

A Study of Real-Time Embedded Software Systems and
Real-time Operating Systems

 M. Tech Seminar Report

Submitted in partial fulfillment of the requirements for the degree
of

Master of Technology

 by

Shonil Vijay

Roll No: 05329001

under the guidance of

Dr. Kavi Arya

Kanwal Rekhi School of Information Technology

Indian Institute of Technology, Bombay

Mumbai

 ii

Acknowledgemnts

 I would like to thank Dr. Kavi Arya and Prof. Krithi Ramamritham for
their invaluable support and guidance.

Shonil Vijay

 iii

Abstract

 Embedded systems are the computing devices hidden inside a vast array of everyday
products and appliances such as cell phones, toys, handheld PDAs, cameras, etc. An
embedded system is various type of computer system or computing device that performs
a dedicated function and/or is designed for use with a specific embedded software
application. Embedded systems may use a combination of ‘Read-only’ as well as with
‘Read-Write’ based operating system. But an embedded system is not usable as a
commercially viable substitute for general-purpose computers or devices. As applications
grow increasingly complex, so do the complexities of the embedded computing devices.

 An embedded real-time operating system is the software program that manages all
the programs in an embedded device after initial load of programs by a boot loader. It
normally guarantees a certain capability within a specified storage size and time
constraint as well as with application programs. It also normally has small foot print
including initial boot loader, OS kernel, required device drivers, file systems for the user
data and so forth. It has very-likely structure of a normal operating system however
mainly differentiated by some factors such as type of pre-installed device, functional
limits, taking designed job only.

This paper attempts to throw some light on the technologies behind the embedded
systems design and concludes by the survey of some of the available real-time operating
systems.

 iv

Contents

1. Introduction………………………………………………………….. 1

2. What is a real-time System………………………………………….. 1

3. What are Embedded Systems……………………………………….. 2
 3.1 Inside an Embedded System…………………………………… 3

4. Real-Time Operating Systems………………………………………. 5
 4.1 Basic Requirements of an RTOS………………………………. 6
 4.2 Memory Management………………………………………….. 7
 4.3 Task Scheduling………………………………………………... 8

5. Case Studies…………………………………………………………. 10
 5.1 QNX RTOS v6.1………………………………………………. 10
 5.2 VRTX………………………………………………………… .. 10
 5.3 Windows CE 3.0……………………………………………….. 11
 5.4 pSOSystem/x86 2.2.6………………………………………….. 11
 5.5 VXWorks………………………………………………………. 11
 5.6 Windows NT………………………………………………….... 12

6. Conclusion…………………………………………………………... 12

7. References………………………………………………………….... 13

 - 1 -

1. Introduction
Last few decades have seen the rise of computers to a position of

prevalence in human affairs. It has made its mark in every field ranging
personal home affairs, business, process automation in industries,
communications, entertainment, defense etc.

An embedded system is a combination of hardware and software and

perhaps other mechanical parts designed to perform a specific function.
Microwave oven is a good example of one such system. This is in direct
contrast to a personal computer. Though it is also comprised of hardware
and software and mechanical components it is not designed for a specific
purpose. Personal computer is general purpose and is able to do many
different things.

2. What is a real-time System
 A real-time system is one whose correctness involves both the logical
correctness of outputs and their timeliness. It must satisfy response-time
constraints or risk severe consequences including failure. As defined by
Donald Gillies “A real-time system is one in which the correctness of the
computations not only depends upon the logical correctness of the
computation but also upon the time in which the result is produced. If the
timing constraints are not met, system failure is said to have occurred.”

 These systems respond to a series of external inputs, which arrive in an
unpredictable fashion. The real-time systems process these inputs, take
appropriate decisions and also generate output necessary to control the
peripherals connected to them. The design of a real-time system must
specify the timing requirements of the system and ensure that the system
performance is both correct and timely. There are three types of time
constraints:

• Hard: A late response is incorrect and implies a system failure.

• Soft: Timeliness requirements are defined by using an average

response time. If a single computation is late, it is not usually
significant, although repeated late computation can result in system
failures.

 - 2 -

• Firm: Firm real-time systems have hard deadlines, but where a certain

low probability of missing a deadline can be tolerated.

Most real-time systems interface with and control hardware directly.
The software for such systems is mostly custom-developed. Real-time
Applications can be either embedded applications or non-embedded
(desktop) applications. Real-time systems often do not have standard
peripherals associated with a desktop computer, namely the keyboard,
mouse or conventional display monitors. In most instances, real-time
systems have a customized version of these devices.

3. What are Embedded Systems
An embedded system is generally a system within a larger system.

Modern cars and trucks contain many embedded systems. One embedded
system controls anti-lock brakes, another monitors and controls vehicle’s
emission and a third displays information on the dashboard. Even the
general-purpose personal computer itself is made up of numerous embedded
systems. Keyboard, mouse, video card, modem, hard drive, floppy drive and
sound card are each an embedded system.

Tracing back the history, the birth of microprocessor in 1971 marked

the booming of digital era. Early embedded applications included unmanned
space probes, computerized traffic lights and aircraft flight control systems.

In the 1980s, embedded systems brought microprocessors into every

part of our personal and professional lives. Presently there are numerous
gadgets coming out to make our life easier and comfortable because of
advances in embedded systems. Mobile phones, personal digital assistants
and digital cameras are only a small segment of this emerging field.

Embedded systems do not provide standard computing services and
normally exist as part of a bigger system. Embedded systems are usually
constructed with the least powerful computers that can meet the functional
and performance requirements. This is essential to lower the manufacturing
cost of the equipment.

Other components of the embedded system are similarly chosen, so as

to lower the manufacturing cost. In conventional operating systems, a

 - 3 -

programmer needing to store a large data structure can allocate big chunks
of memory without having to think of the consequences. These systems have
enough main memory and a large pool of virtual memory (in the form of
disk space) to support such allocations. The embedded systems’ developers
do not enjoy such luxuries and have to manage with complex algorithms to
manage resources in the most optimized manner.

One major subclass of embedded systems is real-time embedded

systems. A real-time system is one that has timing constraints. Real-time
system’s performance is specified in terms of ability to make calculations or
decisions in a timely manner. These important calculations have deadlines
for completion. A missed deadline is just as bad as a wrong answer. The
damage caused by this miss will depend on the application. For example if
the real-time system is a part of an airplane’s flight control system, single
missed deadline is sufficient to endanger the lives of the passengers and
crew.

In most of the real-life applications, real-time systems often work in

an embedded scenario and most of the embedded systems have real-time
processing needs. Such software is called Real-time Embedded Software
systems.

3.1 Inside an Embedded System
All embedded systems contain a processor and software. The

processor may be 8051 micro-controller or a Pentium-IV processor (having
a clock speed of 2.4GHz). Certainly, in order to have software there must be
a place to store the executable code and temporary storage for run-time data
manipulations. These take the form of ROM and RAM respectively. If
memory requirement is small, it may be contained in the same chip as the
processor. Otherwise one or both types of memory will reside in external
memory chips. All embedded systems also contain some type of inputs and
outputs (Fig. 1). For example in a microwave oven the inputs are the buttons
on the front panel and a temperature probe and the outputs are the human
readable display and the microwave radiation.

Inputs to the system generally take the form of sensors and probes,

communication signals, or control knobs and buttons. Outputs are generally
displays, communication signals, or changes to the physical world.

 - 4 -

Within the exception of these few common features, rest of the
embedded hardware is usually unique and varies from application to
application. Each system must meet a completely different set of
requirements.

The common critical features and design requirements of an

embedded hardware include:

1. Processing power: Selection of the processor is based on the amount
of processing power to get the job done and also on the basis of
register width required.

2. Throughput: The system may need to handle a lot of data in a short
period of time.

3. Response: the system has to react to events quickly
4. Memory: Hardware designer must make his best estimate of the

memory requirement and must make provision for expansion.
5. Power consumption: Systems generally work on battery and design of

both software and hardware must take care of power saving
techniques.

6. Number of units: the no. of units expected to be produced and sold
will dictate the Trade-off between production cost and development
cost

7. Expected lifetime: Design decisions like selection of components to
system development cost will depend on how long the system is
expected to run.

8. Program Installation: Installation of the software on to the embedded
system needs special tools.

9. Test & Debug ability: setting up test conditions and equipment will be
difficult and finding out what is wrong with the software will become
a difficult task without a keyboard and the usual display screen.

10. Reliability: is critical if it is a space shuttle or a car but in case of a toy
it doesn’t always have to work right.

 - 5 -

4. Real-time Operating systems
Real-time computing is where system correctness not only depends on

the correctness of logical result but also on the result delivery time. So the
operating system should have features to support this critical requirement to
render it to be termed a Real-time operating System (RTOS).

The RTOS should have predictable behavior to unpredictable external

events. “A good RTOS is one that has a bounded (predictable) behavior
under all system load scenario i.e. even under simultaneous interrupts and
thread execution.” A true RTOS will be deterministic under all conditions.

These operating systems occupy little space from 10 KB to 100KB as

compared to the General Operating systems which take hundreds of
megabytes.

We observe that the choice of an operating system is important in

designing a real-time system. Designing a real-time system involves choice
of a proper language, task partitioning and merging, and assigning priorities
to manage response times. Depending upon scheduling objectives,
parallelism and communication may be balanced. Merging highly cohesive
parallel tasks for sequential execution may reduce overheads of context
switches and inter-task communications.

The designer must determine critical tasks and assign them high
priorities. However, care must be taken to avoid starvation, which occurs
when higher priority tasks are always ready to run, resulting in insufficient
processor time for lower priority tasks. Non-prioritized interrupts should be
avoided if there is a task that cannot be preempted without causing system
failure. Ideally, the interrupt handler should save the context, create a task
that will service the interrupt, and return control to the operating system.

Using a task to perform bulk of the interrupt service allows the service

to be performed based on a priority chosen by the designer and helps
preserve the priority system of the RTOS. Furthermore, good response times
may require small memory footprints in resource-impoverished systems.
Clearly the choice of an RTOS in the design process is important for support
of priorities, interrupts, timers, inter-task communication, synchronization,
multiprocessing and memory management.

 - 6 -

4.1 Basic Requirements of an RTOS:
The following are the basic requirements for an RTOS:

(i) Multi-tasking and preemptable: To support multiple tasks in real-

time applications, an RTOS must be multi-tasking and preemptable. The
scheduler should be able to preempt any task in the system and give the
resource to the task that needs it most. An RTOS should also handle multiple
levels of interrupts to handle multiple priority levels.

(ii) Dynamic deadline identification: In order to achieve preemption, an

RTOS should be able to dynamically identify the task with the earliest
deadline. To handle deadlines, deadline information may be converted to
priority levels that are used for resource allocation. Although such an
approach is error prone, nonetheless it is employed for lack of a better
solution.

(iii) Predictable synchronization: For multiple threads to communicate

among themselves in a timely fashion, predictable inter-task communication
and synchronization mechanisms are required. Semantic integrity as well as
timeliness constitutes predictability. Predictable synchronization requires
compromises. Ability to lock/unlock resources is one of the ways to achieve
data integrity.

(iv) Sufficient Priority Levels: When using prioritized task scheduling,

the RTOS must have a sufficient number of priority levels, for effective
implementation. Priority inversion occurs when a higher priority task must
wait on a lower priority task to release a resource and in turn the lower
priority task is waiting upon a medium priority task. Two workarounds in
dealing with priority inversion, namely priority inheritance and priority
ceiling protocols (PCP), need sufficient priority levels. In a priority
inheritance mechanism, a task blocking a higher priority task inherits the
higher priority for the duration of the blocked task. In PCP, a priority is
associated with each resource which is one more than the priority of its
highest priority user. The scheduler makes the priority of the accessing task
equal to that of the resource. After a task releases a resource, its priority is
returned to its original value. However, when a task’s priority is increased to
access a resource it should not have been waiting on another resource.

 - 7 -

(v) Predefined latencies: The timing of system calls must be defined
using the following specifications:

• Task switching latency or the time to save the context of a
currently executing task and switch to another.
• Interrupt latency or the time elapsed between the execution of
the last instruction of the interrupted task and the first
instruction of the interrupt handler.
• Interrupt dispatch latency or the time to switch from the last
instruction in the interrupt handler to the next task scheduled to
run.

4.2 Memory Management
 An RTOS uses small memory size by including only the necessary
functionality for an application while discarding the rest. Below we discuss
static and dynamic memory management in RTOSs. Static memory
management provides tasks with temporary data space. The system’s free
memory is divided into a pool of fixed sized memory blocks, which can be
requested by tasks. When a task finishes using a memory block it must
return it to the pool. Another way to provide temporary space for tasks is via
priorities. A pool of memory is dedicated to high priority tasks and another
to low priority tasks. The high-priority pool is sized to have the worst-case
memory demand of the system. The low priority pool is given the remaining
free memory. If the low priority tasks exhaust the low priority memory pool,
they must wait for memory to be returned to the pool before further
execution.

Dynamic memory management employs memory swapping, overlays,
multiprogramming with a fixed number of tasks (MFT), multiprogramming
with a variable number of tasks (MVT) and demand paging. Overlays allow
programs larger than the available memory to be executed by partitioning
the code and swapping them from disk to memory.

In MFT, a fixed number of equalized code parts are in memory at the

same time. As needed, the parts are overlaid from disk. MVT is similar to
MFT except that the size of the partition depends on the needs of the
program in MVT. Demand paging systems have fixed-size pages that reside
in non-contiguous memory, unlike those in MFT and MVT. In many
embedded systems, the kernel and application programs execute in the same
space i.e., there is no memory protection.

 - 8 -

4.4 Task Scheduling
This section discusses scheduling algorithms employed in real-time

operating systems. We note that predictability requires bounded operating
system primitives. A feasibility analysis of the schedule may be possible in
some instances.

Task scheduling can be either performed preemptively or non-

preemptively and either statically or dynamically. For small applications,
task execution times can be estimated prior to execution and the preliminary
task schedules statically determined. Two common constraints in scheduling
are the resource requirements and the precedence of execution of the tasks.

Typical parameters associated with tasks are:
• Average execution time
• Worst case execution time
• Dispatch costs
• Arrival time
• Period (for periodic tasks).

The objective of scheduling is to minimize or maximize certain

objectives. Typical objectives minimized are: schedule-length and average
tardiness or laxity. Alternatively, maximizing average earliness and number
of arrivals that meet deadlines can be objectives. Scheduling approaches
have been classified into: static table driven approach, static priority driven
preemptive approach, dynamic planning based approach, dynamic best effort
approach, scheduling with fault tolerance and resource reclaiming. These are
briefly discussed below:

(i) Static table driven: The feasibility and schedule are determined
statically. A common example is the cyclic executive, which is also used in
many large-scale dynamic real-time systems. It assigns tasks to periodic time
slots. Within each period, tasks are dispatched according to a table that lists
the order to execute tasks. For periodic tasks, there exists a feasible schedule
if and only if there is a feasible schedule within the least common multiple
of the periods. A disadvantage of this approach is that a-priori knowledge of
the maximum requirements of tasks in each cycle is necessary.

(ii) Static priority driven preemptive: The feasibility analysis is
conducted statically. Tasks are dispatched dynamically based upon
priorities. The most commonly used static priority driven preemptive
scheduling algorithm for periodic tasks is the Rate Monotonic (RM)
scheduling algorithm.

 - 9 -

A periodic system must respond with an output before the next input.
Therefore, the system’s response time should be shorter than the minimum
time between successive inputs. RM assigns priorities proportional to the
frequency of tasks. It can schedule any set of tasks to meet deadlines if the
total resource utilization less than ln 2. If it cannot find a schedule, no other
fixed-priority scheduling scheme will. But it provides no support for
dynamically changing task periods/priorities and priority inversion. Also,
priority-inversion may occur when to enforce rate-monotonicity, a
noncritical task of higher frequency of execution is assigned a higher priority
than a critical task of lower frequency of execution.

(iii) Dynamic planning based: The feasibility analysis is conducted
dynamically—an arriving task is accepted for execution only when feasible.
The feasibility analysis is also a source for schedules. The execution of a
task is guaranteed by knowing its worst-case execution time and faults in the
system. Tasks are dispatched to sites by brokering resources in a centralized
fashion or via bids. A technique using both centralized and bidding-approach
performs marginally better than any one of them but is more complex.

(iv) Dynamic best effort approach: Here no feasibility check is
performed. A best effort is made to meet deadlines and tasks may be
aborted. However, the approaches of Earliest Deadline First (EDF) and
Minimum Laxity First (MLF) are often optimal when there are no overloads.
Research into overloaded conditions is still in its infancy. Earliest deadline
first (EDF) scheduling can schedule both static and dynamic real-time
systems. Feasibility analysis for EDF can be performed in O(n2) time, where
n is the number of tasks. Unlike EDF, MLF accounts for task execution
times.

(v) Scheduling with fault tolerance: A primary schedule will run by
the deadline if there is no failure and a secondary schedule will run by the
deadline on failure. Such a technique allows graceful degradation but incurs
cost of running another schedule. In hard real-time systems, worst-case
blocking must be minimized for fault tolerance.

(vi) Scheduling with resource reclaiming: The actual task execution
time may be shorter than the one determined a-priori because of conditionals
or worst-case execution assumptions. The task dispatcher may try to reclaim
such slacks, to the benefit of non real-time tasks or improved timeliness
guarantees.

 - 10 -

5. Case Studies
Some of the popular RTOSs are reviewed here to identify their salient

features which make them suitable for different embedded real-time
applications. One of the General Purpose Operating Systems is also
discussed here to highlight why a General Purpose Operating System is not
suitable for real-time applications.

5.1 QNX RTOS v6.1
The QNX RTOS v6.1 has a client-server based architecture. QNX

adopts the approach of implementing an OS with a 10 Kbytes micro-kernel
surrounded by a team of optional processes that provide higher-level OS
services .Every process including the device driver has its own virtual
memory space. The system can be distributed over several nodes, and is
network transparent. The system performance is fast and predictable and is
robust.

It supports Intel x86family of processors, MIPS, PowerPC, and
StrongARM. Documentation is extensive except for the details on the APIs
[10]. QNX has successfully been used in tiny ROM-based embedded
systems and in several-hundred node distributed systems

5.2 VRTX
VRTX has multitasking facility to solve the real-time performance

requirements found in embedded systems. Pre-emptive scheduling is
followed ensuring the best response for critical applications. Inter-task
communication is by use of mailboxes and queues. Mailbox is equivalent to
an event signal and events can pass data along with the event. Queues can
hold multiple messages and this buffering facility is useful when sending
task produces messages faster than the receiving task can handle them.
Dynamic memory allocation is supported and allocation and release is in
fixed size blocs to ensure predictable response times.

VRTX has been designed for development and target system
independence as well as real-time clock independence. VRTX provides core
services which every microprocessor can use to its advantage.

 - 11 -

5.3 Windows CE 3.0
Windows CE 3.0 is an Operating system rich in features and is

available for a variety of hardware platforms. It exhibits true real-time
behavior most of the times. But the thread creation and deletion has periodic
delays of more than 1 millisecond occurring every second. The system is
complex and highly configurable. The configuration of CE 3.0 is a
complicated process. The documentation does not give in depth knowledge
about inner workings of the system though the APIs are well documented.
The system is robust and no memory leak occurs even under stressed
conditions. CE 3.0 uses virtual memory protection to protect itself against
faulty applications.

5.4 pSOSystem/x86 2.2.6

pSOS+ is a small kernel suitable for embedded applications. This uses
the software bus to communicate between different modules. The choice of
module to be used can be done at compile time making it suitable for
embedded applications. System has a flat memory space. All threads share
the same memory space and also share all objects such as semaphores. So it
has more chances of crashing. Around 239 usable thread priority levels
available making it suitable for Rate monotonic scheduling. pSOS has a
multiprocessor version pSOS+m which can have one node as master and a
number of nodes as slaves. Failure in master will however lead to system
crash. The Integrated Development Environment is comprehensive and is
available for both Windows and UNIX systems. The drawback of this RTOS
is that it is available only for selected processors and that lack of mutexes in
some versions leads to priority inversion.

5.5 VxWorks (Wind River Systems)

VxWorks is the premier development and execution environment for
complex real-time and embedded applications on a wide variety of target
processors. Three highly integrated components are included with VxWorks:
a high performance scalable real-time operating system which executes on a
target processor; a set of powerful cross-development tools; and a full range
of communications software options such as Ethernet or serial line for the
target connection to the host. The heart of the OS is the Wind microkernel
which supports multitasking, scheduling, intertask management and memory
management. All other functionalities are through processes. There is no
privilege protection between system and application and also the support for
communication between processes on different processors is poor.

 - 12 -

5.6 Windows NT
The overall architecture is good and may be a suitable RTOS for

control systems that need a good user interface and can tolerate the heavy
recourse requirements demanded for installation. It needs hard disk and a
powerful processor. Configuration and user interaction requires a dedicated
screen and keyboard. The choice of selecting components for installation is
limited and it is not possible to load and unload major components
dynamically. Because of all these limitations Windows NT not suitable for
embedded applications. It is neither suitable for other real time applications
because of the following factors:

a) There are only 7 priority levels & there is no mechanism to avoid
priority inversion
b) The Queue of threads waiting on a semaphore is held in a FIFO
order. Here there is no regard for priority, hampering the response
times of highest priority tasks.
c) Though ISR responses are fast, the Deferred Procedure Calls (DPC)
handling is a problem since they are managed in a FIFO order.
d) The thread switch latency is high (~ 1.2 ms), which is not
acceptable in many real-time applications.

6. Conclusion
Real time Operating systems play a major role in the field of

embedded systems especially for mission critical applications are involved.
Selection of a particular RTOS for an application can be made only after a
thorough study of the features provided by the RTOS.

Since IC memories are getting denser scaled down versions of general

operating systems are able to compete with traditional Real Time Operating
Systems for the embedded product market. The choice of Operating System
generally comes after the selection of the processor and development tools.

Every RTOS is associated with a finite set of microprocessors and a

suite of development tools. Hence the first step in choosing an RTOS must
be to make the processor, real-time performance and the budget
requirements clear. Then look at the available RTOS to identify the one
which suits our application.

 - 13 -

Generally an RTOS for embedded application should have the
following features

Open Source, Portable, ROM able, Scalable, Pre-emptive, Multi-
tasking, Deterministic, Efficient Memory Management, Rich in Services,
Good Interrupt Management, Robust and Reliable

Within the class of real-time embedded systems, the general feature is
that system and its application are fixed for the life of a product or the
system. Thus there is a real need for a general purpose architecture which
would be flexible enough to meet the varied requirements of these systems
(wide range of sensors, threats, and scenarios), but which would still be
dedicated and matched to an application through the use of special
configurations of general modules. Even though most of the current kernels
(RTOS) are successfully used in todays real-time embedded systems, but
they increase the cost and reduce flexibility. Next generation real-time
operating systems would demand new operating systems and task designs to
support predictability, and high degree of adaptability.

7. References
[1] Dedicated Systems Experts, “What makes a good RTOS.” Brussels,

Belgium: Dedicated Systems Experts, 2001.
[2] James F. Ready, “VRTX: A Real-Time Operating System for embedded

Microprocessor Applications,” IEEE Micro. 6(4), Aug.1986, pp.8-17.
[3] Dedicated Systems Experts, RTOS Evaluation Project. Brussels,

Belgium: Dedicated Systems Experts, 2001.
[4] S. Baskiyar ad N. Meghanathan, “A survey of contemporary Real-Time

Operating Systems,” Informatica 29(2005), pp. 233-240.
[5] P.A. Laplante, “Real-Time Systems Design and Analysis: An Engineer’s

Handbook,” Second edition, IEEE Press, 1997.
[6] C. Walls, “RTOS for Microcontroller Applications,” Electronic

Engineering, vol. 68, no. 831, pp. 57-61, 1996.
[7] C.L. Liu and J.W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard Real-time Environment,” Journal of the
ACM, v. 20, no. 1, pp. 46-61, 1973.

[8] K. Ramamritham and J. A. Stancovic, “Scheduling Algorithms and
Operating Systems Support for Real-time Systems,” Proceedings of the
IEEE, pp. 55-67, Jan 1994.

