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Abstract—This study establishes the computational-complexity
savings that a properly positioned single bit of feedback
can provide in the computationally intense setting of quasi-
static MIMO communications. Specifically, the work identifies
novel practically constructed feedback schemes and explicit and
non-random multiple-input multiple-output (MIMO) encoding-
decoding schemes that, in the presence of a single bit of feedback,
jointly guarantee the optimal diversity-multiplexing tradeoff
(DMT) with a polynomial time complexity. Going one step
further, the work also presents an opportunistic communication
scheme that, at all rates including rates close to the maximum
multiplexing gain, can provide near-ergodic reliability at just
polynomial time computational complexity costs. This is the best
known computational complexity that suffices to achieve near-
ergodic reliability in the quasi-static MIMO settings.

Index Terms—Computational complexity, detection, lattice
code design, MIMO, diversity-multiplexing gain tradeoff.

I. INTRODUCTION

A. System Model

This work considers an nT ×nR quasi-static multiple-input
multiple-output (MIMO) channel model given by

YC = θHCXC +WC , (1)

where XC ∈ CnT×T , YC ∈ CnR×T and HC ∈ CnR×nT
denote transmitted codeword matrix, received signal matrix
and channel matrix with entries from i.i.d. fading statistics
respectively, and where the scaling factor θ is chosen such
that E(‖θXC‖2) ≤ ρT , where ρ denotes signal-to-noise ratio
(SNR). We finally consider the rate R = 1

T log |XC | in bits
per channel use (bpcu), where |X | denotes the cardinality of
X .

The rate-reliability performance of quasi-static MIMO can
be characterized using the diversity multiplexing tradeoff
(DMT, cf. [1]) that describes the relationship between the
rate R and the probability of error Perr using the high SNR
measures of multiplexing gain r := R/ log ρ and diversity
gain d(r) := − limρ→∞

logPerr
log ρ . The same work in [1] also

revealed the optimal DMT, for the case of no feedback, as the
maximum possible diversity gain d∗(r) for a given r.

B. Background and Previous Work

In quasi-static MIMO communications, rate-reliability and
encoding-decoding computational complexity are widely con-
sidered to be limiting and interrelated bottlenecks. For this rea-
son, any attempt to significantly reduce complexity may be at
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the expense of a substantial degradation in error-performance
(cf. [2], [3]). Finding out computationally efficient decoding
algorithms that allow for near-optimal behavior with reduced
complexity cost remains an important research topic of sub-
stantial practical interest ( [4]–[14]). In particular, recently
substantial amount of work have focused on identifying ex-
plicit and non-random MIMO encoding-decoding schemes
that achieve the optimal or near-optimal error performance
with computationally efficient receivers (cf. [3], [11]–[14]).
Specifically, the work in [3], [13] presented computationally
efficient maximum likelihood (ML)-based sphere decoding
solutions that employ fixed search radius sphere decoder (SD)
and time-out policies to achieve arbitrary close to brute-force
ML performance with substantially reduced complexity costs.
The achieved computational savings vary with the desired
DMT (cf. [13, Theorem 2]) and reveal an exponential re-
duction in the required computational resources, however, the
decoding complexity still grows exponentially in the number
of codeword bits, transmission rate and system dimensionality.

Another computationally efficient decoder for lattice designs
is lattice decoder that has been studied extensively in [4],
[6], [7], [11], [12]. The work in [12] established equivalence
of ML-based and lattice based sphere decoding solutions in
terms of the complexity costs and also revealed that for large
MIMO systems these computational costs can be prohibitively
large and render system implementation infeasible, bringing
to the fore the need for methods that manage to achieve
the same near-optimal performance, but do so with much
reduced computational resources. The same work in [12]
also presented a computationally efficient lattice reduction
(LR)-aided MMSE-preprocessing lattice decoder that allows
for the optimal diversity-multiplexing behavior (d∗(r)) with
computational resources of the order of ρx for x > 0. The
work in [11] presented LR-aided linear decoder that achieves
(d∗(r)) with computational resources of the order of O(log ρ),
which actually is the order of the complexity cost associated
with LLL-based LR. It is the case though that such LR-aided
methods cannot be readily applied to many communication
scenarios including very large MIMO systems (cf. [11]).

Motivated by the considerable magnitude of the complexity
cost of SD based methods (cf. [3], [13]) and non-feasibility
of LR-aided methods, the work in [14] showed that if the
feedback is used for reducing complexity, rather than in im-
proving reliability as shown in [15], then a properly positioned
single bit of feedback can provide exponential reductions in
the complexity costs by bringing down complexity costs of
achieving d∗(r) from being exponential in the number of
codeword bits (cf. [13]) to being at most exponential in the
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rate. It is the case tough that feedback-aided complexity of
[14], albeit significantly smaller than those required in the
absence of feedback (cf. [3], [13]), again grows exponentially
in the rate, and remain prohibitive for many MIMO scenarios,
leaving open the quest for the holy grail of wireless com-
munications, i.e., the search of decoding algorithms achieving
optimal diversity-multiplexing behavior with polynomial time
complexity.

C. Contributions

This work improves upon the result of [14] and identifies
the first practically constructed feedback schemes, as well as
simple lattice code designs and decoders, that jointly guarantee
d∗(r) with just a polynomial time complexity. Furthermore,
the work presents an opportunistic communication scheme that
with a properly positioned single bit of feedback achieves an
ergodic-like (very high diversity gain for all rates including
rates arbitrary close to the maximum multiplexing gain) error
performance again at polynomial-time complexity costs. The
derived result is the best known computational complexity that
suffices to achieve near-ergodic behavior in the quasi-static
MIMO settings.

II. COMPLEXITY ANALYSIS FOR DMT d∗(r)

This section analyzes the complexity saving that can be
attained by proper utilization of feedback and establishes the
feedback-aided decoding complexity required to achieve the
optimal DMT d∗(r). The following holds for the nT × nR
(nR ≥ nT), i.i.d. regular fading1 MIMO channel.

Theorem 1: Linear decoding with a properly positioned
single-bit of feedback and ARQ signaling achieves DMT d∗(r)
with the polynomial time complexity costs.

The proof of the above theorem includes the derivation of
the decoding complexity and also the constructive achievement
of this rate-reliability-complexity limit. The constructive part
of the proof is based on designing ARQ schemes, lattice
designs and decoding policies that meet the complexity limit.

The proposed ARQ scheme consists of two rounds, where
each message is associated to a unique block [X1

C X2
C ] of

signaling matrices, where each Xi
C ∈ CnT×Ti , i = 1, 2,

corresponds to the nT×Ti matrix of signals sent during the ith
round. The accumulated code matrix at the end of the second
round, takes the form XARQ,2

C = [X1
C X2

C ] ∈ CnT×(T1+T2).
We note that the signals XARQ,2

C are drawn from a lattice
design that ensures unique decodability at every round2. The
channel remains constant during each block of two-round
ARQ signaling. In the quasi-static case of interest, the received
signal accumulated at the end of the `-th round takes the form

Y`
C = θHCX

ARQ,`
C +W`

C , ` = 1, 2, (2)

1The i.i.d. regular fading statistics satisfy the general set of conditions as
described in [16], where a) the near-zero behavior of the fading coefficients h
is bounded in probability as c1|h|t ≤ p(h) ≤ c2|h|t for some positive and
finite c1, c2 and t, where b) the tail behavior of h is bounded in probability
as p(h) ≤ c2e−b|h|

β
for some positive and finite c2, b and β, and where c)

p(h) is upper bounded by a constant K.
2Loosely speaking, unique decodability means that, for any ` = 1, 2, the

corresponding XARQ,`
C carries all bits of information.

where the scaling factor θ is chosen such that E(‖θXi
C‖2) ≤

ρTi, 1 ≤ i ≤ 2.
Another important aspect in ARQ schemes is knowing when

to decode and when not to decode across the different rounds
and incremental redundancy ARQ lattice design to be used for
the signaling. Towards this we have the following definitions.

Definition 1 (Decoding policies): We define decoding poli-
cies to be the family of policies that perform first round
decoding if and only if channel is really good and halt
decoding in the first round whenever the minimum singular
value of the channel scales as ρ−ε for some ε > 0, i.e.,
|σmin(HH

CHC)| ≤ ρ−ε for some ε > 0 and which decode
at the second round if and only if there is no decoding in the
first round.

Definition 2 (ARQ lattice design): We define ARQ lattice
design to be the nT× (n2T+1) incremental redundancy lattice
code designs that transmits nT× 1 uncoded-QAM symbols in
the first round and a nT × n2T orthogonal design with rate-
1
nT

in the second round. The mentioned codes take the simple
form

XARQ,2
C =


f1 f1 0 · · · 0 f2 · · · 0
f2 0 f1 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
fnT

0 0 · · · f1 0 · · · fnT

 ,
(3)

where fi, i = 1, · · · , nT belong to the QAM constellation. It
is clear that first round duration is T1 = 1 and second round
duration is T2 = n2T.

The proof of Theorem 1 is presented in Appendix A.
Theorem 1 established the complexity savings that feedback

provides for a given fixed rate-reliability performance d∗(r).
In the following section we establish the complexity costs of
achieving full rate-reliability benefits of feedback.

III. ERGODIC-LIKE BEHAVIOR IN QUASI-STATIC MIMO

The rate-reliability gains of feedback were studied exten-
sively in [15], [17]–[20] where it was shown that ARQ/CSIT
feedback can achieve a much higher DMT as compared to
d∗(r). In the following work we analyze the complexity costs
of achieving the full rate-reliability benefits of feedback. The
following holds for the nT × nR (nR ≥ nT), i.i.d. regular
fading MIMO channel.

Theorem 2: Linear decoding with a properly positioned
single-bit of feedback and opportunistic signaling achieves
ergodic-like behavior in quasi-static MIMO settings with poly-
nomial time complexity costs.

The proof of the above theorem is again based on providing
lattice designs and communication schemes that allow to
achieve ergodic-like behavior with polynomial time complex-
ity. An important aspect of an opportunistic communication
scheme is knowing when to transmit and when not to transmit
across the different channel realizations. Towards this we have
the following definition.

Definition 3 (Communication windows): We define com-
munication windows to be the instances of channel realizations
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whenever the minimum singular value of the channel scales
|σmin(HH

CHC)| > ρ−ε for some ε > 0.
The single bit of CSIT feedback provides transmitter with
the requisite information regarding communication windows.
The transmitter transmits independent uncoded QAM symbols
form each transmit antenna (V-BLAST) and the receiver
performs ZF decoding. The proof of Theorem 2 is presented
in Appendix B.

IV. CONCLUSIONS

In the setting of quasi-static MIMO, we have shown how
specific encoding-decoding policies and a properly positioned
single bit of ARQ feedback can achieve d∗(r) at polynomial
time computational complexity. We also provided a concise
characterization of the best known computational complexity
that suffices to achieve near-ergodic reliability in the quasi-
static MIMO settings. The presented schemes can serve as
an alternative to rate-adaptation techniques which require
considerable CSIT to guarantee similar error performance.

APPENDIX A
PROOF OF THEOREM 1

The proof includes the derivation of the complexity cost
and also the constructive achievement of this complexity limit
with the proposed ARQ scheme.

A. Complexity Analysis

The complexity costs of both the first round ZF decoder and
the second round linear decoder for orthogonal design are of
the order of O(n2T), resulting in the overall complexity costs
that are polynomial time complexity.

For the proof to be complete we must now prove that the
aforementioned family of ARQ schemes, decoding policies
and lattice designs can indeed achieve the desired DMT
d∗(r) with first round ZF decoding and second round linear
decoding.

B. Achievability

To prove DMT optimality for ARQ scheme it is sufficient
to show
• Condition 1: that with high probability there will be just

a single ARQ round, i.e., the probability of NACK event
(A1) for first round is P

(
A1

) .
= ρ−T , for3 some T >

0 ∀ 0 ≤ r ≤ nT ,
• Condition 2: the error probability of the first round ZF

decoding the ST code X1
C is no larger than that incurred

by the linear decoder applied to the task of decoding the
ST code X2

C , i.e., P (r)
ARQ,1
err <̇ P (r2)

ARQ,2
err , and

• Condition 3: the orthogonal lattice design X2
C in second

round achieves diversity gain dARQ,2(r2) ≥ d∗(r).
Condition 1: Towards proving the first condition above, we
recall that the decoder of first round sends NACK if and only

3We use .
= to denote the exponential equality, i.e., we write f(ρ) .

= ρB

to denote lim
ρ→∞

log f(ρ)

log ρ
= B, and

.
≤,

.
≥ are similarly defined.

if σ1(HH
CHC) ≤ ρ−ε for some ε > 0 and ACK otherwise,

where σ1(H
H
CHC) ≤ · · · ≤ σnT(H

H
CHC) are the singular

values of HH
CHC . Thus, the probability of a NACK being

received at the end of the first round is given by

P
(
A1

)
= P

(
σ1(H

H
CHC) ≤ ρ−ε

)
.

For i.i.d. regular fading channel HC , from [16] it follows that

P
(
σ1(H

H
CHC) ≤ ρ−ε

) .
≤
∫
A
ρ−I(µ) .= ρ−I(µ

∗),

where µ = (µ1, · · · , µnT ), where µi,− log σi(H
H
CHC)

log ρ , i =
1, · · · , nT, where asymptotic equality follows from Varadhan’s
lemma [21], where4

I(µ) =

nT∑
j=1

(nR − nT + 2j − 1)µi +
nRnT t

2
µnT ,

A = {µ | µ1 ≥ ε, µi ≥ 0, for i = 2, · · · , nT },

and where µ∗ = arg infA I(µ). It follows that I(µ∗) = (nR−
nT + 1)ε and consequently, we have that for 0 ≤ r1 ≤ nT

P
(
A1

) .
≤ ρ−(nR−nT+1)ε.

It is clear that the proposed ARQ scheme achieves a multi-
plexing gain value of r that is given by

r = r1P (A1) + r2P
(
A1

)
= r1(1− ρ−T ) + r2ρ

−T ,

where r1 and r2 denote multiplexing gain values for the first
and the second round respectively and where T := (nR −
nT + 1)ε. In the high SNR regime, we have that

lim
ρ→∞

r = r1 = r2(n
2
T + 1). (4)

It is in the proof of this condition that we make use of the
fact that communication takes place over i.i.d. regular fading
statistics, rest of the proof holds irrespective of the fading
statistics.

Condition 2: For second condition we need to show that
P (r)

ARQ,1
err

.
≤P (r2)

ARQ,2
err . Towards proving this condition we

evaluate P (r)
ARQ,1
err by considering the first round system

model given by

yC = θHCxC +wC ,

where yC = Y1
C , where xC = X1

C , where wC = W1
C and

where θ2 = ρ
1− r

nT . For ZF decoder decision step consists of
mapping each element of the ZF filter (FZF ) output vector
onto an element of the symbol alphabet, i.e.,

x̂ = f(FZF . y),

where FZF = 1
θ (H

H
CHC)

−1HH
C and where f(•) denotes

quantization function that maps vector (•) onto an element
of the symbol alphabet. By substituting for FZF and y we
can further simplify the decision metric as

x̂ =f(
1

θ
(HH

CHC)
−1HH

C (θHCxC +wC)),

=f(xC +
1

θ
(HH

CHC)
−1HH

CwC).

4Recall that parameter t was introduced as a parameter that regulates the
near zero behavior of the random variable for i.i.d. regular fading.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LWC.2014.2338869

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



It is clear that ZF decoder makes an error if
‖ 1θ (H

H
CHC)

−1HH
CwC‖2 > d2, where 2d (independent of ρ)

is the minimum euclidean distance for QAM constellation.
Thus, the probability of error for the first round ZF decoding
is given by

P (r)
ARQ,1
err =P

(
‖1
θ
(HH

CHC)
−1HH

CwC‖2 > d2
)
,

≤P
(

1

θ2
σ2
max((H

H
CHC)

−1)‖HH
CwC‖2 > d2

)
,

(a)
=P

(
‖HH

CwC‖2 > d2θ2σ2
1(H

H
CHC)

)
,

(b)

≤P
(
‖HH

CwC‖2 > d2ρ
1− r

nT
−2ε
)
,

.
=P

(
‖wC‖2 > ρ

1− r
nT
−2ε
)
,

(c)
.
≤P

(
‖wC‖2 > z log ρ

)
,

(d)

<̇ ρ−z1 , (5)

where (a) follows from the fact that σmax((HH
CHC)

−1) =
1

σ1(HH
CHC)

, where (b) follows from the fact that first round
decoding is performed if and only if σ1(HH

CHC) > ρ−ε and
where (c) follows from the fact that for sufficiently small ε,
1 − r

nT
− 2ε > 0 for 0 ≤ r < nT which in turn implies

that z log ρ <̇ ρ
1− r

nT
−2ε ∀ 0 < z < ∞ (z is independent

of ρ) and where (d) follows for any 0 < z1 < z. For
z1 = dARQ,2(r2), the error probability of (5) implies that

P (r)
ARQ,1
err <̇ P (r2)

ARQ,2
err . (6)

Condition 3: To satisfy third condition we need to prove that
dARQ,2(r2) ≥ d∗(r). For the nT × n2T orthogonal design X2

C

with rate- 1
nT

, it is straight forward to show that with linear
decoding X2

C can achieve a diversity gain of

d(r̃) = nRnT (1− nTr̃) ∀ 0 ≤ r̃ ≤ 1

nT
,

where r̃ denotes multiplexing gain of code X2
C . We know that

r̃ =
r2(n

2
T+1)

n2
T

, as a result we get that

dARQ,2(r2) = nRnT

(
1− r2(n

2
T + 1)

nT

)
.

From (4) we have that r = r2(n
2
T+1), making this substitution

we get that

dARQ,2(r2) = nRnT

(
1− r

nT

)
≥ d∗(r). (7)

We have shown that the proposed ARQ scheme achieves the
desired DMT d∗(r) with polynomial-time complexity. This
proves Theorem 1. �

APPENDIX B
PROOF OF THEOREM 2

Regarding complexity costs, ZF decoding is known to
introduce only polynomial time complexity and the proof of
DMT follows directly from (5) of the proof of Theorem 1. In
high SNR settings, the resulting diversity gain d(re) → ∞

(as z1 → ∞) for an average communication rate denoted
by multiplexing gain re = r1(1 − ρ−T ) with T > 0 for all
0 ≤ re < nT. This proves Theorem 2. �

REFERENCES

[1] L. Zheng and D. N. C. Tse, “Diversity and Multiplexing: A Fundamental
Tradeoff in Multiple-Antenna Channels,” IEEE Trans. Inf. Theory,
vol. 49, no. 5, pp. 1073–1096, May 2003.

[2] K. Kumar, G. Caire, and A. Moustakas, “Asymptotic performance of
linear receivers in MIMO fading channels,” IEEE Trans. Inf. Theory,
vol. 55, no. 10, pp. 4398–4418, Oct. 2009.

[3] A. Singh, P. Elia, and J. Jaldén, “ Complexity analysis for ML-based
sphere decoder achieving a vanishing performance-gap to brute force
ML decoding,” in Proc. Int. Zurich Seminar on Communications (IZS),
Mar. 2012, pp. 127–130.

[4] H. Yao and G. W. Wornell, “Lattice-reduction-aided detectors for MIMO
communication systems,” in Proc. IEEE Global Conf. Communications
(GLOBECOM), Taipei, Taiwan, Nov. 2002.

[5] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2389–2401, Oct. 2003.

[6] C. Windpassinger and R. F. H. Fischer, “Low-complexity near-
maximum-likelihood detection and precoding for MIMO systems using
lattice reduction,” in Proc. IEEE Information Theory Workshop (ITW),
Paris, France, Mar. 2003.
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