are the following:

• Unlike MPCP, with the MSRP it is possible to use one single stack for all the tasks
allocated to the same processor.

• The MPCP is more complex and difficult to implement than the MSRP. In fact, the
MSRP does not need semaphores or blocking queues for local resources, whereas
global resources need only a FIFO queue (an efficient implementation can be found
in [23]).

• The MSRP, like the SRP, tends to reduce the number of preemptions in the systems,
hence there is less overhead. However, this comes at the cost of a potentially danger-
ous spin lock time.

I’ll describe with more details the differences between the two algorithms in Section 4.4.

4.3 Optimizing stack usage in Multiprocessors

Sections 3.1 and 4.2 provide the basis for the implementation of run-time mechanisms for
global and local resource sharing in multiprocessor systems. Given a task allocation, the

4.3. OPTIMIZING STACK USAGE IN MULTIPROCESSORS 61

policies and algorithms presented in Section 3.2 allow to search for the optimal assignment
of preemption thresholds to tasks and to selectively group tasks in order to reduce RAM
consumption. However, the final outcome depends on the quality of the decisions taken in
the task allocation phase. Moving one task from one processor to another can change the
placement of (some of) the shared resources accessed by it (some global resources become
local and vice versa) and the final composition of the non–preemptive groups on each
processor. Unfortunately, the task allocation problem has exponential complexity even if I
limit ourselves to the simple case of deadline-constrained scheduling.

A simulated annealing algorithm is a well-known solution approach to this class of
problems. Simulated annealing techniques (SA for short) have been used in [62, 58] to
find the optimal processor binding for real-time tasks to be scheduled according to fixed-
priority policies, in [48] to solve the problem of scheduling with minimum jitter in complex
distributed systems and in [63] to assign preemption thresholds when scheduling real-time
tasks with fixed priorities on a uniprocessor. In the following I show how to transform the
allocation and scheduling problem which is the subject of this chapter into a form that is
amenable to the application of simulated annealing. The solution space S (all possible as-
signments of tasks to processors) has dimension pn where p is the number of processors and
n is the number of tasks. I am interested in those task assignments that produce a feasible
schedule and, among those, I seek the assignment that has minimum RAM requirements.
Therefore I need to define an objective function to be minimized and the space over which
the function is defined.

The SA algorithm searches the solution space for the optimal solution as follows: a tran-
sition function TR is defined between any pair of task allocation solutions (Ai, Aj) ∈ S

and a neighborhood structure Si is defined for each solution Ai containing all the solu-
tions that are reachable from Ai by means of TR. A starting solution A0 is defined and
its cost (the value of the objective function) is evaluated. The algorithm randomly selects
a neighbor solution and evaluates its cost. If the new solution has lower cost, then it is
accepted as the current solution. If it has higher cost, then it is accepted with a probability
exponentially decreasing with the cost difference and slowly lowered with time according
to a parameter which is called temperature.

I will not explain in detail the SA mechanism and why it works in many combinatorial
optimization problems. Please refer to [1] for more details.

The transition function consists in the random selection of a number of tasks and in
changing the binding of the selected tasks to randomly selected processors. This sim-
ple function allows to generate new solutions (bindings) at each round starting from a se-
lected solution. Some of the solutions generated in this way may be non schedulable, and
therefore should be eventually rejected. Unfortunately, if non–schedulable solutions are
rejected before the optimization procedure is finished, there is no guarantee that the tran-
sition function can approach a global optimum. In fact, it is possible that every possible
path from the starting solution to the optimal solution requires going through intermediate
non–schedulable solutions (see Figure 4.3).

If non-schedulable solutions are acceptable as intermediate steps, then they should be
evaluated very poorly. Therefore, I define a cost function with the following properties:

62 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

solution space

non-feasible solutions

starting solution

optimal solution

neighbor solutions

Figure 4.3: Non feasible solutions must be accepted in order to reach the optimal solution.

• schedulable solutions must always have energy lower than non–schedulable solu-
tions;

• the energy of non schedulable solutions must be proportional to the maximum excess
utilization resulting from the evaluation of formula (4.1) for non–schedulable tasks;

• the energy of schedulable solution must be proportional to the worst case overall
RAM requirements for stack usage.

• If TotalStack is the overall stack requirement, obtained by adding up the stack
requirements of all tasks, and OptStack is the overall stack requirement, evaluated
for schedulable sets after the computation of optimal preemption thresholds and task
groups (see Section 3.2), then the cost function is the following:

{

max∀τi

(

∑n
k=i

C′

k

Tk
+ Bi

Ti

)

∗ TotalStack non schedulable assignment

TotalStack + ∆ ∗ (OptStack − TotalStack) schedulable assignment

When the assignment is non schedulable, I use the result of the guarantee test (Equa-
tion 2.3) as an index of schedulability. In fact, as the system load, blocking time
or spin-lock time increase, the system becomes less schedulable. When the assign-
ment is schedulable, the cost function does not depend on processor load but returns
a value that is proportional to the reduction of stack with respect to the total stack
requirement.

The ∆ factor estimates the average ratio between the stack requirements before task group-
ing and the stack requirements after optimization and is defined as:

∆ =
ncpu ∗ meanstack ∗ meangroups

ntask ∗meanstack

4.4. COMPARING MSRP AND MPCP 63

visited = 0;
// generate a first solution using only the Ui
FirstBinPackingAssignment();
Enew = Eold = Energy();
while (C > stopTemp) {

internal = 0;
while (internal < maxTries) {

internal++;
GenerateNeighbour();
// for each processor, optimize the stack using SRPT
if (Schedulable) OptimizeStack();
Enew = Energy();
if (Schedulable) {

// I stop after a maximum number of schedulable solutions
visited++;
if (visited == maxVisited) return;

}
if (new_solution->Energy < old_solution->Energy)

Eold = Enew
else {

// Upward energy jump
if (exp((Eold-Enew)/C) >= frand(0,1)) Eold = Enew;
else Enew = Eold;

}
}
C = C * coolingStep; // Temperature Cooling

}

Figure 4.4: Simulated Annealing Algorithm.

where ncpu is the number of CPU in the system, meanstack is the mean stack value of
all tasks, meangroups estimates the typical number of preemption groups on a uniproces-
sor. The ∆ factor has been introduced to smooth the steep increase in the cost function
when going from schedulable solutions to non–schedulable assignments. This improves
the chances for the simulated annealing algorithm to escape from local minima (which
might require accepting a non–schedulable solution).

The experimental results in Section 4.5 show the effectiveness of the SA-based binding
algorithm when simulating task sets scheduled on 4-processor system-on-a-chip architec-
tures.

4.4 Comparing MSRP and MPCP

One of the possible drawbacks of the MSRP policy is the cost of spin locking in multipro-
cessor real-time systems when compared to other policies. In contrast, the multiprocessor
priority ceiling protocol or MPCP, probably the best known policy for bounding blocking
time in a predictably way in multiprocessor systems, avoids spin-locking, but does not al-
low sharing the stack space of tasks. Furthermore, it requires a non trivial run-time support,
which results in greater overhead when compared to the implementation of MSRP.

In order to settle this dispute, I performed experiments comparing MSRP with MPCP in

64 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

Janus (see Section 4.5). The experiments are in two stages. In the first stage, the simulator
evaluates the schedulability of a number of generic task sets to see if one of the algorithms
can clearly outperform the other. The results are not conclusive, except that (as expected)
MSRP is better when considering few global resources and short critical sections. In the
second stage I focus on a domain-specific example: a task set implementing a power-train
controller, which is the representative of a typical automotive application. For this case,
MSRP clearly outperforms MPCP, proving the viability of a spin-lock based approach for
sharing resources on the Janus platform.

The following subsections discusses a comparison on the blocking times and on the
implementation of the two algorithms.

4.4.1 Comparing the blocking factors of MSRP and MPCP

The blocking factors Bi1 , . . . Bi5 of MPCP are the result of a worst case analysis and can be
reduced by carefully examining the task set at hand. Nonetheless the guarantee formula is
clearly extremely complicated. Consider also that PCP requires keeping track of local and
global priority ceilings and the previous formula holds if the period enforcing technique
(described in [52]) is used.

If, on the other hand, MSRP is used, I can expect to waste more local processor time
due to the use of spin locks when trying to lock global resources. The guarantee formula
of MSRP is simpler since I do not have to account for the events that cause the blocking
factors Bi1 and Bi5 which are the consequence of suspending a task when trying to access
a locked critical section.

At first sight, it would appear that, whenever global critical sections are sufficiently
short, the MSRP approach would perform better (besides being much simpler to imple-
ment). On the other hand, MPCP should be better when global critical sections grow larger.
I performed a first set of experiments trying to determine where this boundary lies and in
what conditions should designers expect MSRP to perform adequately. Following the re-
sults of these experiments, I focused the analysis on a power-train application: a typical
case study from the automotive domain.

4.4.2 Comparing the implementation of MSRP and MPCP

An implementation of the MPCP protocol can be basically divided in two parts [52]: the
implementation of a local priority ceiling protocol and the implementation of the global
inter–processor synchronization.

The local part of the protocol implementation can easily be done using a priority or-
dered Task queue, where the highest priority task in the queue is the running task. More-
over, a list of locked semaphores (ordered by ceiling) has to be maintained to allow the
implementation of the inheritance of the priority.

The global part of the protocol subsumes the existence of a shared data structure that
records the state of a global mutex. In particular, an ordered queue of the tasks that are
blocked on the global resource has to be implemented. The low-level access to that data
structure has to be done in mutual exclusion, and that is usually done using a spin-lock

4.5. EXPERIMENTAL EVALUATION 65

approach (the duration of the spin lock is not accounted into the guarantee equations, since
it is bounded by the maximum time needed to handle the internal data structure) or using
an inter-processor interrupt. Moreover, to guarantee a bounded blocking time the Period
Enforcer technique must be implemented.

When using SRP there is no need to implement semaphores and queues for blocked
tasks, and the blocking time experienced by each task can be predictably bound. Further-
more, the SRP allows multiple tasks to share a single stack. For these reasons, the SRP can
be implemented with a small overhead and memory occupation. The implementation of
MSRP on the Janus platform has been simplified by taking advantage of the fact that there
are only two processors contending for the use of global resources. In particular, only one
processor at a time can be blocked on a global resource, so FCFS queues are not needed
for waiting tasks. Moreover, implementing a spin-lock mechanism on Janus only requires a
negligible amount of code. Since all memory is shared between the two processors, a single
memory location can be used to synchronize all tasks using the swpb ARM instruction.

4.5 Experimental evaluation

The MSRP experimental evaluation has been divided in three parts: first, I performed some
simulative evaluation to validate the MSRP allocation algorithm described in section 4.3.
Then, a sets of experiments is presented on a range of generic task configurations to see
if one of the algorithms (MPCP and MSRP) can clearly outperform the other. Finally, a
set of more application-specific experiments on a architecture design representing a typical
automotive application are presented.

4.5.1 Multiprocessor experiments

In the first set of experiments, I consider 4 CPU, 40 resources, and 40 tasks. Tasks’ periods
are randomly chosen between 1 and 1000. The total system load U ranges from 2.76
to 3.96, with a step of 0.2. The stack frame size of each task is a random variable chosen
between 10 and 100 bytes. Each task has 0 to 4 critical sections that lock randomly selected
resources; the sum of the worst case execution times of the critical section accessed by each
single task is in the range of 0-20%, 5-25%, 10-30%, 15-35%, 20-40% of the task worst
case execution time (depending on the simulation, see Figure 3.9).

In Figure 4.5 I plot the stack gain ratio between the overall stack requirement before op-
timization and the stack memory requirement of the solution found by the SA algorithm. In
all experimental runs the solution found by the SA routine saves a considerable amount of
RAM even when compared to the first schedulable (and optimized for RAM consumption)
solution found. The average improvement in 58 runs is 34.6% (min 18%, max 49%).

Running times can be a concern when using a simulated annealing solution. The al-
gorithm can be run in a few hours on modern computers (Figure 4.6 shows typical com-
putation times as a function of the task set size). The execution of the simulated anneal-
ing routine takes 6 to 30 hours on an Intel Pentium III 700Mhz to complete the cooling.
For example, a typical execution (Total U = 2.76, critical section ratio 0.10 to 0.30) vis-

66 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

0-20% 5-25% 10-30% 15-35% 20-40%

S
av

e
R

at
io

Resource Utilization

Total Stack / Optimal Stack

Figure 4.5: Ratio of improvement given by my multiprocessor optimization algorithm
when varying the utilization of shared resources.

ited 15,900,000 assignments (one every 4 ms) and found 6,855,560 schedulable solutions.
These results are quite acceptable considered that task allocation is a typical design time
activity.

4.5.2 MPCP vs. MSRP comparison on generic task sets

In the first set of experiments I compare the performance of the MSRP and MPCP algo-
rithms on a range of task configurations (random load) mapped on the 2 Janus processors.

The experiments consider a set of 6 to 10 tasks statically allocated to each CPU. De-
pending on the experiments, task periods are chosen randomly between 1 and 100 or by
selecting appropriate harmonic values. Harmonic periods are generated in the following
way: the period of the first is 1; the period of the next task is given by the period of the
previous task multiplied by a random factor between 1 and 4 (ratio 1 has the 30% of prob-
ability, ratios 2,3,4 share the remaining 70%).

If U is the system utilization, defined as U = Σici/θi, the total load on each CPU
ranges from Umin and Umax, where Umin ranges from 0.025 and 0.925 with steps of
0.025, and Umax ranges from Umin+0.025 to 0.95 with steps of 0.025. The number of
local resources is always 6 for each processor, plus 6 global resources. The number of
critical sections accessed by each task is a random value chosen in the intervals (0,2), (1,4),
(2,6) depending on the experiment. Tasks spend a percentage of their computation time into
critical sections. The fraction of execution time that is spent in a critical section (local or
global) ranges between Cmin and Cmax, where Cmin and Cmax belong to the set {0.0, 0.5,
0.10, 0.15, 0.2}, and Cmax is always greater than Cmin. For each task set I consider a set
of 101 possible configurations, obtained considering that the time spent in a critical section
is allocated for a percentage x to local critical sections, and for a percentage (1-x) to global

4.5. EXPERIMENTAL EVALUATION 67

0

5

10

15

20

25

30

35

40

10 15 20 25 30 35

C
om

pu
ta

tio
n

tim
e

(h
ou

rs
)

Number of tasks

Intel Celeron 366 Mhz

Figure 4.6: Average computation times for the simulated annealing algorithm as a function
of the problem size.

critical sections, with x ranging from 0 to 1 with steps of 0.01. On each configuration I
check if the MSRP and the MPCP tests can guarantee the task set as schedulable (more
than 520 million configurations were tried).

The first set of experiments is performed on task sets where periods are randomly cho-
sen. The graphs show the percentage of tasks sets that can be guaranteed to be schedulable.
It is easy to see how the MSRP policy performs better than MPCP mainly because of the
higher utilization bound of EDF when compared to Rate Monotonic. For higher utiliza-
tions the guarantee rate decreases, most notably for the MPCP solution, where it finally
approaches a hyperbolic bound for higher values (the hyperbolic bound for rate monotonic
scheduling defined in [15] is used).

In general, in all the experiments on random task periods, MSRP always performed
better. Even if this is mostly due to the use of EDF as a task scheduling policy, it is my
opinion that this advantage should not be easily dismissed. A comparison which does not
give an a priori advantage to MSRP because of the higher schedulability bound of EDF can
be obtained by selecting task sets where periods are harmonic, therefore having a utilization
bound of 1 for the Rate Monotonic policy. The results for this case (Figure 4.8) show that
there is no algorithm performing better on the whole scale of the spectrum (for all the
possible percentages of local resources). As one should expect MPCP performs better for a
higher percentage of global resources while MSRP is better if a greater percentage of local
resources is simulated.

The MPCP curves are always between the minimum and the maximum curves for
MSRP. This implies the existence of a crossing point which identifies the percentage of
local access to resources that, for each U separates the zone where MPCP performs better
from the range where MSRP guarantees an higher percentage of schedulable sets.

To better highlight these regions it is useful to plot the data with a different X axis

68 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

ns

Maximum utilization factor for each CPU

Boundary between MSRP and MPCP, random periods, 2 CPUs

MSRP − 0% local
MSRP − 25% local
MSRP − 50% local
MSRP −75% local

MSRP − 100% local
MPCP − 0% local

MPCP − 25% local
MPCP − 50% local
MPCP − 75% local

MPCP − 100% local

Figure 4.7: Percentage of schedulable solutions, random periods, variable percentage of
local resource utilization.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

ns

Maximum utilization factor for each CPU

Compartison between MPCP and MSRP with harmonic periods

MSRP − 0% local
MSRP − 50% local

MSRP − 100% local
MPCP − 0% local

MPCP − 50% local
MPCP − 100% local

Figure 4.8: Percentage of schedulable solutions, harmonic periods, variable percentage of
local resource utilization.

4.5. EXPERIMENTAL EVALUATION 69

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

ns

% of local resources

Boundary between MSRP and MPCP, harmonic periods, 2 CPUs

MSRP/MPCP boundary
MSRP, U=0.275
MSRP, U=0.525
MSRP, U=0.775

MSRP, U=0.0
MPCP, U=0.275
MPCP, U=0.525
MPCP, U=0.775

MPCP, U=0.9

Figure 4.9: Comparison of MPCP and MSRP with the performance boundary
(Y=percentage of schedulable solutions, X=percentage of local critical sections).

variable: the percentage of local resource utilization. For example, in Figure 4.9 MSRP
outperforms MPCP for high local resource usage, that is when at least 40% of the resource
access time is on local resources (the upper right region in Figure 4.9).

It can be noted that, as U increases, the lines decrease (since the system load is greater,
fewer schedulable solutions can be found). Moreover, when the use of global resources
increases (X axis going to 0) there is a point (the boundary in the figure) where MPCP
starts to perform better (which can be explained because the spin locking term influences
not only the blocking time, but also the task computation time). A continuous spline,
interpolating the crossing points in the figure gives an idea of the boundary between the
areas where the two algorithms perform better.

Experiments clearly show how the area where the MSRP protocol performs better in-
creases for a higher use of shared resources. This is a side effect of the reduction of schedu-
lability caused by a higher use of shared resources. In case of Figure 4.10, the lines are not
simply splines, but are the result of comparative experiments for points of the plane (U, %
of local resources).

4.5.3 MPCP vs. MSRP comparison on a power-train case

4.5.3.1 The Power-train Control Application

The goal of power-train control systems is to offer appropriate driving performance (e.g.
driveability, comfort, safety) while minimizing fuel consumption and pollutant emissions.
In an engine management system, the fuel injection and air intake are controlled to produce
the desired mix to be transformed, by the combustion process, in torque and emissions.

The combustion process takes place in the cylinders and the starting time is controlled
by the sparks generated from the spark plugs. The produced torque is then applied to the

70 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

ns

% of local resources

Boundary between MSRP and MPCP, harmonic periods, 2 CPU

0-5% CS length
5-10% CS length

10-15% CS length
15-20% CS length

Figure 4.10: Boundary obtained considering 2 CPUs with various resource usages.

power-train, which is controlled by the gear selection and clutch position. The final result
is the force applied, through the wheels, to the entire vehicle. Driveability is an informal
measure of how favorably this force is perceived by the driver under his/her action.

The control strategy goal is achieved by means of several control inputs such as throttle
position, fuel injection, spark ignition, gear selection and clutch position. Fuel injection,
spark ignition and part of the gear-box control are angle-based, i.e. they must be synchro-
nized with the engine position1 or drive-line angle. The other control variables do not
have these synchronization constraints and are called time based. To compute the engine
position, the engine has two sensors (the crankshaft and cam-shaft toothed wheel sensors)
providing two angular references used for injection and ignition synchronization. Synchro-
nization is essential for timing the opening of fuel injectors and the ignition of the spark
plugs. The supplied torque and the emitted pollutants depend crucially on the accuracy of
these operations.

In order to evaluate the performance of the resource sharing algorithms for the target
application, I used a model view representing the thread architecture. The view must define
the typical abstractions used in schedulability analysis, such as the real-time threads, each
characterized by its activation mode (periodic or sporadic), and its timing characteristics
(such as the WCET) and the shared resources used by the threads, with the execution times
of the methods called upon them.

An extremely short introduction to a typical automotive software development process
can help understanding the nature of the application threads and the relationships between
them and the set of shared resources. The threads running under the control of the RTOS
are the result of a software development process, which starts from the definition of a high
level model (usually a functional model obtained from a tool like Simulink) and continues

1For engine position I mean both the angular position of the crankshaft and the working phase (i.e. intake,
compression, expansion or exhaust) of each cylinder.

4.5. EXPERIMENTAL EVALUATION 71

1
_
Z

INC
sum_out

count_out
RESET

−=

LIMIT

code implementation of the functional block

Thread

output from functional blockinput to functional block

Figure 4.11: A thread contains the implementation of several functional blocks

with the automatic production of software code implementing the functional blocks defined
in the model. The code implementing the functional blocks is statically scheduled in the
context of a thread (see figure 4.11). As a result, each thread performs many read and write
accesses to the input and output variables or devices defined by the function blocks imple-
mented in it. These sets of input and output variables/devices are possibly implemented as
shared resources and the resulting graph of use relationships among tasks and resources is
quite densely connected, with each task accessing many resources.

Unfortunately, the exact specification of the application architecture and its perfor-
mance/timing data (as implemented in the current version of the controller) are consid-
ered extremely sensitive industrial property. Furthermore, the current implementation is
on a single-cpu controller and it is expected that it will change when ported to the new
Janus architecture. Given this restriction, the analysis had to settle for realistic data on the
application threads and resources, which could be used for measuring the quality of the
algorithms and comparing their performance. The model view I analyzed can be consid-
ered a good abstraction of the current implementation and the starting point for evaluating
algorithms and solutions (on the worst-case side) for the upcoming Janus implementation.

Based on the analysis of the current implementation and based on the number and
complexity of the function points in the new implementation, I considered from 10 to 20
periodic tasks and from 2 to 6 aperiodic tasks with periods ranging from 1 ms to about
100 ms (given the dependency from specification requirements, such as the maximum rpm
of the engine, the rate requirements should be considered quite reliable data). Tasks are
divided into 3 classes:

high rate: from 1 ms to 5 ms.

medium rate: from 5 to 20 ms.

72 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

low rate: from 50 to 100 ms.

Tasks are distributed among the three classes in this way: 50% of the tasks belong to the
medium rate type, the other types account for 25% of the tasks each. The processors are
quite heavily utilized, utilization ratios above 70% should be expected for each processor.
The fraction of the processor utilization required by each class is the following: 50% of the
processor time is used to serve high rate tasks, 30% is allocated to the medium rate class,
and the last 20% will be used to execute the low rate class. As for resources, tasks share
both physical and logical resources. The Janus physical resources shared by tasks are the
I/O channels for Analog to Digital (A/D) conversion and the serial ports that are used for
communication with the outside systems. The logical resources consist of memory buffers
for communication. Both kind of resources are protected by priority ceiling (MSRP or
MPCP) semaphores.

Access to the shared I/O channels can be characterized as follows: the serial bus is
expected to work at high speeds (the target rate is 500 kb/s) transmitting one byte at a time,
corresponding to about 50 µs of required access time. The serial communication will be
used only once for each task. Two serial ports (UARTs) are implemented in Janus. The
A/D conversion device can be used multiple times, from 5 up to a maximum of 10 times
for each task. The A/D access time is dominated by the setup time, resulting in critical
sections of about 5 µs.

Tasks are expected to communicate through shared memory resources, which are of
two types: switched (no-wait) buffers and one-position mailboxes. Resources of the first
type do not actually need semaphores, since the pointer swapping instruction is provided
as an atomic instruction by the ARM processors and only one writer task is expected for
these resources. As for the second type of resources, tasks are expected to cooperate by
exchanging information on their internal state as a set of shared variables. These sets consist
of 20 to 50 sets, each one containing between 10 and 300 variables, which must be written
and read atomically, in order to keep the state consistent. Each variable is implemented
using a 16 or 32 bit data type.

These shared memory requirements actually represent a worst case approximation and
in no case will the overall memory allocated to shared variables exceed an architecture-
specific bound of 16 KBytes. Write operations are expected to affect all the variables in
the data set, and read operations only address a subset (uniformly distributed between 10%
and 100%) of the variables in the set. Each task is expected to perform from 3 up to 20
read accesses and from 2 to 8 write accesses to the sets of variables. Finally, in order to
ease the schedulability of the task set, a large percentage of the resources accessed by high
rate tasks is implemented by using switched buffers (when allowed by the communication
semantics).

4.5.3.2 Experimental setup

The results of the experiments on generic task sets can hardly be considered conclusive for
the harmonic periods case. In the second set of experiments I focused on the power-train
specifications, to see if more knowledge could be gained when restricting the application

4.5. EXPERIMENTAL EVALUATION 73

domain.

The task sets used for the evaluation of the power-train case study were created using
the abstract architecture specification defined in Section 4.5.3.1.

Utilization A set of experiments was performed for different values of the system (2
CPUs) utilization. I considered utilization values from 1.4 to 1.96 with steps of 0.04. In the
graphs, the utilization value is the variable on the X axis.

Tasks The total number of tasks in each experiment is a random variable with integer
values uniformly distributed in the interval [12, 26]. Tasks are divided in three subclasses
according to their rate of execution. I generate tasks with random periods and with har-
monic periods. Periods have integer values (in msecs). Worst case execution times are
chosen in a way that the utilization of each class of tasks sums to the desired value for the
class. Task allocation is performed by a simulated annealing algorithm (described in [31]).

Resources and Critical Sections Physical resources are modeled as follows. The Janus
chip has two serial ports (UARTs). I assume each serial port is allocated to the tasks running
on one of the CPUs. In this way the serial port is a resource shared only among local tasks.
Resource index 0 is reserved to the “Serial I/O” channel. The critical sections that use
the UART are assumed as 50 µs long. Resource 1 is the “A/D converter”. The critical
sections that use this resource are 5 µs long. The remaining resources are shared “memory
resources”. Given the requirements of Section 4.5.3.1, each memory resource uses from
20 to 1200 bytes of memory. For the target (ARM-based) Janus platform, the maximum
length of a critical section is estimated as 4 + 83−4

1200−20 ∗ memorysize µs2. The simulator
loop that generates the resource sets stops at the 16 Kbytes limit and the critical sections
computed in step 4 are accepted until the total critical section time is lower than the task
WCET. Finally, every critical section accessed by a high rate task has a 40% probability to
be deleted, to account for the fact that high priority tasks will use switched buffers when
possible in order to reduce their blocking time.

4.5.3.3 Results

I ran experiments for increasing processor utilization factors from 1.4 (approximately 0.7
for each CPU) to 2.0. First, sets of tasks with random integer periods were tried. After pro-
cessing about 6000 task sets generated according to the specifications, I obtained the results
shown in Figure 4.12. This time the performance difference between the two algorithms is
striking: not a single task set is found schedulable with MPCP and the schedulability ratio
provided by MSRP goes down (almost linearly) from about 50% at 1.4 utilization (0.7 for
each CPU) to about 0 at 1.98 utilization. In the graph of Figure 4.12, the MPCP curve is not
visible since it is completely hidden by the X axis. The situation does not improve signif-
icantly for MPCP when the task periods are forced to be harmonic. The MPCP guarantee
ratio goes barely up for 1.4 utilization but it is always below 10%. No schedulable set is
found under MPCP for utilization values higher than 1.7. In contrast, MSRP continues to
deliver an acceptable performance going from more than 40% of schedulable sets at 1.4
utilization, to virtually no schedulable solution at 1.8/1.9 utilization.

24 to 83 µs is the expected time to write the data on a 40Mhz Janus platform.

74 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

0

0.2

0.4

0.6

0.8

1

1.4 1.5 1.6 1.7 1.8 1.9 2

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

ns

Total Utilizatio on each CPU

Comparison between MPCP and MSRP with random periods

MSRP
MPCP

Figure 4.12: Percentage of schedulable task sets with randomly selected periods on Janus
by MPCP/MSRP.

0

0.2

0.4

0.6

0.8

1

1.4 1.5 1.6 1.7 1.8 1.9 2

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

ns

Total Utilizatio on each CPU

Comparison between MPCP and MSRP with harmonic periods

MSRP
MPCP

Figure 4.13: Percentage of schedulable task sets with harmonic periods on Janus by
MPCP/MSRP.

4.5. EXPERIMENTAL EVALUATION 75

When compared with the generic task graphs tried in the previous set of experiments,
the power-train case study has at least two striking differences:

• Each critical section is quite short when compared to the execution time of the tasks.
In the power-train case high rate tasks spend up to 20% of their time while accessing
critical resources, but the time spent by medium and low rate tasks is significantly
lower. Furthermore, in the test case, the time spent in each critical section is quite
small when compared to the previous experiments, since tasks perform more ac-
cesses but with shorter execution times. In the context of the results on the generic
task sets this means I expect the power-train application to be in the range of quite
low resource usage.

• Each task uses many resources and each resource is accessed by many tasks. In
the previous case, tasks used from 0 up to a maximum of 6 critical sections each.
In the power-train case there is a much more connected graph of task-resource use
relationships. In turn, this means more pessimism in the evaluation of the worst
case assumptions of MPCP, since the factors nG

i , NCi,j and NHi,r,j from which
the blocking factors of MPCP depend linearly are now significantly higher. On the
other side, the blocking factors of MSRP depend only on the worst case length of
individual critical sections.

Since I expect both characteristics to be quite common for automotive applications de-
veloped according to the guidelines described in Section 4.5.3.1 I expect MSRP to retain
a significant advantage over MPCP even under significant changes in the number of task
and/or resources in the final implementation.

4.5.4 Final comments

Using spin-lock for accessing mutual exclusive resources in real-time multi-processor sys-
tems can possibly lead to a non-schedulable system, because the worst case execution time
of a task is increased while keeping the processor idle. When I were faced with the prob-
lem of designing a concurrency control protocol for the multiprocessor Janus platform, the
goal was to obtain a simple and effective algorithm that allows extending the SRP protocol
and therefore, permits to share the stack among all the tasks that are allocated to one pro-
cessor. As a solution, I proposed a spin-lock mechanism for accessing global resources. I
expected an advantage in terms of implementation complexity and a disadvantage in terms
of schedulability.

After performing an extensive set of simulations, I discovered that the spin-lock mecha-
nism is not necessarily a disadvantage, but performs even better (in terms of schedulability
guarantees) for given application contexts. The simulations show that no algorithm out-
performs the other on the whole spectrum of the possible task sets. Which one is the best
in terms of the schedulability bound depends on the characteristics of the task set: when
access to local resources is clearly dominating with respect to the use of global critical sec-
tions, and when the critical sections are short, MSRP presents a better schedulability bound
than MPCP.

76 CHAPTER 4. HOMOGENEOUS MULTIPROCESSORS ARCHITECTURES

A second set of experiments, performed on a power-train case study, clearly showed
how MSRP can guarantee a higher percentage of task sets when compared to MPCP.

Finally, even in the cases in which MPCP is better than MSRP, it should be considered
that MSRP is very simple to implement and has a lower overhead than MPCP. In the Janus
case, simplicity and memory optimization were the primary goals.

Regarding other possible approaches to resource sharing, an interesting possibility is
to use lock-free algorithms. Lock-free approaches to real-time scheduling were proposed
by Anderson, Ramamurthy and Jeffay in [2]. In this approach, a task can execute a critical
section more than once, because of the possible conflicts during access. However, when
considering periodic real-time tasks, the number of retries is bounded. Intuitively, these
approaches can be used especially for short critical sections. However, a deeper study (not
covered by this thesis) is needed.

Chapter 5

Heterogeneous multiprocessors
architectures

This chapter presents my results on heterogeneous multiprocessor scheduling. In particular,
I developed two techniques to schedule heterogeneous bi-processors composed by a CPU
and a DSP.

The main idea in this chapter is that a generic hard real-time system can consider a DSP
as an accelerator that can speedup critical computations for a given application.

This chapter is divided in the following sections: Section 5.1 and 5.2 present the ref-
erence architecture, highlighting the main design problems. Section 5.3 presents the prob-
lems that I want to solve in this chapter. Section 5.4 describes some results for systems
scheduled using fixed priority, and Section 5.5 presents some results for systems scheduled
using EDF.

5.1 System Model

Many architectures available today on the market are heterogeneous multiprocessor archi-
tectures, that promise the availability of asymmetric multiprocessors composed by a RISC
processor (or a microcontroller) and one or more DSPs [55, 35]. For example, the Texas
Instruments SMJ320C80 is a single-chip MIMD parallel processor that consists of a 32-
bit RISC master processor, four 32-bit parallel DSPs, a transfer controller, and a video
controller. All the processors are tightly coupled through an on-chip crossbar switch that
provides access to a shared on-chip RAM. These architectures are expressly designed to
handle multimedia streams using dedicated units for signal processing, reducing the com-
putational power needed on the main CPU. Moreover, DSP architectures are designed to
have predictable execution times, so they offer a viable alternative to the implementation
of fast general purpose multiprocessors.

Moreover, new technologies bring the promise to have really good performance by
using accelerators technologies. For example, the Altera FPGA [22] with the NIOS em-
bedded processor promise the availability of cheap reconfigurable hardware that opens big

77

78 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

possibilities for implementing hardware accelerators on the same chip where the main CPU
resides.

The challenging issue addressed in this chapter is to verify whether the use of a dedi-
cated processor can effectively enhance the performance of an embedded system still main-
taining some kind of real-time guarantee.

The strong hypothesis made in this chapter is that a DSP is usually designed to execute
algorithms on a set of data without interruption. Hence, the natural way of scheduling a
DSP is typically non-preemptive, whereas the CPU schedules both the application tasks
and the non-preemptive tasks running on the DSP. In practice, the DSP can be used as a
DSP accelerator responding to requests of the master (or main) CPU [14].

I admit that this point of view has some limitations because it is difficult to exploit
the full power of a DSP if its schedule depends on the schedule of the main CPU. In fact,
if the request of hard real-time guarantee is removed, I can make better use of the DSP
computational power by queuing pending requests for the various DSPs in the system, as
done in [56].

The problem of DSP scheduling in asymmetric multiprocessor architectures can be
viewed as a special case of scheduling with shared resources in multiprocessor distributed
systems. In [53, 50], Rajkumar addressed this problem for fixed priority scheduling, pro-
viding two algorithms called MPCP (see Section 4.1.2) and DPCP, that allow resource
sharing in generic multiprocessors. Although DPCP can be applied to this particular case,
the guarantee test provided in [53, 50] is too pessimistic, since it relies on a very generic
scenario that does not take in account the characteristics of the considered architecture.

An interesting approach for coping with tasks requiring multiple processing resources
is proposed in [57], where the Co-Scheduling approach is presented. Co-Scheduling can
be used when a task is composed by multiple phases and requires a different resource in
each phase. The basic idea of co-scheduling is to divide each job into chunks, associating
suitable deadlines to each chunk in order to meet the job deadline (that is, the deadline
of the last chunk). In the original paper, the CPU and the disk were considered as the
co-scheduled resources, but I believe that this approach could be also applied to the DSP.

I consider an abstract architecture composed by a general purpose CPU and a special-
ized CPU. The two computational units share a common bus and can freely use some RAM
memory and some ROM (Flash) memory, that I suppose is built in the same chip. Other
peripherals can be directly controlled by the general purpose CPU. These assumptions are
not far from reality since a system on a chip architecture, like the Altera NIOS, can be
modeled in a similar way.

At the present stage of the analysis, I assume that the general purpose CPU and the
specialized CPU communicate with negligible overhead. This assumption is justified by the
fact that the two processors are supposed to be built on the same chip, and both processors
can share the full (or part of the) memory address space of the architecture. However,
possible communication overheads can be accounted to the task that invokes the service
on the specialized CPU. In the following, the general purpose CPU will be identified as
the master processor, whereas the specialized CPU as the DSP. A block diagram of the
considered architecture is depicted in Figure 5.1.

5.2. TASK MODEL 79

DSP

I/OROMRAM

Master
processor

bus

Figure 5.1: Block diagram of the system architecture.

I assume that all the jobs executing on a DSP are invoked using a remote procedure call
(RPC) paradigm and are executed in a non-preemptive fashion. Such RPCs will be called
DSP activities. To simplify the analysis I also assume that on the master processor the DSP
activities are scheduled one at a time. Hence, it is a responsibility of the real-time kernel
on the master processor to avoid that a task issues a DSP request while the DSP is active.

5.2 Task Model

The real-time task model considered in this chapter is illustrated in Figure 5.2: each task
τi is a stream of instances, or jobs; each job Ji,j arrives at time ri,j , executes for Ci units
of time on the master CPU, and may require a DSP activity for CDSP

i units of time. I
assume that each job performs at most one DSP request, after Cpre

i units of time, and then
executes for other Cpost

i units, such that Cpre
i +Cpost

i = Ci. Job arrivals can be periodic (if
ri,j − ri,j−1 = Ti, being Ti the task’s period) or sporadic (if ri,j − ri,j−1 ≥ MITi, MITi

being the minimum interarrival time). If a task requires a DSP activity it is denoted as a
DSP task, otherwise it is denoted as a regular task. Note that a regular task is equivalent to
a DSP task with CDSP

i = 0. Whenever a fixed priority scheduling algorithm is used, Pi

denotes the priority of task τi.

5.3 Problem definition

To present the problem that may occur when dealing with the task model introduced in
Figure 5.2, let me make some considerations about the structure of a DSP task.

When executing a DSP task, a hole within each job is generated in the schedule of the
master processor. Such holes are created because the DSP task executes a DSP activity on
another processor. The main idea is to exploit these holes to schedule some other tasks on
the master processor in order to improve the schedulability bound of the system.

Suppose, for example, to have a task τ1 with a period T1 = 4 units of time, Cpre
1 =

Cpost
1 = 1, and CDSP

1 = 2. Note that, although τ1 uses the master processor only for fifty
percent of the time, it must start exactly when it arrives, otherwise it will miss its deadline.
This constraint is independent from the scheduling algorithm used in the system. Hence, if

80 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

RPC

call
DSP activity

C
i

C
i

C
DSP

Master

processsor

DSP

time

Task period

Job

arrival

Job

deadline

i

pre post

Figure 5.2: Structure of a DSP task.

DSP

Task 1

Task 2

CPU

Task 1

0 4 8 12

1

1

1 2 2

2

3

3

3

Figure 5.3: A task set that cannot be feasibly scheduled by RM and EDF (jobs of task τ1

are numbered to facilitate interpretation): task τ1 misses all its deadlines.

a regular task τ2 (which does not use the DSP) with period T2 = 3 and computation time
C2 = 1 is added to the system, both the Rate Monotonic (RM) algorithm and the Earliest
Deadline First (EDF) algorithm fail to generate a feasible schedule, because if tasks start at
the same time, τ2 will always have precedence to τ1. This situation is shown in Figure 5.3.

However, the task set can be schedulable using a fixed priority assignment by simply
assigning P1 > P2. Figure 5.4 shows the feasible schedule generated using such a priority
assignment.

Note that the system model I introduced can be viewed as a particular case of a more
general model proposed by Rajkumar in [53, 50], where the Distributed Priority Ceiling
Protocol (DPCP) is used to access shared resources on a distributed system. In particular,
the DPCP protocol can be used for all the tasks allocated on the main CPU and the DSP
activities can be considered as global critical sections executed on the DSP (which acts as
a synchronization processor). According to the DPCP approach, the schedulability of the
task set is guaranteed by the following test:

5.3. PROBLEM DEFINITION 81

DSP

Task 1

Task 2

CPU

Task 1

0 4 8 12

1

1

1 2 2

2

3

3

3

Figure 5.4: A feasible schedule achieved by a different priority assignment (P1 > P2).

∀i = 1, . . . , n
∑

Pj>Pi

Cj+CDSP
j

Tj
+

Ci+CDSP
i +Bi

Ti
≤ Ulub(i),

where Ulub(i) = i(21/i − 1), and Bi is a blocking factor computed as follows:

Bi =

{

maxPj<Pi
{CDSP

j } +
∑

Pj>Pi

⌈

Ti

Tj

⌉

CDSP
j for a DSP task

0 for a regular task
(5.1)

The major problem of this approach is that the execution time of the DSP activities
(CDSP

i) is considered as part of the computation time of every task, including regular tasks.
Such a pessimistic computation, although correct, drastically reduces the schedulability of
the system. Indeed, in the papers [53, 50], the authors claim that the CDSP

i factor can also

be removed from the computation times, but no proof is provided for that claim.

Extending the previous analysis to dynamic priorities unfortunately is not trivial. In
fact, the admission test presented in Equation (5.3) can be applied to dynamic priorities
only if the blocking terms are due to resource sharing [7, 8]. In the case the blocking times
are also caused by the synchronization between the master processor and the DSP.

To better clarify the problem that can arise in this case, let me consider a task set
Γ = {τ1, τ2}, with Cpre

1 = Cpost
1 = 1, CDSP

1 = 2, T1 = 4, C2 = ε, CDSP
2 = 0 (τ2 is

not accessing the DSP), and T2 = 4 + ε. According to equation (5.3), the task set should
be schedulable: in fact B1 = 2 and B2 = 0, hence for task τ1 I have 1

2 + 1
2 ≤ 1, and for

task τ2 I have 1
2 + ε

4+ε ≤ 1, so the admission test is passed. Unfortunately, as can be seen
in Figure 5.5, if τ2 arrives at time t = 3, it executes before the second instance of τ1. As a
result, J1,2 is not scheduled as soon as it is released and it misses its deadline.

To use dynamic priorities in this context, one could think to split each job in more
chunks and assign each chunk a different relative deadline (for example, a relative deadline
of Ti − CDSP

i − Cpost
i could be given to the chunk executed before the DSP activity).

However, I note that, although this assignment works properly in the scenario of Figure
5.4, it does not work in general. For example consider two tasks, τ1 and τ2. τ1 does not use
the DSP and has T1 = 2 and C1 = 1. τ2 has T2 = 7, C2 = 5, CDSP

2 = 2 and Cpost
2 = 2.

Figure 5.6 shows that this task set is not schedulable with the method suggested above. I

82 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

DSP

Task 1

Task 2

Deadline miss!

0 4 8

Figure 5.5: EDF does not work always.

Task 1

Task 2

Task 1

Deadline miss!
Deadline Pseudo

Deadline

0 5 10 15

DSP

CPU

Arrival
time

Figure 5.6: Also EDF with modified deadlines does not work always.

will propose a schedulability test for these systems in Section 5.5.

The problem of exploiting the holes to improve the schedulability of the system can be
posed in terms of fixed or dynamic priorities. This chapter provide a scheduling algorithm
and an analysis for both cases:

• In Section 5.4, I will provide a formal analysis of the DSP tasks for fixed priori-
ties, and I will propose a more efficient method for scheduling DSP tasks and DSP
activities. The method is then compared with the DPCP in Section 5.4.3.

• In Section 5.5 I propose a solution for the case of dynamic priorities (using a task
model that extends the task model presented in Section 5.2).

5.4 DSP scheduling under fixed priorities

As observed in the previous section, the idle time created in the master processor by exe-
cuting some activities on the DSP can be used for increasing the system schedulability to
guarantee more real-time tasks.

In this section, I show how to schedule tasks on the master processor and how to per-
form an admission test which exploits the time left by the activities executing on the DSP.
The basic idea is to re-arrange the scheduling and guarantee algorithms in order to account
the DSP time CDSP

i only to tasks that use the DSP (without influencing the schedule and
the guarantee of the regular tasks). This can be achieved by modelling the DSP activity as a

5.4. DSP SCHEDULING UNDER FIXED PRIORITIES 83

DSP
queue

Regular
queue

>

DSP
in use

DSP tasks
(ordered by priority)

Regular tasks
(ordered by priority)

CPU

Pick the highest
priority task

Figure 5.7: My scheduling approach. When the DSP is active, the scheduler selects tasks
from the regular queue only.

blocking time: when a DSP task τi requests a DSP activity, it blocks for a time Bi waiting
for its completion (since I are using an RPC protocol). Moreover, the scheduler has to be
modified in such a way that the Bi factor affects only τi in the schedulability analysis.

In the next subsection, I show how to modify the scheduler and how to compute the
blocking factors when tasks are scheduled using a fixed priority assignment. The case of
dynamic priorities is more difficult to analyze and, at present, I just discuss some issues
that may help to address the problem.

5.4.1 Enhancing schedulability under fixed priorities

As already said in Section 5.2, to simplify the analysis I assume that DSP requests are
scheduled by the master processor one at a time, so that no DSP activity is issued while
the DSP is active. This can be achieved by enqueuing regular tasks and DSP tasks in two
separate queues that are ordered by priority as shown in Figure 5.7. When the DSP is idle,
the scheduler always selects the task with the highest priority between those at the head
of the two queues. When the DSP is active, the scheduler selects the task with the highest
priority from the head of the regular queue only.

In this way, a task using the DSP blocks all the other tasks requiring the DSP, but not
the regular tasks, which can freely execute on the master processor in the holes created by
DSP activities.

A similar result can be achieved by implementing each DSP request through a blocking
primitive which suspends the calling task in a queue. A waiting task is then awakened
by the DSP as the activity has been completed. This solution has also the advantage of
allowing other DSP tasks to execute on the master processor while a DSP request is being
served.

Note that this approach is different from using an inheritance-based protocol [59],
which would prevent a regular task with medium priority to execute while a high prior-
ity DSP task is blocked on the DSP resource. A regular and a DSP tasks can only be
delayed by other DSP tasks that where delayed.

That is, the blocking factor Bi of a regular task can be computed as:

Breg
i = Bdef

i

84 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

where

Bdef
i =

∑

Pj>Pi

min(Cpost
j , CDSP

j)

is a duration that accounts for the deferred execution requests of higher priority DSP
tasks.

A DSP task, however, can also be delayed by other tasks which may hold the DSP. In
particular, a DSP task τi can be delayed by a single lower priority job which is already
using the DSP, and by those higher priority jobs that that may interfere with τi before it is
scheduled.

Hence, the blocking factor Bi of a DSP task can be computed as the sum of three terms:

BDSP
i = CDSP

i + Blp
i + Bhp

i + Bdef
i , (5.2)

where Blp
i denotes the blocking caused by the (single) lower priority task and Bhp

i denotes
the blocking due to the interference of higher priority tasks. Figure 5.8 illustrates an ex-
ample showing how a task τ3 can be blocked by a task τ4, with lower priority, and by two
tasks, τ1 and τ2, having higher priority. As also done in [53, 50], the two blocking terms
can be computed as follows:

Blp
i = max

Pj<Pi

{CDSP
j }

Bhp
i =

∑

Pj>Pi

⌈

Ti

Tj

⌉

CDSP
j .

Therefore, an upper bound for the blocking time Bi experienced by task τi is given by

Bi =

{

BDSP
i for a DSP task

Breg
i for a regular task

This value can be used in the classical admission test for fixed priority systems [59], that

is:

∀i = 1, . . . , n
∑

Pj≥Pi

Cj

Tj
+

Bi

Ti
≤ Ulub(i), (5.3)

where Ulub(i) = i(21/i − 1).

It is worth observing that to enhance schedulability and accept more tasks in the system,
the admission test can be performed by using the hyperbolic bound [15] or the response
time analysis [41, 6]. For large task sets where the admission test has to be performed on
line, then the hyperbolic bound is more suited, having an O(n) complexity, whereas the
response time analysis has a pseudo-polynomial complexity.

5.4. DSP SCHEDULING UNDER FIXED PRIORITIES 85

Task 3

Task 2

Task 1

DSP

CPU

DeadlineArrival time

Task 4

Task 1

Task 2

Task 3

Task 4

Idle Time

Blocking time
(low priority tasks)

Blocking time
(high priority tasks) DSP activity

Figure 5.8: Example of scenario where task τ3 is blocked by some high priority (τ1 and τ2)
and low priority (τ4) tasks.

86 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

Using the hyperbolic bound [15] the admission test becomes:

∀i = 1, . . . , n
∏

Pj>Pi

(

Cj

Tj
+ 1

) (

Ci + Bi

Ti
+ 1

)

≤ 2.

In Section 5.4.3, I also present some simulation experiments aimed at estimating the ad-
vantage of using different admission tests.

5.4.2 Allowing interleaving DSP requests

In this section I consider the possibility of extending the analysis of the blocking times by
removing the assumption of having one DSP request at a time.

If the constraint of having only one DSP activity at a time is removed and no special
protocol is used for accessing the DSP, the blocking time Bi for task τi is equal to the
response time of the DSP request. In this case, such a response time must be explicitly
computed by performing a finishing time analysis on the DSP schedule. Since I am using
an RPC protocol, the DSP scheduling is clearly non-preemptive; hence, if the requests for

DSP activities are ordered according to the RM priority assignment, then the problem of

computing the blocking time Bi is equivalent to the problem of finding the response time of

a task τi with computation time CDSP
i and period Ti when a nonpreeemptive RM scheduler

is used and some release jitter is present.

The exact finishing time of a task under a fixed priority preemptable scheduler can be
computed as shown in [6], the nonpreemptability of the scheduler can be accounted by
adding a blocking term equal to maxPj<Pi

{CDSP
j } to each blocking time Bi, whereas the

release jitter can be accounted as shown in [61].

5.4.3 Simulation results

The performance of the scheduling algorithm presented in Section 5.4 has been evaluated
by simulation on a large number of task sets (more than 64 million experiments). For each
task set I computed the blocking time of each task and I checked the schedulability using
both my approach and the DPCP protocol.

Task sets were generated using random parameters with uniform distribution with the
following characteristics:

• The number of tasks was chosen as a random variable from 2 to 50.

• Task periods were generated from 10 to 1000.

• Task worst-case execution times (C ′
i = Ci + CDSP

i) were chosen in such a way that
∑

i
C′

i

Ti
varied from 0.01 to 0.99.

• DSP tasks were generated to be 80% (in the average) of the total number of tasks.

• CDSP
i was generated to be a random variable with uniform distribution in the range

of 10% to 80% of the C ′
i.

5.4. DSP SCHEDULING UNDER FIXED PRIORITIES 87

% of schedulable solutions (Equation 5 test)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Number of tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.9: Schedulability results of my approach when varying the total utilization factor
and the number of tasks in the task set (using Equation (5.3)).

In a first experiment I compared the performance of my method against the DPCP approach
in terms of average schedulability, using the admission test given by Equation (5.3). Figures
5.9 and 5.10 show the percentage of schedulable task sets, for my approach and for the
DPCP method, as a function of the number of tasks and the total utilization factor (

∑

i
C′

i

Ti

). As clear from the graphs, both methods have a performance degradation as the total
utilization factor increases, whereas they are quite insensitive to the number of tasks in the
set.

To better evaluate the enhancement achieved with my approach, Figure 5.11 reports the
difference between the two previous graphs. I note that the advantage of my approach with
respect to DPCP is more sensitive for task sets with total utilization in the range from 0.3
to 0.6.

A second experiment has been carried out to evaluate the improvement that can be
achieved using my method with the hyperbolic bound in place of Equation (5.3). Figure
5.12 shows that for large task sets with utilization around 50% the hyperbolic bound im-
proves the acceptance rate up to 30%.

A third experiment has been performed to compare the two approaches using the re-
sponse time analysis. Figure 5.13 shows the performance differences between the two
methods. I note that the surface has the same shape as the one in Figure 5.11, presenting
a peak translated around 0.6 in the utilization axis. Hence, my approach basically outper-
forms DPCP when the utilization factor is near to the RM schedulability bound. Figure
5.14 reports the performance of the two approaches and their difference as a function of the
utilization factor for task sets composed by 30 tasks.

88 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

% of schedulable solutions (Equation 5 test)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Number of tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.10: Schedulability results of DPCP when varying the total utilization factor and
the number of tasks in the task set (using Equation (5.3)).

% Difference between our approach and DPCP (Liu & Layland test)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Number of tasks

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

Figure 5.11: Difference between the two approaches (using Equation (5.3)).

5.4. DSP SCHEDULING UNDER FIXED PRIORITIES 89

% Difference between Equation 5 and Hyperbolic bound tests

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Number of tasks

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

Figure 5.12: Improvement achieved using the Hyperbolic Bound.

% Difference between our approach and DPCP (RTA test)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

DSP utilization factor

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Figure 5.13: Difference between the two approaches (using response time analysis).

90 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

ns

Utilization factor

Our approach
DPCP

Figure 5.14: Performance of the two approaches and their difference as a function of the
utilization factor for task sets composed by 30 tasks.

Within the same experiment performed with the response time test, I evaluated the
influence of the DSP usage (

∑

i CDSP
i) on the schedulability results. Figure 5.16 shows

that the higher the DSP usage, the lower the average acceptance rate.

Finally, the difference of schedulability percentage between my approach and the DPCP
is reported in Figure 5.16, which shows that my algorithm outperforms DPCP for task sets
with high utilization and high DSP usage.

5.5 DSP scheduling under dynamic priorities

This Section propose an analysis based on the problem definition in Section 5.3. In particu-
lar, I propose two new uniprocessor scheduling algorithms, called CEDF and CEDF+SRP,
which are derived from the well-known EDF and SRP algorithms. In order to efficiently ex-
ploit the time left on the general processor CPU from DSP execution, the algorithms divide
each task instance into chunks, which are scheduled under EDF with a suitable deadline
(less than the task period).

The main contributions of this section are:

• It presents two new uniprocessor scheduling algorithms, called CEDF and CEDF+SRP,
that are derived from the well-known Earliest Deadline First (EDF) [44] and Stack
Resource Policy (SRP) [7] algorithms using a technique based on checkpoints. The
two algorithms are then formally presented.

• Then, the CEDF+SRP algorithm is used to extend the results obtained in [29] to

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 91

% of schedulable solutions

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

DSP utilization factor

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.15: Difference in the percentage of scheduled tasks set between my approach and
DPCP when considering the influence of DSP utilization.

% Difference between our approach and DPCP

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

DSP utilization factor

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Figure 5.16: Influence of DSP utilization on the schedulability.

92 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

dynamic priority systems, giving a way to efficiently reuse on the main CPU the
time spent on the DSP.

As it will be described later, the checkpoint technique divides each task instance into
chunks, where every chunk has its own deadline. This approach has some similarities
with some other work in the literature (see also Chapter 2). In particular, the class of PFair
algorithms [11, 3] and its derivates divides every task instance into unit-size chunks, every
one with a window and a pseudo deadline. The technique proposed in this article is slightly
different in the way deadlines are chosen and in the dimension of the chunks. Moreover,
PFair algorithms are multiprocessor scheduling techniques, whereas the CEDF+SRP algo-
rithm is basically a uniprocessor scheduling algorithm. Another work in multiprocessor
scheduling that has some similarities with the proposed approach is [38], where tasks in-
stances are split into different parts; in that work, however, the scheduling is made off-line
with a bin-packing approach, and then statically repeated.

5.5.1 EDF with Checkpoints

Consider a set T of periodic tasks with start time si, period Ti (i = 1 . . . n), a Worst
Case Execution Time (WCET) Ci, and a relative deadline Di equal to the period. In this
section I will modify the EDF policy (see Chapter 2) defining a new scheduling algorithm
called Checkpointed EDF (CEDF), that retains the same property of optimality shown by
EDF; the CEDF algorithm is useful because it is the base I used to derive the CEDF+SRP
algorithm.

Considering a generic task τi, the CEDF algorithm divides each job τij (with start time
sij) into mi chunks τijk

1 with computational time Cik , such that

mi
∑

k=1

Cik = Ci.

The number mi and the size Cik of each chunk can be arbitrarily chosen. Every chunk
τijk is scheduled following the EDF rules using a relative deadline defined as

Dik = Di −

mi
∑

h=k+1

Cih.

In practice, when a task finishes a chunk, its deadline is set to the deadline of the next
chunk, that is, the deadline is postponed during the execution of the task; Figure 5.17 shows
the structure of a task scheduled by EDF, and the structure of the same task as scheduled
by CEDF supposing it is divided into three chunks.

The CEDF algorithm has the following property:

Theorem 6 (Optimality of CEDF):
Algorithm CEDF is optimal, in the sense that a task set is schedulable by CEDF if and

only if it is schedulable by EDF.

1That is the kth chunk related to the instance j of τi.

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 93

0 5 10 15 20

C
i1

s
i

D
i3

 i
(CEDF)

C
i

s
i

D
i

 i
(EDF)

C
i2

C
i3

D
i2

D
i1

time

τ

τ

Figure 5.17: A task scheduled by EDF and CEDF. The task has the following structure:
Di = 20, Ci = 8, mi = 3, Ci1 = 3, Ci2 = 3, Ci3 = 2.

0 5 10 15 20

C

s D

Chunks
k and k

C
ik

s
ij

D
ik

Chunk k

C
ik

D

time

= s d*

t 2ik 1

ik 1 ik 2ijk 1 ijk 2

21

Figure 5.18: A single transformation step.

Proof.
If part. Consider a feasible finite EDF schedule. The initial EDF schedule can be viewed
as a set of chunks, where each chunk corresponds to a whole instance of the task. Each
chunk has the same start time, deadline and computation time as the corresponding EDF
task instance.

The proof is done defining a transformation step that takes as input a feasible schedule
composed by a set of n chunks τijk and gives as output another feasible schedule with
n + 1 chunks. Each step divides, for an instance j, a chunk τijk in two chunks τijk1

and
τijk2

with start times sijk1
= sijk2

= sij , WCET Cik1
and Cik2

(Cik1
+ Cik2

= Cik),
deadlines Dik1

= Dik − Ck2
and Dik2

= Dik, as shown in Figure 5.18.

Cik2
is chosen in a way that each chunk τijk2

produced by the transformation step
corresponds to a chunk in the CEDF schedule. The first time the transformation step is
applied, it produces the chunk τijmi

in the CEDF schedule, and so on.

I now prove that the proposed transformation step maintains the feasibility of the sched-

94 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

ule. That is, if I consider a feasible schedule and I apply the proposed transformation, the
resulting schedule is still feasible.

By contradiction, if the resulted schedule is not feasible there must be a chunk related
to a task τ∗ different from τi that misses its deadline. Let d∗ be the missed deadline. Since
CEDF uses the earliest deadline to schedule the task’s chunks, I note that the chunks with
deadline less than dijk1

or greater than dijk2
are not affected by the transformation step, so

it must be that dijk1
≤ d∗ ≤ dijk2

.
If a chunk misses its deadline d∗ I have that there must exists an instant t such that the

computational demand in [t, d∗] exceeds the length of the interval. That is,

D(t, d∗) > d∗ − t.

I note that the computational demand in [t, dijk2
] is:

D(t, dijk2
) ≥ Cik2

+ D(t, d∗) > Cik2
+ d∗ − t > Cik2

+ dijk1
− t = dijk2

− t

(where the first ≥ is due to the fact that, at least, D(t, d∗
i) does not include the chunk τijk2

).
That is, the demand in [t, dijk2

] is greater than dijk2
− t, meaning that the task set was

not schedulable before the transformation step, contradicting the hypothesis.
Hence, the single transformation step preserves the feasibility of the schedule. The

transformation step can be recursively applied until, after a finite number of steps, a given
finite EDF schedule will be transformed into a CEDF schedule, where each job Ti is splitted
in mi chunks.

Only if part: Given a CEDF schedule, I need to prove that the same set of chunks
are schedulable under plain EDF. First, for each task instance I consider all the chunks
related to that instance and I postpone their deadline setting it to sij + Di (note that this
postponement does not reduce the schedulability of the system). Then, I obtain for each
instance a set of chunks with the same start time and the same deadline of the EDF schedule
I want to build. Then, the proof comes directly from the EDF optimality. �

5.5.2 Resources and checkpoints

The next step in the presentation of my approach is the extension of the CEDF algorithm
to cover the case in which tasks can share resources. The results presented in this section
are based on the Stack Resource Policy (SRP) scheduling algorithm (see also Chapter 2).
In this section, I modify the SRP scheduling policy by introducing checkpoints. I will call
this extension the CEDF+SRP algorithm.

Basically, the CEDF+SRP algorithm works as follows:

• Every real-time (periodic and sporadic) task τi must be assigned a static preemption
level πi inversely proportional to the task period.

• Every real-time task is divided into chunks as in the CEDF algorithm; checkpoints
are set as follows:

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 95

0 5 10 15 20 25

C
k1

A task that
uses resources

C
k2

D
k1

time

C
k3

C
k4

C
k5

P(R)
1

V(R)
2

V(R)
1

P(R)
2

P(R)
1

V(R)
1

D
k2

D
k3

D
k4

D
k5

Resource 1

Resource 2

Figure 5.19: A typical checkpoint assignment used in the CEDF+SRP Algorithm.

1. just before a task enters a critical section;

2. just after a task exits a critical section (if the critical sections are nested, the
checkpoints are put on the outermost critical sections);

3. at the end of the task (as in the CEDF algorithm);

Figure 5.19 shows a typical checkpoint assignment.

• The static ceiling and the system ceiling works like in SRP, Equations (2.1) and (2.2)

• Every chunk is assigned a dynamic priority using the CEDF algorithm.

Then, the CEDF+SRP scheduling rule (that is the same as the SRP scheduling rule) states
that:

“a job is not allowed to start executing until its priority is the highest among

those of the active jobs and its preemption level is greater than the system

ceiling”.

The priority assignment of the CEDF+SRP algorithm ensures that a task, once started,
cannot be blocked until completion (mainly because the algorithm is based on SRP). The
only difference with respect to SRP is that the execution of a job τik could be delayed by a
job with a lower preemption level (not priority!), which is locking some resource, and has
raised the system ceiling to a value greater than or equal to the preemption level πi.

Note that the CEDF+SRP algorithm does not ensure that tasks’ executions are perfectly
nested, as it can be seen in Figure 5.20. The example consists of two tasks τ1 and τ2,
with period Ti = Tj = 18, computational times Ci1 = Cj2 = 2, Ci2 = Cj1 = 4,
and no resources. Due to the different deadlines of the chunks, tasks are scheduled in an
interleaved way. That means the stack sharing property of SRP is no longer maintained.

However, the CEDF+SRP algorithm retains all the other properties of SRP; in particular
the maximum blocking time of a task under CEDF+SRP is the same as in the “plain”
SRP. Moreover, if a task set is schedulable under SRP, then it is also schedulable under
CEDF+SRP. These facts are proven by the following Lemma and the following Theorem.

96 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

0 5 10 15 20

C
j1

j

C
i1

D
i1

i

C
j2

time

D
i2

D
j2

D
j1

C
i2

τ

τ

Figure 5.20: Task executions are not nested under CEDF+SRP. Note that task τi postpones
its deadline at time 2; task τj postpones its deadline at time 6.

Lemma 3 The maximum blocking time that a task can experience under the CEDF+ SRP

algorithm is the same as that it can experience under the SRP algorithm.

Proof.
Consider that the blocking time a task τi can experience is due to the fact that when a task
arrives, some task with a lower preemption level can have locked a resource, raising the
system ceiling to a value greater than πi. Please also remember that the preemption level
of a task depends only on its period.

Once a task starts and experiences its blocking time, there cannot be other blocking. In
fact, a task cannot be blocked when a chunk ends and the deadline is postponed, because the
checkpoints are always inserted in points where a task does not use any resource. When a
new chunk is started with a postponed deadline (from Dik to Dik+1), it cannot cause early
blocking on other tasks, because it simply does not contribute to raise the system ceiling.
The only effect that a postponed deadline can have is that the task can be preempted by a
task with an earlier deadline.

As a consequence blocking can only occur when a task arrives, so the blocking time
experienced by the CEDF+SRP algorithm is the same as the one experienced under the
plain SRP. �

It is worth noting that, although the blocking time is the same as in the SRP case, a task
can be preempted by a task with a lower or equal preemption level (see Figure 4, where
the two tasks have the same preemption level). This fact, however, is not important for the
global scheduling properties of CEDF+SRP. In fact, the following theorem holds:

Theorem 7 A set T of tasks sharing resources can be feasibly scheduled by CEDF+ SRP

if it can be feasibly scheduled by SRP.

Proof.
The scheme of the proof is the same as the one used for Theorem 6. The proof is done by
defining a transformation step that takes as input a feasible schedule composed by a set of
n chunks τijk and gives as output another feasible schedule with n + 1 chunks. Each step
divides, for an instance j, a chunk τijk in two chunks τijk1

and τijk2
with start times sijk1

=

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 97

sijk2
= sij , WCET Cik1

and Cik2
(Cik1

+ Cik2
= Cik), deadlines Dik1

= Dik −Ck2
and

Dik2
= Dik, as shown in Figure 5.18.

The transformation step is done in a way that each chunk τijk2
produced by the trans-

formation step corresponds to a chunk in the CEDF+SRP schedule, that is the first time
the transformation step is applied, it produces the chunk with index mi in the CEDF+SRP
schedule, and so on (see Figures 5.18 and 5.19).

Again, I need to prove that the proposed transformation step preserves the feasibility of
the schedule, considering the blocking time experienced by every task.

Let Bi(t1, t2) be the maximum blocking time experienced by the first chunk of task τi

in a generic interval [t1, t2] due to tasks with a lower preemption level.

If the resulting schedule is not feasible there must be a chunk belonging to a task τx that
misses its deadline. Let d∗ be such a deadline. Since CEDF+SRP uses the earliest deadline
to schedule the task’s chunks, I note that the chunks with deadline less than dijk1

or greater
than dijk2

are not affected by the transformation step, so it must be that dijk1
≤ d∗ ≤ dijk2

.

If a chunk of τx misses its deadline d∗ I have that it must exist an instant t where the
computational demand in [t, d∗] plus the blocking time (experienced by the first chunk
only) exceeds the length of the interval. That is,

D(t, d∗) + Bx(t, d∗) > d∗ − t.

Since the system was schedulable before splitting the chunk τijk , the computational
demand in [t, d∗] before dividing chunk k is such that

D(t, d∗) + Bx(t, d∗) ≤ d∗ − t.

I need now to have a more strict version of the inequality above. For that, I define
B′

i(t1, t2, τj) as the maximum blocking time experienced by the first chunk of task τi in a
generic interval [t1, t2] due to tasks with a lower preemption level, except for task τj .

Since I know that chunk τijk was schedulable before splitting it, the scheduling of the
chunk related to task τx that misses the deadline must have finished before d∗ to enable
chunk k to complete before its deadline. Hence, I have:

D(t, d∗) + B′
x(t, d∗, τi) ≤ dijk2

− Cik − t.

I now use Lemma 3 to say that B′
x(t, d∗, τi) does not change when chunk τijk is

splitted in two. Then I sum Cik1
on both sides, obtaining the computational demand after

splitting chunk k.

D(t, d∗) + Cik1
+ B′

x(t, d∗, τi) ≤ dijk2
− Cik − t + Cik1

=

= dijk2
− Cik2

− t = dijk1
− t ≤ d∗ − t.

Since the computational demand in [t, d∗] (considering the blocking time for task τx)
is less than or equal to d∗ − t, the final schedule is still feasible. �

Theorem 7 is important because it states a sort of equivalence between SRP and CEDF+SRP,

98 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

and this is important because SRP is widely studied in the real-time literature, and there are
schedulability conditions that can be used without modifications.

5.5.3 Implementation issues

The implementation of the CEDF algorithm is straightforward. In practice, every task
should start having its relative deadline set to the deadline of the first chunk. Such a primi-
tive should be provided by the scheduler, in a way that the task can insert it in its code. The
behavior of that primitive should set the current deadline of the task to the deadline of the
next chunk, and then it should include the preemption check that ensures that the earliest
deadline task is always the running task.

Implementing the CEDF+SRP algorithm and its application to DSP scheduling is of
similar complexity. In particular, the resource lock/unlock primitives should be modified to
implement the change of the deadline and the preemption check before/after their normal
behavior. I can also suppose that at the end of the DSP code an internal interface is pro-
grammed to raise an interrupt on the master processor. When implementing the RPC that
executes the DSP code, the deadline postponement should be put just before the RPC and
just after that interrupt.

5.5.4 Using CEDF+SRP for DSP scheduling

In this section, I will reconsider the problem definition introduced in Section 5.3 using the
CEDF+SRP approach, designing a way to account in the scheduling guarantee for the time
left free by the DSP scheduling using the CEDF+SRP. Unfortunately, the time I can reuse
is not uniformly distributed like a bandwidth, but it depends on the period of its utilization,
because the position of DSP holes strictly depends on the execution of the DSP tasks.

Without loss of generality, in the rest of this section I will map a regular task to a task
composed by only one chunk, and, a DSP task τi to a task with three chunks defined in the
following way:

Ci1 ≡ Cpre
i

Ci2 ≡ CDSP
i

Ci3 ≡ Cpost
i .

The following subsections show how much bandwidth can be collected from a set of
tasks that use the DSP, and how to derive a good schedulability condition.

5.5.4.1 Collecting Bandwidth

The main problem in collecting spare time from the DSP schedule is that the DSP time is
not uniformly distributed, but it depends on the scheduling of the tasks that use the DSP.
For that reason the DSP time can be exploited only under particular conditions, that is

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 99

DSP

CPU

0 4 8

1 1

1

2

2

2

Figure 5.21: An example. The Figure shows only two instances (numbered with ’1’ and
’2’) of the periodic task.

with particular periods. For example, consider a task set composed by only one task τ1

(see Figure 5.21), with C1 = 4, divided in three chunks, C11 = 1, C12 = 2, C13 = 1;
moreover, τ1 has D1 = D13 = 4, D11 = 1 and D12 = 3. The second chunk executes on
the DSP.

Under the pure SRP scheduling algorithm (without chunks and with deadlines equal to
periods), the DSP time can be exploited on the main CPU only using background schedul-
ing. In fact, adding a task with period less than 4 always results in a deadline miss of τ1

[29]. Using CEDF+SRP, the DSP time can be exploited also with periods less than 4. For
example, a task τ2 with C2 = 1 and T2 = 3 can be added. However, it is still not possible
(and it will never be!) to add a task with period less than 2. Task τ1 will always miss its
deadline if such a task arrives when the third chunk is in execution (i.e., at time 3).

The approach I propose is to find a lower bound on the DSP time made available by
the various tasks in the system, and use that lower bound as an estimation of the DSP time
it can be collected under CEDF+SRP. In the following paragraphs, I propose a method
for estimating the lower bound on a simple case (more complex case can be analyzed in
a similar way). Then, in the following subsection I will use that bound to prove that the
system remains schedulable under the CEDF+SRP algorithm adding a task that meets the
bound.

I consider a task divided in 3 chunks, like task τ1 in Figure 5.21. The worst case of
the collected time from a single task is depicted in Figure 5.22. In practice, I consider a
starting point that is equal to the end of the DSP part if the task is scheduled just after its
activation, and I consider that the collected time starts just when the second instance of a
task (executed as late as possible) uses the DSP. In the example, the collected time γi(t) is
zero if the period I want to use is less than 14. Defining η(t) =

⌊

max(t−Ti+Ci1+Ci2,0)
Ti

⌋

,
the exact formula of γi(t) is:

γi(t) = η(t) Ci2 + min {Ci2, max [0, t − (2 + η(t))Ti + Ci + Ci2]} . (5.4)

Note that if only the DSP time is known, but not the distribution of the DSP time in
the task, a conservative approach such that shown in Figure 5.23 can be applied. In the
following, I suppose the use of Equation 5.4.

100 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

DSP

CPU 1 1

1

2

2

2 3

3

3

(t)

0 10 20 30

0 5 10 15 20 25

time

t

Collected
time

4

2
γ

i

Figure 5.22: The lower bound on the collected time γi(t) of a task τi with Ti = 10 and
Ci = 4; task τi is divided in three chunks (the second runs on a DSP) with capacities
Ci1 = 1, Ci2 = 2, and Ci3 = 1.

DSP

CPU 1 1

1

2

2

2 3

3

3

0 10 20 30

time

t

Collected
time

4

2

0 5 10 15 20 25

(t)γ
i

Figure 5.23: If the exact distribution of the DSP computation is not known, a conservative
approach can be applied (compare this figure with Figure 5.22).

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 101

Before stating the schedulability condition I prove the following lemma:

Lemma 4 For each t, nγi(t) ≤ γi(nt).

Proof.

I first show that nη(t) ≤ η(nt).

n η(t) = n
⌊

max(t−Ti+Ci1+Ci2,0)
Ti

⌋

≤
⌊

n max(t−Ti+Ci1+Ci2,0)
Ti

⌋

=

=
⌊

max(n(t−Ti+Ci1+Ci2),0)
Ti

⌋

= η(nt).

Now, since Ci1 + Ci2 − Ti ≤ 0, I have that
⌊

max(n(t−Ti+Ci1+Ci2),0)
Ti

⌋

≤
⌊

max(nt−Ti+Ci1+Ci2,0)
Ti

⌋

.

Then,

n · min (Ci2, max (0, t − (2 + η(t))Ti + Ci + Ci2))

≤ min (Ci2, max (0, n(t − (2 + η(t))Ti + Ci + Ci2)))

then, since Ci1 + Ci2 − 2T ≤ 0, I have that
≤ min (Ci2, max (0, nt − (2 + nη(t))Ti + Ci + Ci2))

≤ min (Ci2, max (0, nt − (2 + η(nt))Ti + Ci + Ci2)) .

Given the two previous results, I have that

nγi(t) = nη(t) Ci2 + n min (Ci2, max (0, t − (2 + η(t))Ti + Ci + Ci2))

≤ γi(nt) = η(nt) Ci2 + min (Ci2, max (0, nt − (2 + η(nt))Ti + Ci + Ci2)) =

= γi(nt). �

5.5.4.2 Using collected bandwidth for DSP scheduling

The γ(t) function basically gives a measurement of the capacity that can be exploited given
a certain period. This fact means that a given schedulable task set remains feasible if a
regular task τ ′ with period P consumes γ(P) units of time more than declared or, similarly,
if a regular task τ ′ with period P and capacity γ(P) is added to the system. This property
holds if the CEDF+SRP scheduling algorithm is used to schedule the task set, as stated by
the following theorem:

Theorem 8 If a task set T can be feasibly scheduled under the CEDF+SRP algorithm,

then T ′ = T ∪ τ ′, where τ ′ has period P and execution time γ(P), is also feasible under

CEDF+SRP.

Proof.

Let me consider a feasible schedule of T , where the CPU is idle when the DSP is
in execution. When τ ′ is added to the system, all the chunks executing on the DSP that
contributes to the capacity γ(P) have always a deadline less than or equal to the deadline
of τ ′.

102 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

I now prove that the insertion of τ ′ maintains the schedulability of the system. If the
resulting schedule is not feasible there must be at least one chunk belonging to a task τi

that miss its deadline. Let d∗ be such a deadline. Since the task set was schedulable before
the insertion of τ ′, I have

D(t, d∗) < d∗ − t − γ(d∗ − t)

because in the interval [d∗, t] there is at least γ(d∗−t) DSP time. Adding the computational
time of τ ′ to each side, I have:

D(t, d∗) +

⌊

d∗ − t

P

⌋

γ(P) ≤ d∗ − t − γ(d∗ − t) +

⌊

d∗ − t

P

⌋

γ(P)

From Lemma 4, I have that

⌊

d∗ − t

P

⌋

γ(P) ≤ γ

(⌊

d∗ − t

P

⌋

P

)

.

Hence, since γ(t) is a monotonic increasing function,

γ

(⌊

d∗ − t

P

⌋

P

)

≤ γ (d∗ − t) ,

and therefore

D(t, d∗) +

⌊

d∗ − t

P

⌋

γ(P) ≤ d∗ − t

This proves that task τi cannot miss its deadline. �

Note that a priori is not known which is the task that will be scheduled into the DSP time
(in general, any regular task can be scheduled there). What happens is that it is guaranteed
that task τ ′ will be scheduled, and that the system is still feasible.

Also note that Theorem 8 does not hold if the plain SRP scheduling algorithm is used.
That is because SRP does not separate the deadlines of each chunk; the additional task
can be scheduled under SRP maintaining the feasibility of the system only if its deadline
is always greater than those of the instances that contributes to γ(t), that leads to a more
pessimistic usage of the DSP time on the master processor.

Using the results of Theorem 8, it is possible to reclaim the execution time of a single
DSP task. Figure 5.24 shows how Theorem 8 can be used to design an acceptance test
that consider the contribution of the reclaiming from different DSP tasks. The basic idea
of the acceptance test is to first try to guarantee each DSP task, and then use the capacity
reclaimed to guarantee the other regular tasks.

To do that, I introduce a function µi(t), that models the worst case execution time
utilization of a regular task τi (see Figure 5.25), and a function Γ(t) that at each step sums
together the functions γ(t) and µ(t) of the accepted tasks. In general, Γ(t) represents
the time (depending on the period) that can be reclaimed at a given step of the guarantee
algorithm.

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 103

Utot = 0
Γ(t) = 0

1: bool guarantee(T, C1, C2, C3)
2: {
3: C = C1 + C2 + C3

4: if (Γ(T) > 0) {
5: reclaim = min(Γ(t), C)
6: C = C − reclaim
7: }
8: else
9: reclaim = 0

10: U = C
T

11: if (Utot + U > 1)
12: return false
13: else {
14: if (reclaim > 0) Γ(t) = Γ(t) − µreclaim,T (t)
15: Utot = Utot + U
16: if (C2 > 0) Γ(t) = Γ(t) + γT,C1,C2,C3

(t)
17: return true
18: }
19: }

Figure 5.24: An acceptance test that consider more than one DSP task.

CPU
1 1 2 2 3 3

0 10 20
time

t

worst case
time

4

2

0 5 10 15 20

6

Figure 5.25: A function µ(t) for a task with execution time Ci = 2 and period Ti = 5.

104 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

The algorithm works as follows: first of all, the function Γ(t)is initialized to zero for
each t, and the total utilization factor of the guaranteed tasks Utot is set to 0. Then, function
guarantee() have to be called for each task τiof the task set, starting from DSP tasks,
in order of increasing periods, until the function returns false or all the tasks have been ac-
cepted. Lines 4 to 9 tries to reclaim some execution time from DSP tasks already accepted.
Line 11 tests if the task set already guaranteed plus the task under acceptance can be guaran-
teed. Lines 14 to 16 updates the global variables. The notation µreclaim,T (t) means a func-
tion µi(t) for a task τiwith Ci = reclaim, and Ti = T . The notation γT,C1,C2,C3

(t)means
a function γi(t) for a task τi with Ci1 = C1, Ci2 = C2,Ci3 = C3, and Ti = T .

Please note that:

• if we define the real load on the CPU as

UCPU =
∑

DSP tasks

Ci1 + Ci3

Ti
+

∑

regular tasks

Ci

Ti
,

then it holds that Utot > UCPU (because Utot also includes the DSP time of DSP
tasks);

• the designer can make use of function Γ(t) to know at which period a given compu-
tation time will be available, to appropriately tune the design of the system;

• the time made available by a function γi(t) in Γ(t) scales with a slope comparable
to Ci2

Ti
, whereas the time that can be used by a periodic task scales with a slope

Γ(t)
T < Ci2

Ti
, that means that a single periodic task cannot reclaim all the available

bandwidth made available by Γ(t). In general, only an infinite sequence of reclaimed
tasks with increasing period can use all the bandwidth reclaimed using a function
γ(t).

These notes will be further discussed with an example in Section 5.5.5.

5.5.5 Simulation results

In this section I present some simulation results that show the peculiarities of the approach
I propose. In particular, the simulations show the behavior of the γ(t) function considering
only a single task. This allows to better highlight the relation between γ(t) and t, showing
how much of the DSP time can be collected using my method. The results with more than
one task heavily depends on the task parameters and they can be derived in a similar way
summing the contributions of each task. Figures report the behavior of γ(t) measured in
multiples of the task period. The plots are influenced only by the ratios between the period
Ti and the execution times Ci1, Ci2, and Ci3, and not by their absolute values.

In particular, Figure 5.26 plots the percentage of DSP utilization considering the task
described in Figure 5.22. It can be noted that the percentage of the DSP time collected
using the proposed approach increases as the period of the additional task increases. Please
also note that the DSP time cannot be exploited with very small periods.

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

on
 th

e
to

ta
l D

S
P

 ti
m

e

Multiples of the task period

DSP time collected

Figure 5.26: Percentage of DSP time collected by γi(t) using the settings on Figure 5.22.

Figure 5.27 shows the percentage of DSP time collected in three configurations consist-
ing of a single DSP task characterized by the following parameters: Ci1 = Ci3 = P (1−d)

2 ,
Ci2 = Pd, where P is the considered period for the additional task, and d is the DSP per-
centage with values 0.25, 0.5 and 0.75. Note that there are points (multiples of P) in which
the DSP time can be collected totally.

Figure 5.28 compares the DSP time collected by my approach and the time that can be
collected under the SRP protocol using a task with a big relative deadline (i.e., in back-
ground). As it can be noted, the approach significantly outperforms the latter in some
regions, making possible a better utilization of the DSP time. In particular, Figure 5.29
shows the difference between the two plots, highlighting the regions where CEDF+SRP
gives better results.

As an example of the usage of the constructive method of Section ?? consider a task
set composed by a DSP task τ1 and by a set of regular tasks τi, with i > 1. Task τ1 has
C11 = 1, C12 = 2, C13 = 1, T1 = 6; regular tasks τi have Ci = 2. The purpose of the
example is to assign the smallest period possible to each task τi.

Following the acceptance test described in Figure 5.24, task τ1 is accepted first. After
accepting τ1, Utot = 4

6 = 0.667, UCPU = 2
6 = 0.333, and Γ(t) = γT1,C11,C12,C13

(t) (Γ(t)

is plotted in Figure 5.30.a).

Task τ2can then be accepted at period T2 = 6 (using all the spare bandwidth left by τ1),
giving Utot = 1, UCPU = 4

6 = 0.667, and Γ(t) unaltered.

Task τ3 will be accepted at period T3 = 8 (because Γ(8) = 2, see Figure 5.30.a). Since
we are reclaiming computation time from Γ(t), we have to compute the function µ3(t)

(see Figure 5.30.b, that plots −µ3(t)). At this step, Utot is (and will be in the next steps)
unaltered, UCPU = 0.916667, and Γ(t) = γ1(t) − µ3(t) (Figure 5.30.c).

At that point, the only available capacity is after time 31. That capacity can be used to
accept other tasks. Please note that the function Γ(t) is not monotonic ascending, because

106 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

on
 th

e
to

ta
l D

S
P

 ti
m

e

Multiples of the task period

25% DSP time
50% DSP time
75% DSP time

Figure 5.27: Percentage of DSP Time collected with different task settings.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

on
 th

e
to

ta
l D

S
P

 ti
m

e

Multiples of the task period

CEDF+SRP
Background EDF

Figure 5.28: Comparison between the collected DSP time using CEDF+SRP and SRP with
a big relative deadline. The parameter of the DSP task were P = 100, Ci1 = 5, Ci3 = 45,
Ci2 = 25.

5.5. DSP SCHEDULING UNDER DYNAMIC PRIORITIES 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

on
 th

e
to

ta
l D

S
P

 ti
m

e

Multiples of the task period

Difference between CEDF+SRP and Background EDF

Figure 5.29: Difference between the two plots of Figure 5.28.

τi Ti UCPU after accepting task τi

τ4 32 0.979167
τ5 128 0.994792
τ6 512 0.998698
τ7 2048 0.999674
τ8 8192 0.999919
τ9 32768 0.999980
τ10 131072 0.999995
τ11 524288 0.999999

Table 5.1: Periods and CPU utilization for tasks τ4to τ11.

of the conservative assumption made with µj(t) starting just when arrived.
Table 5.1 shows the next periods and UCPU values for task τ4 to task τ11. Please note

that the CPU utilization UCPU after accepting task τ11 is really near to 1, meaning that it is
possible to design systems really near to the full utilization of the CPU computation time.

Finally note that, as explained in Section 5.5.4.2, a finite number of regular tasks cannot
use all the available bandwidth left by DSP tasks.

108 CHAPTER 5. HETEROGENEOUS MULTIPROCESSORS ARCHITECTURES

DSP

CPU 1 1

1

2

2

2 3

3

3

0 5 10 15 20 25 30 35

time

a)

4

2

0 5 10 15 20 25 30 35

4

4

4 5

5

5 6

6

6

b)

-2

-4

6

8

10

-6

-8

-10

2

2

c)

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

Figure 5.30: An example showing the constructive method of Section ??: a) Γ(t) = γ1(t)
after accepting τ1; b) the function −µ3(t); c) Γ(t) = γ1(1) − µ3(t) after accepting τ3.

Chapter 6

Conclusions

This thesis has been strongly motivated by the arrival of the new generation of multiple-
processor on-a-chip systems for embedded applications. These platforms not only require
real-time executives, but also ask for kernel mechanism that save as much RAM space as
possible, RAM memory being one of the most expensive components in those systems.

This thesis addressed the problem:

What is the best way to design minimal real-time operating systems for em-
bedded systems-on-a-chip?

To this end, I designed a set of scheduling algorithms and optimization techniques for mono
and multiprocessors, providing evidence of their effectiveness. The thesis can be divided
in two parts, the first one related to the design of single and homogeneous multiprocessors,
and a second part for the design of solutions for heterogeneous multiprocessors.

In particular, for the first part

• I designed a scheduling algorithm that merges EDF techniques together with pre-
emption threshold techniques, ideal for scheduling uniprocessor systems with small
kernels for SoC that have synchronization requirements as well as low memory foot-
print.

• I developed an optimization algorithm for the assignment of preemption thresholds
and the grouping of tasks in non-preemptive sets. The methodology allows to eval-
uate the schedulability of task sets and to find the schedulable solution (the task
groups) that minimize the RAM requirements for stack.

• I designed an extension of the SRP policy to multiprocessor systems and global
shared resources (MSRP).

• I developed task allocation algorithm based on simulated annealing.

The main contribution of this first part consists in realizing that real-time schedulability and
the minimization of the required RAM space are tightly coupled problems and can be effi-
ciently solved only by devising innovative solutions. The objective of RAM minimization

109

110 CHAPTER 6. CONCLUSIONS

guides the selection of all scheduling parameters and is a factor in all my algorithms. The
experimental runs show an extremely effective reduction in the occupation of RAM space
when compared to conventional algorithms.

In the second part, I addressed the problem of scheduling a set of tasks in an asymmetric
multiprocessor consisting of a general purpose CPU and a DSP. Although this kind of
architecture can be considered as a special case of a multiprocessor system, its peculiarity
allows to perform more specific analysis which is less pessimistic than the one typically
used in distributed systems with shared resources.

In particular,

• I designed a method for computing blocking times, which has been showed to be
more effective than the classical method adopted in the Distributed Priority Ceiling
Protocol [53, 50].

• I designed CEDF and CEDF+SRP, two new scheduling algorithms for uniprocessors,
obtained by modifying the traditional EDF and SRP scheduling algorithms using a
checkpoint technique. Using these results, I addressed the problem of scheduling a
set of tasks in an asymmetric multiprocessor consisting of a general purpose CPU
and a DSP.

A complete analysis of the approach has been presented together with some simulations that
show the performance enhancements that can be obtained using the proposed techniques.

List of Papers

This thesis is based on and extends the work and results presented in the following papers
and publications:

1. Paolo Gai, Giuseppe Lipari, Marco di Natale, Minimizing Memory Utilization of
Real-Time Task Sets in Single and Multi-Processor Systems-on-a-chip, Proceedings
of the 22th Real-Time Systems Symposium, December 2001.

2. Paolo Gai, Giuseppe Lipari, Marco Di Natale, Design Methodologies and Tools for
Real-Time Embedded Systems, Special Issue of Design Automation for Embedded
Systems, 2002.

3. Paolo Gai, Luca Abeni, Giorgio Buttazzo, Multiprocessor DSP Scheduling in System-
on-a-chip Architectures, Proceedings of the 14th IEEE Euromicro Conference on
Real-Time Systems, June 2002.

4. Paolo Gai, Marco Di Natale, Giuseppe Lipari, Alberto Ferrari, Claudio Gabellini
and Paolo Marceca, A comparison of MPCP amd MSRP when Sharing Resources
in the Janus Multiple Processor on a Chip Platform, Proceedings of RTAS 2003,
Washington DC, May 2003.

The following papers and publications are related but not covered in this thesis:

1. Paolo Gai, Giuseppe Lipari, Luca Abeni, Marco di Natale and Enrico Bini, Archi-
tecture for a Portable Open Source Real-Time Kernel Environment, Proceedings of
the Second Real-Time Linux Workshop and Hand’s on Real-Time Linux Tutorial,
November 2000.

2. Paolo Gai, Luca Abeni, Massimiliano Giorgi and Giorgio Buttazzo, A New Kernel
Approach for Modular Real-Time systems Development, Proceedings of the 13th
IEEE Euromicro Conference on Real-Time Systems, June 2001.

3. Paolo Gai, Giuseppe Lipari, Marco di Natale, A Flexible and Configurable Real-
Time Kernel for time predictability and Minimal RAM Requirements, Scuola Supe-
riore S. Anna, 2001.

4. Paulo Pedreiras, Luis Almeida and Paolo Gai, The FTT-ethernet protocol: Merg-
ing flexibility, timeliness and efficiency, Proceedings of the 14th IEEE Euromicro
Conference in Real-Time Systems, June 2002, Vienna.

111

112 CHAPTER 6. CONCLUSIONS

5. Paulo Pedreiras, Luis Almeida, Paolo Gai and Giorgio Buttazzo, FTT-Ethernet: A
Platform to Implement the Elastic Task Model over Message Streams, Proceedings
of the WCFS ’02, 2002, August, Vasteras.

6. Paolo Gai and Giorgio Buttazzo, Mutual exclusion in operating systems with appli-
cation defined scheduling, Proceedings of ARTOSS Workshop, Porto, July 2003.

7. Paolo Gai and Giorgio Buttazzo, An Open Source Real-Time Kernel for Control Ap-
plications, Proceedings of the 47imo Convegno nazionale ANIPLA, Brescia, Italy,
November 2003.

8. G. Lipari, P. Gai, M. Trimarchi, G. Guidi and P. Ancilotti, A Hierarchical Framework
for Component-Based Real-Time Systems, International Symposium on Component-
based Software Engineering (CBSE7), Edimburgh, May 2004.

9. G. Lipari, P. Gai, M. Trimarchi and G. Guidi, A Hierarchical Framework for Component-
Based Real-Time Systems, Workshop on Test and Analysis of Component Based
Systems (TACoS 04), April 2004.

10. Michele Cirinei, Antonio Mancina, Davide Cantini, Paolo Gai and Luigi Palopoli,
An Educational Open Source Real-Time Kernel for small embedded control systems,
to appear on the Proceeding of ISCIS 2004, Turkey, November 2004.

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley &
Sons, 1989.

[2] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free
shared objects. ACM Transactions on Computer Systems, 15(2):pp. 134–165, May
1997.

[3] James Anderson and Anand Srinivasan. Pfair scheduling: Beyond periodic task sys-
tems. In Proceedings of the Seventh International Conference on Real-Time Comput-

ing Systems and Applications, December 2000.

[4] Bjorn Andersson. Static-priority scheduling on multiprocessors. PhD thesis,
Chalmers University, Goteborg, Sweden, September 2003.

[5] Audi, BMW, DaimlerChrysler, Porsche, and Volkswagen. Herstellerinitiative soft-
ware (his). http://www.his-automotive.de, April 2004.

[6] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying
new scheduling theory to static priority preemptive scheduling. Software Engineering

Journal, 8(8):284–292, Sep 1993.

[7] T. P. Baker. A stack-based allocation policy for realtime processes. In IEEE Real-Time

Systems Symposium, december 1990.

[8] T.P. Baker. Stack-based scheduling of real-time processes. Journal of Real-Time

Systems, 3, 1991.

[9] Sanjoy Baruah. Optimal utilization bounds for the fixed-priority scheduling of pe-
riodic task systems on identical multiprocessors. IEEE Transactions on Computers,
53(6):781–784, 2004.

[10] Sanjoy Baruah and John Carpenter. Multiprocessor fixed-priority scheduling with
restricted interprocessor migrations. In Proceedings of the EuroMicro Conference on

Real-Time Systems, Porto, Portugal, pages 195–202, July 2003.

[11] S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress: A
notion of fairness in resource allocation. Algorithmica, 6, 1996.

113

114 BIBLIOGRAPHY

[12] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Proceedings of the 11th IEEE Real-Time Systems

Symposium, pages 182–190, December 1990.

[13] S.K. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and complexity concerning
the preemptive scheduling of periodic real-time tasks on one processor. The Journal

of Real-Time Systems, 2, 1990.

[14] Robert Baumgartl and Hermann Hartig. Dsps as flexible multimedia accelerators.
In Second European DSP Education and Research Conference (EDRC’98), Paris,
September 1998.

[15] Enrico Bini, Giorgio Buttazzo, and Giuseppe Buttazzo. A hyperbolic bound for the
rate monotonic algorithm. In Proceedings of the 13th IEEE Euromicro Conference on

Real-Time Systems, June 2001.

[16] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New strategies for assigning real-time
tasks to multiprocessor systems. IEEE Transactions on Computers, 1995.

[17] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-

rithms and Applications. Kluwer Academic Publishers, Boston, 1997.

[18] G. C. Buttazzo. Hartik: A real-time kernel for robotics applications. In IEEE Real-

Time Systems Symposium, December 1993.

[19] Chia-Mei Chen and Satish K. Tripathi. Multiprocessor priority ceiling based proto-
cols. Technical report, Univ. of Maryland CS, 1994.

[20] Jing Chen and Alan Burns. Asynchronous data sharing in multiprocessor real-time
systems using process consensus. In Proc.10th EuroMicro Workshop on Real-Time

Systems (EuroMicro ’98), 1998.

[21] Wesley W. Chu and Lance M-T Lan. Task allocation and precedence relations for
distributed real-time systems. IEEE Transactions on computers, C-36(6), June 1987.

[22] Altera Corporation. The NIOS II embedded processor. http://www.altera.com/nios,
May 2004.

[23] T. S. Craig. Queuing spin lock algorithms to support timing predictability. In Pro-

ceedings of the IEEE Real-Time Systems Symposium, Dec. 1993.

[24] Robert Davis, Nick Merriam, and Nigel Tracey. How embedded applications us-
ing an rtos can stay within on-chip memory limits. In Proceedings of the Work in

Progress and Industrial Experience Session, Euromicro Conference on Real-Time

Systems, June 2000.

[25] M. L. Dertouzos and Aloysius Ka-Lau Mok. Multiprocessor on-line scheduling of
hard-real-time tasks. IEEE Transactions on software engineering, 15(12), December
1989.

BIBLIOGRAPHY 115

[26] Inc. Express Logic. http://www.threadx.com. available on Internet.

[27] Dror G. Feitelson and Larry Rudolph. Parallel job scheduling: Issues and approaches.
Parallel Processing, Springer-Verlag, pages 1–18, 1995.

[28] A. Ferrari, S. Garue, M Peri, S. Pezzini, L.Valsecchi, F. Andretta, and W. Nesci.
The design and implementation of a dual-core platform for power-train systems. In
Convergence 2000, Detroit (MI), USA, October 2000.

[29] Paolo Gai, Luca Abeni, and Giorgio Buttazzo. Multiprocessor dsp scheduling in
system-on-a-chip architectures. In Proceedings of the 14th IEEE Euromicro Confer-

ence on Real-Time Systems, June 2002.

[30] Paolo Gai, Luca Abeni, Massimiliano Giorgi, and Giorgio Buttazzo. A new kernel
approach for modular real-time systems development. In Proceedings of the 13th

IEEE Euromicro Conference on Real-Time Systems, June 2001.

[31] Paolo Gai, Giuseppe Lipari, and Marco di Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In Proceedings

of the 22th Real-Time Systems Symposium, December 2001.

[32] R.L. Graham. Bounds on the performance of scheduling algorithms, chapter 5. Coff-
man Jr. E. G. (ed.) Computer and JobShop Scheduling Theory, Wiley, New Yorj,
1976.

[33] OSEK Group. OSEK/VDX Operating System Specification 2.2. available at
http://www.osek-vdx.org, 2001.

[34] OSEK Group. OSEK COM Operating System Specification 3.0.1. available at
http://www.osek-vdx.org, 2004.

[35] Texas Instruments. Military Semiconductor Products Fact Sheet SM320C80 /

SMJ320C80 / 5962-9679101 SGYV006C, August 2000.

[36] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of periodic
and sporadic tasks. In Proceedings of the IEEE Real-Time Systems Symposium, pages
129–139, December 1991.

[37] Bala Kalyanasundaram and Kirk R. Pruhs. Eliminating migration in multi-processor
scheduling. To appear in a special issue of Journal of Algorithms devoted to selected

papers from the ACM/SIAM Symposium on Discrete Algorithms, 1999.

[38] A. Khemka and R. K. Shyamasunda. Multiprocessor scheduling of periodic tasks in a
hard real-time environment. Technical report, Tata Institute of Fundamental Research,
1990.

[39] Gilad Koren, Amihood Amir, and Emanuel Dar. The power of migration in multi-
processor scheduling of real-time systems. In In Proceedings of the Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 226–235, San Francisco, Cal-
ifornia, January 1998.

116 BIBLIOGRAPHY

[40] G. Lamastra, G. Lipari, G. Buttazzo, A. Casile, and F. Conticelli. Hartik 3.0: A
portable system for developing real-time applications. In Real-Time Computing Sys-

tems and Applications, October 1997.

[41] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In Proceedings of the IEEE Real-Time

Systems Symposium, December 1989.

[42] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance Evaluation, 2:237–250, 1982.

[43] Giuseppe Lipari and Giorgio Buttazzo. Schedulability analysis of periodic and ape-
riodic tasks with resource constraints. Journal of Systems Architecture, 46:327–338,
2000.

[44] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the Association for Computing Machinery, 20(1),
1973.

[45] The national italian project madess ii. http://www.madess.cnr.it, 2002.

[46] F. Mueller. Priority inheritance and ceilings for distributed mutual exclusion. In
Proceedings of the IEEE Real-Time Systems Symposium, Dec 1999.

[47] Bodhisattwa Mukherjee and Karsten Schwan. Experiments with configurable locks
for multiprocessors. In Proceedings of the 1993 International Conference on Parallel

Processing, volume II - Software, pages II–205–II–208, Boca Raton, FL, 1993. CRC
Press.

[48] M. Di Natale and J. Stankovic. Scheduling distributed real-time tasks with minimum
jitter. Transaction on Computer, 49(4), 2000.

[49] Yingfeng Oh and Sang H. Son. Allocating fixed-priority periodic tasks on multipro-
cessor systems. Journal on Real Time Systems, 9, 1995.

[50] R. Rajkumar. Synchronization in multiple processor systems. In Synchronization in

Real-Time Systems: A Priority Inheritance Approach. Kluwer Academic Publishers,
1991.

[51] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Ap-

proach, chapter 3. Kluwer Academic Publishers, 1991.

[52] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance

Approach. Kluwer Academic Publishers, 1991.

[53] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In In Proceedings of the 1988 Real Time System Sym-

posium, 1988.

BIBLIOGRAPHY 117

[54] Srikanth Ramamurthy. A lock-free approach to object sharing in real-time systems.
Master’s thesis, University of North Carolina at Chapel Jill, 1997.

[55] Ken Kim Philips Research. Increasing functionality in set-top boxes. In Proceedings

of IIC-Korea, Seoul, 2001.

[56] M. J. Rutten, J. T. J. van Eijndhoven, and E. J. D. Pol. Robust media processing in a
flexible and cost-effective network of multi-tasking coprocessors. In Proceedings of

the 14th IEEE Euromicro Conference on Real-Time Systems, June 2002.

[57] Saowanee Saewong and Ragunathan (Raj) Rajkumar. Cooperative scheduling of mul-
tiple resources. In Proceedings of the IEEE Real-Time Systems Symposium, December
1999.

[58] Manas Saksena and Yun Wang. Scalable real-time system design using preemption
thresholds. In Proceedings of the Real Time Systems Symposium, December 2000.

[59] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE transaction on computers, 39(9),
September 1990.

[60] Hiroaki Takada and Ken Sakamura. A novel approach to multiprogrammed multi-
processor synchronization for real-time kernels. Technical Report 97-01, Dept. of
Information Science, University of Tokyo, Jan 1997.

[61] K. Tindell. An extendible approach for analysing fixed priority hard real-time tasks.
Technical Report YCS 189, Department of Computer Science, University of York,
December 1992.

[62] K. Tindell, A. Burns, and A. Wellings. Allocating real-time tasks (an np-hard problem
made easy). Real-Time Systems Journal, 1992.

[63] Yun Wang and Manas Saksena. Fixed priority scheduling with preemption thresh-
old. In Proceedings of the IEEE International Conference on Real-Time Computing

Systems and Applications, December 1999.

