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Abstract—This study identifies the first lattice decoding solu-
tion that achieves, in the general outage-limited multiple-input
multiple-output (MIMO) setting and in the high-rate and high-
signal-to-noise ratio limit, both a vanishing gap to the error
performance of the exact solution of regularized lattice decoding,
as well as a computational complexity that is subexponential in
the number of codeword bits and in the rate. The proposed
solution employs Lenstra-Lenstra-Lov́asz-based lattice reduction
(LR)-aided regularized (lattice) sphere decoding and proper
timeout policies. These performance and complexity guarantees
hold for most MIMO scenarios, most fading statistics, all channel
dimensions, and all full-rate lattice codes. In sharp contrast to the
aforementioned very manageable complexity, the complexity of
other standard preprocessed lattice decoding solutions is revealed
here to be extremely high. Specifically, this study has quantified
the complexity of regularized lattice (sphere) decoding and has
proved that the computational resources required by this decoder
to achieve a good rate-reliability performance are exponential in
the lattice dimensionality and in the number of codeword bits,
and it in fact matches, in common scenarios, the complexity of
ML-based sphere decoders. Through this sharp contrast, this
study was able to, for the first time, rigorously demonstrate and
quantify the pivotal role of LR as a special complexity reducing
ingredient.

Index Terms—Computational complexity, detection, lattice de-
coding, MIMO, performance-complexity tradeoff.

I. I NTRODUCTION

THIS study applies to the general setting of outage-
limited (nonergodic) multiple-input multiple-output (MIMO)
communications, where MIMO techniques offer significant
advantages in terms of increased throughput and reliability,
although at a cost of a potentially much higher computational
complexity for decoding at the receivers (cf., [1]–[8]). This
high complexity brings to the fore the need for efficient
decoders that tradeoff error performance with complexity in
a better manner than computationally expensive decoders like
the strictly optimal maximum-likelihood (ML) decoder.

Specifically in terms of ML-based decoding, the use of the
brute-force ML decoder, introduces a complexity that scales
exponentially with the number of codeword bits. If on the other
hand, a small gap to the exact ML performance is acceptable,
then different branch-and-bound algorithms such as the sphere
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decoder (SD) have been known to accept reduced computa-
tional resources. Despite the reduced complexity of sphere
decoding, recent work in [8] has revealed that, to achieve
a vanishing error-gap to optimal ML solutions, even such
branch-and-bound algorithms generally require computational
resources that, albeit significantly smaller than those required
by a brute-force ML decoder, again grow exponentially in the
rate and the dimensionality, and remain prohibitive for several
MIMO scenarios.

This high complexity required by ML-based decoding solu-
tions, serves as further motivation for exploring other families
of decoding methods. A natural alternative is lattice decoding
obtained by simply removing the constellation boundaries of
the ML-based search, an action that loosely speaking exploits
a certain symmetry which in turn may yield faster implemen-
tations. It is the case though that even with lattice decoding,
the computational complexity can be prohibitive: finding the
exact solution to the lattice decoding problem is generallyan
NP hard problem (cf. [2]). At the same time though, the other
extreme of very early terminations of lattice decoding, such
as linear solutions, have been known to achieve computational
efficiency at the expense though of a very sizable, and often
unbounded, gap to the exact solution of the lattice decoding
problem.

In this study, we explore preprocessed lattice decoding
solutions that, in conjunction with terminating policies,strike
the proper balance between this exponential complexity and
error-performance gap.

A. System model

We consider the generalm×n point-to-point multiple-input
multiple-output model given by

y =
√
ρHx+w (1)

wherex ∈ R
m, y ∈ R

n and w ∈ R
n respectively denote

the transmitted codewords, the received signal vectors, and
the additive white Gaussian noise with unit variance, where
the parameterρ takes the role of the signal to noise ratio
(SNR), and where the fading matrixH ∈ R

n×m is assumed
to be random, with elements drawn from arbitrary statistical
distributions. We consider that one use of (1) corresponds to
T uses of some underlying “physical” channel. We further as-
sume the transmitted codewordsx to be uniformly distributed
over some codebookX ∈ R

m, to be statistically independent
of the channelH, and to satisfy the power constraint

E{‖x‖2} ≤ T. (2)



B. Rate, reliability and complexity in outage-limited MIMO
communications

In terms of error performance, we letPe denote the proba-
bility of codeword error, and we consider the rate,

R =
1

T
log |X |, (3)

in bits per channel use (bpcu), where|X | denotes the cardi-
nality of X .

Regarding complexity, we letNmax describe the compu-
tational resources, in floating point operations (flops) perT
channel uses, that the transceiver is endowed with, in the sense
that afterNmax flops, the transceiver must simply terminate,
potentially prematurely and before completion of its task.We
note that naturally,Nmax is intimately intertwined with the
desiredPe andR, and that any attempt to significantly reduce
Nmax may be at the expense of a substantial degradation in
error-performance.

In the high SNR regime, a given encoderXr and decoder
Dr are said to achieve amultiplexing gain r (cf. [9]) and
diversity gain d(r) if

lim
ρ→∞

R(ρ)

log ρ
= r, and − lim

ρ→∞

logPe

log ρ
= d(r). (4)

In the same high SNR regime, the complexity is here chosen
to take the form

c(r) := lim
ρ→∞

Nmax

log ρ
, (5)

which is henceforth denoted as thecomplexity exponent.
Noting thatR = r log ρ, we observe thatc(r) > 0 implies
a complexity that is exponential in the rate.

Remark 1: A reasonable question at this point would per-
tain as to why the computational resourcesNmax scale withρ
and are dependent onr, to which we note that the complexity
of decoding is generally dependent on the density of the
codebook, which in turn depends onρ and R. Furthermore
this dependence of the complexity exponent (and by extension
of Nmax) on r, reflects a potential ability to regulate the
computational resources depending on the rate. Finally the
fact that bothPe and Nmax are represented as polynomial
functions ofρ, simply stems from the fact that bothPe and
|X | naturally scale as polynomial functions ofρ. Specifically
we quickly note thatc(r) captures the entire complexity range

0 ≤ c(r) ≤ rT

of all reasonable transceivers, withc(r) = 0 corresponding
to the fastest possible transceiver (requiring a subexponential
number of flops perT channel uses), and withc(r) = rT
corresponding to the optimal but arguably slowest, full-search
uninterrupted ML decoder1 in the presence of a canonical code
with multiplexing gainr, i.e., with |Xr| = 2RT = ρrT .

1We here note that strictly speaking,Xr,Dr may potentially introduce a
complexity exponent larger thanrT . In such a case though,Xr,Dr may
be substituted by a lookup table implementation ofXr and an unrestricted
ML decoder. This encoder-decoder will jointly require resources that are a
constant multiple of|Xr|

.
= ρrT as it has to construct and visit all possible

|Xr| codewords, at a computational cost of a bounded number of flops per
codeword visit. It is noted that the number of flops per visitedcodeword is
naturally independent ofρ.

If this canonical code though is linear, searching the entire
codebook can be avoided by algorithmic solutions like the
sphere decoder (SD) which can provide substantial complexity
reductions at a potential small loss in error performance. Such
solutions take advantage of the linear nature of the code that
is defined by agenerator matrix G and ashaping region R′

.
Specifically forr ≥ 0, a (sequence of) full-rate linear (lattice)
code(s)Xr is given byXr = Λr ∩R′

whereΛr , ρ
−rT
κ Λ and

Λ,{Gs | s ∈ Z
κ}, whereZκ denotes theκ = min{m,n}

dimensional integer lattice, whereR′

is a compact convex
subset ofRκ that is independent ofρ, and whereG ∈ R

m×κ

is full rank and independent ofρ. For the class of lattice codes
considered here, the codewords take the form

x = ρ
−rT
κ Gs, s ∈ S

κ
r ,Z

κ ∩ ρ
rT
κ R, (6)

whereR ⊂ R
κ is a natural bijection of the shaping region

R′

that preserves the code, and whereR contains the all zero
vector0.

As noted before, despite the reduced complexity of sphere
decoding of such lattice codes (as compared to brute-force
ML decoding), recent work in [8] has revealed that even such
branch-and-bound algorithms generally require computational
resources that grow exponentially in the number of codeword
bits and the dimensionality. As an indicative example of this
high complexity, we note that the work in [8] showed that
such SD algorithms, when applied for decoding a large family
of high-performing codes including all known full-rate DMT
optimal codes, over thenT × nR quasi-static MIMO channel
with Rayleigh fading andnR ≥ nT, introduce a complexity
exponent2 of the form

c(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
.

(7)

In the above,⌊r⌋ denotes the largest integer not greater than
r. The exponent, which simplifies toc(r) = T

nT
r(nT − r)

for integer values ofr, reaches atr = nT/2 (for even
values ofnT) an overall maximum value ofnTT/4 which,
for the aforementioned codes is equal toκ/8, corresponding
to complexity in the order of2

1
8κ log ρ = ρκ/8 =

√

|X |.
At any fixed multiplexing gain, these required computational

resources can be seen to be in the order of2
RT (

nT−r

nT
) flops

which reveals a complexity that is exponential in the number
of codeword bits, and a corresponding exponential slope of
nT−r
nT

.

C. Transition to lattice decoding for reducing complexity

As mentioned, this high complexity of ML based (con-
strained) decoders, motivates consideration of other decoder
families, with a natural alternative being the unconstrained
(naive) lattice decoder which takes the general form

x̂L = arg min
x̂∈Λr

‖y −√
ρHx̂‖2 . (8)

2Although premature at this point, we hasten to note for the expert reader
that this complexity indeed holds irrespective of the radiusupdating policy,
irrespective of the decoding ordering, and as we will see later on, holds even
in the presence of MMSE preprocessing.



Naturally whenx̂L /∈ Xr, the decoder declares an error. The
use of lattice decoding, and specifically of preprocessed lattice
decoding in MIMO communications has received substantial
attention from works like [3], [10] and [11], where the
latter proved that lattice decoding in the presence of MMSE
preprocessing achieves the optimal DMT for specific MIMO
channels and statistics, and for DMT-optimal random codes.
The use of lattice decoding as an alternative to computationally
expensive ML based solutions, was recently further validated
on the one hand by the aforementioned work in [8], [12] which
revealed the large computational disadvantages of ML based
solutions, and on the other hand by the work in [13] which
further confirmed the performance advantages of lattice decod-
ing by showing that regularized (MMSE-preprocessed)3 lattice
decoding achieves the optimal DMT performance, for almost
all MIMO scenarios and fading statistics, and all non-random
lattice codes, irrespective of the codes’ ML performance.

It is the case though that the aforementioned extreme
complexity of exact lattice decoding solutions, in conjunction
with the potentially unbounded error-performance degrada-
tion (gap) of very early terminations (as opposed to exact
implementations) of lattice decoding, bring to the fore the
need for balanced approximations of lattice decoding solutions
that better balance the very sizable complexity and error-
performance gap.

D. Contributions

We first show that the computational complexity required
by the MMSE-preprocessed (unconstrained) lattice sphere
decoder, asymptotically matches the complexity of the (con-
strained) ML-based (MMSE-preprocessed or not) sphere de-
coders, and is commonly exponential in the dimensionality
and the number of codeword bits. This is established for
a large class of codes of arbitrary error-performance, for
Rayleigh fading statistics, and specifically for the quasi-static
MIMO channel – for example the complexity required for
DMT optimal lattice sphere decoding, in the presence of a
large family of DMT optimal codes, takes the previously
seen simple piecewise linear form in (7). In a parenthetical
note, and deviating slightly from the spirit of this paper, we
also provide a universal upper bound on the complexity of
regularized lattice sphere decoding, which holds irrespective of
the lattice code applied and irrespective of the fading statistics.
This upper bound again takes the form in (7), matching that
in the case of constrained ML-based sphere decoding, thus
revealing the surprising fact that there exists no statistical
channel behavior that will allow the removal of the bounding
region to cause unbounded increases in the complexity of the
decoder4.

3We will interchangeably useMMSE-preprocessed decoder andregularized
decoder, with the first term being more commonly used, and with the second
implying a more general family of decoders (cf. [13] where the equivalence
between the two decoders is discussed.). Even though in the asymptotic
setting of interest, the two accept the same results throughout the paper, some
extra error-performance gains can be achieved by proper optimization of the
regularized decoder (cf. [14]).

4In other words, this complexity bound holds even if the channel statistics
are such that the channel realizations cause the decoder to always have to
solve the hardest possible lattice search problem.

With provable evidence of the very high complexity of
regularized lattice decoding, we turn to the powerful tool
of lattice reduction and seek to understand its effects on
computational complexity. While there has existed a general
agreement in the community that lattice reduction does reduce
complexity, cf. [15], this has not yet been supported analyti-
cally in any relevant communication settings. In fact, and quite
opposite to common wisdom, it was recently shown that for
a fixed-radius5 sphere decoding implementation of the naive
lattice decoder [16], LR does not improve the sphere decoder
complexity tail exponent.

What our study shows is that LR reduces an ML-like ex-
ponentially increasing complexity to very manageable subex-
ponential values. We specifically proceed to prove that the
LR-aided regularized lattice decoder, implemented using the
Lenstra-LenstraLovsz (LLL) lattice basis reduction algorithm
( [17]), and a fixed-radius SD with timeout policies that
occasionally abort decoding and declare an error, achieves
a vanishing gap to the error performance of the exact im-
plementation of regularized lattice decoding and does so
with a complexity exponent that vanishes to zero, which in
turn implies subexponential complexity in the sense that the
complexity scales slower than any conceivable exponential
function of the total number of codeword bits and of the rate6.
It is finally noted that this vanishing gap approach serves
the practical purpose of an analytical refinement over basic
diversity analysis which generally fails to address potentially
massive gaps between theory and fact.

E. Notation

We use
.
= to denote theexponential equality, i.e., we write

f(ρ)
.
= ρB to denote lim

ρ→∞

log f(ρ)

log ρ
= B, and

.
≤,

.
≥ are

similarly defined. With this notation, we can writePe
.
= ρ−d(r)

(cf. (4)). In this paper we usep•q to denote the smallest integer
not smaller than the argument,x•y to denote the largest integer
not larger than the argument,(•)H to denote the conjugate
transpose of(•), (•)+ to denotemax{0, (•)} and vec(•) to
denote the operation whereby the columns of the argument(•)
are stacked to form a vector.

II. MMSE-PREPROCESSEDLATTICE SPHEREDECODING

COMPLEXITY

We proceed to describe the preprocessed lattice decoder,
its sphere decoding implementation, and for a practical set-
ting of interest that includes the quasi-static MIMO channel
and common codes, to establish the decoder’s computational
complexity.

A. Lattice sphere decoding

Combining (1) and (6) yields the equivalent model

y = Mrs+w (9)

5The radius here is considered fixed in the sense that it does not vary with
respect to the channel realization and rate.

6We caution the reader that the proven subexponential complexity does not
necessarily imply polynomial complexity.



where

Mr = ρ
1
2−

rT
κ HG ∈ R

n×κ (10)

is a function of the multiplexing gain7 r.
Consequently the corresponding naive lattice decoder in (8)

takes the form (see for example [13], also [15])

ŝL = arg min
ŝ∈Zκ

‖y −Mŝ‖2 . (11)

As a result though of neglecting the boundary region, the
above decoder declares additional errors ifŝL /∈ S

κ
r , resulting

in possible performance costs. These costs motivated the
use of MMSE preprocessing which essentially regularizes
the decision metric to penalize vectors outside the boundary
constraintSκr (cf. [13]). Specifically the MMSE-preprocessed
lattice decoder is obtained by implementing an unconstrained
search over the MMSE-preprocessed lattice, and takes the
form

ŝr−ld = arg min
ŝ∈Zκ

‖Fy −Rŝ‖2 , (12)

where F and R are respectively the MMSE forward and
feedback filters such thatF = R−HMH , where

RHR = MHM+ α2
rI, (13)

whereαr = ρ
−rT
κ and whereR is an upper-triangular matrix

(more details can be found in Appendix D). Forr,Fy, the
model transitions from (9) to

r = R−HMHMs+R−HMHw

= R−H(RHR− α2
rI)s+R−HMHw

= Rs− αr
2R−Hs+R−HMHw

= Rs+w′ (14)

where

w
′

= −α2
rR

−Hs+R−HMHw (15)

is the equivalent noise that includes self-interference (first
summand) and colored Gaussian noise. Consequently the
corresponding regularized lattice decoder takes the form

ŝr−ld = arg min
ŝ∈Zκ

‖r−Rŝ‖2 , (16)

which is then solved by the sphere decoder which recursively
enumerates all lattice vectorŝs ∈ Z

κ within a given sphere of
radiusξ > 0, i.e., which identifies as candidates the vectorsŝ

that satisfy

‖r−Rŝ‖2 ≤ ξ2. (17)

The algorithm specifically uses the upper-triangular nature
of R to recursively identify partial symbol vectorŝsk, k =
1, · · · , κ, for which

‖rk −Rkŝk‖2 ≤ ξ2, (18)

whereŝk andrk respectively denote the lastk components of
ŝ andr, and whereRk denotes thek×k lower-right submatrix
of R. Clearly any set of vectorŝs ∈ Z

κ, with common last

7For simplicity of notation we will, in most cases, denoteMr with M.

k components that fail to satisfy (18), may be excluded from
the set of candidate vectors that satisfy (17).

The enumeration of partial symbol vectorsŝk is equivalent
to the traversal of a regular tree withκ layers – one layer per
symbol component of the symbol vectors, such that layerk
corresponds to thekth component of the transmitted symbol
vector8 s. There is a one-to-one correspondence between the
nodes at layerk and the partial vectorŝsk. We say that
a node is visited by the sphere decoder if and only if the
corresponding partial vector̂sk satisfies (18), i.e., there is a
bijection between the visited nodes at layerk and the set

Nk ,{ŝk ∈ Z
k | ‖rk −Rkŝk‖2 ≤ ξ2}. (19)

B. Complexity of MMSE-preprocessed lattice sphere decoding

Consequently the total number of visited nodes (in all layers
of the tree) is given by

NSD =

κ∑

k=1

Nk, (20)

whereNk , |Nk| is the number of visited nodes at layerk of
the search tree. The total number of visited nodes is commonly
taken as a measure of the sphere decoder complexity. It is
easy to show that in the scale of interest the SD complexity
exponentc(r) would not change if instead of considering the
number of visited nodes, we considered the number of flops
spent by the decoder9.

Naturally the total number of visited nodes is a function
of the search radiusξ. We here use a fixed radius, which
may result in a non-zero probability that the transmitted
symbol vectors is not inNκ. Consequently we must choose a
radius that strikes the proper balance between decreasing the
aforementioned probability and at the same time sufficiently
decreasing the size ofNκ. Towards this we note that for the
transmitted symbol vectors, the metric in (16) satisfies

‖r−Rs‖2 = ‖w′‖2,
which means that if‖w′‖ > ξ, then the transmitted symbol
vector is excluded from the search, resulting in a decoding
error. As Lemma 2 will later argue taking into consideration
the self-interference and non-Gaussianity ofw

′

, we can set
ξ =

√
z log ρ, for somez > d(r) such that

P
(

‖w′‖2 > ξ2
)

<̇ ρ−d(r),

which implies a vanishing probability of excluding the trans-
mitted information vector from the search, and a vanishing
degradation of error performance.

We here note that the MMSE-preprocessed lattice sphere
decoder differs from its ML-based equivalent in two aspects:
the presence of MMSE preprocessing and the absence of a
bounding region to constrain the search. These two aspects

8We will henceforth refer to the symbol vectors ∈ Sκr corresponding to

the transmitted codewordx = ρ
−rT
κ Gs (cf. (6)) , simply as thetransmitted

symbol vector.
9To see this, we consider that the cost of visiting a node, is independent

of ρ. Once at a visited node, this same bounded cost includes the cost of
establishing which children-nodes not to visit in the next layer.



are generally perceived to have an opposite effect on the
complexity. On the one hand, MMSE preprocessing, which
we recall from (19) to introduce unpruned sets

Nk ,{ŝk ∈ Z
k | ‖rk −Rkŝk‖2 ≤ ξ2}, k = 1, · · · , κ,

is associated to reduced complexity in lattice-based SD solu-
tions (cf. [16]) due to the resulting penalization of faraway
lattice points (cf. [13]). On the other hand, the absence of
boundary constraints can be associated to increased complex-
ity as it introduces an unbounded number of candidate vectors.
We proceed to show that in terms of the complexity exponent,
under common MIMO scenarios and codes, these two aspects
exactly cancel each other out, and that consequently MMSE-
preprocessed lattice sphere decoding introduces a complexity
exponent that matches that of ML-based sphere decoding
(cf. [8]), which it self is shown here to also match the
complexity exponent of ML-based SD in the presence of
MMSE preprocessing10.

Before proceeding we note that this analysis is specific to
sphere decoding, and that it does not account for any other
ML based solutions that could, under some (arguably rare)
circumstances, be more efficient. A classical example of such
rare circumstances would be a MIMO scenario, or equivalently
a set of fade statistics, that always generate diagonal channel
matrices. Another example would be having codes drawn from
orthogonal designs which introduce very small decoding com-
plexity, but which are provably shown to be highly suboptimal
except for very few unique cases like thenT = 2, nR = 1
quasi-static case [18]. In light of this, in this section only, we
mainly focus on the widely considerednT × nR (nR ≥ nT )
i.i.d. and quasi-static MIMO setting and on the large but
specific family of full-rate (κ = 2min{nT, nR}T = 2nTT )
threaded codes (cf., [19] and [20]), with a fixed lattice genera-
tor matrix that does not change withr, thus encompassing with
our analysis all known approximately universal ( [21]) lattice
codes (cf., [22] and [23]) as well as uncoded transmission
(V-BLAST).

We proceed with the main Theorem of the section, which
applies under natural detection ordering (cf. [8], [10]), and
under the assumption of i.i.d. Rayleigh fading statistics11.

Theorem 1: The complexity exponent for MMSE-
preprocessed lattice sphere decoding any full-rate threaded
code over the quasi-static MIMO channel with i.i.d. Rayleigh
fading statistics, is equal to the complexity exponent of
ML-based SD with or without MMSE preprocessing.

Proof: See Appendix A.

We clarify that even though all three decoders are DMT
optimal, the above result incorporates more than just DMT

10We clarify that ML-based SD in the presence of MMSE preprocessing,
corresponds to unpruned setsNk ∩ Skr whereSkr is the k-dimensional set
resulting from the natural reduction ofSκr from (6).

11The upper bound in Corollary 1c holds under the very mild assumption
that the fading statistics accept the large deviation principle with a monotonic
rate function (cf., [24]). Finally, the main result in Theorem 2 (as well as
Lemma 1) holds under the very mild assumption that the statisticsallow
for the ML-based DMT to be a continuous and decreasing function of the
multiplexing gain. We believe that the aforementioned very mild assumptions
(continuity and monotonicity) hold in any reasonable communications sce-
nario and fading statistics.

optimal decoding, in the sense that any timeout policy will
tradeoff d(r) with c(r) identically for ML-based and lattice-
based sphere decoding. In other words the three decoders share
the samed(r) andc(r) capabilities, irrespective of the timeout
policy.

Furthermore, considering different SD detection orderings
(cf. [10]), the following extends the range of codes for which
the ML-based and lattice-based SD share a similar complexity.
The proof follows from the proof of Theorem 1 in Appendix A,
and from Theorem 4 in [8].

Corollary 1a: Given any full-rate code of arbitrary DMT
performance, there is always at least one non-random fixed
permutation of the columns ofG, for which the complexity
exponent of the MMSE-preprocessed lattice sphere decoder
matches that of the ML based sphere decoder.

The following focuses on a specific example of practical
interest.

Corollary 1b: The complexity exponent for DMT optimal
MMSE-preprocessed lattice sphere decoding of minimum de-
lay (T = nT ) DMT optimal threaded codes over the quasi-
static MIMO channel with i.i.d. Rayleigh fading statistics,
takes the following form

cr−ld(r) = r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+,
(21)

which simplifies to

cr−ld(r) = r(nT − r) (22)

for integer values ofr.

Proof: See Appendix B.

Further evidence that connects the complexity behavior of
MMSE-preprocessed lattice-based SD, with that of its ML-
based counterpart, now comes in the form of a non-trivial
universal bound that is shared by the two methods. This is par-
ticularly relevant because unconstrained lattice decoding could
conceivably require unbounded computational resources given
the unbounded number of candidate lattice points. Specifically
the following universal upper bound on the complexity of
regularized lattice-based SD, matches the upper bound in [8]
for the ML case, and it holds irrespective of the full-rate
lattice code applied and irrespective of the fading statistics.
The generality with respect to the fading statistics is important
because it guarantees that no set of fading statistics, eventhose
that always generate infinitely dense lattices, can cause an
unbounded increase in the complexity due to removal of the
boundary constraints.

Corollary 1c: Irrespective of the fading statistics and of
the full-rate lattice code applied, the complexity exponents
of MMSE-preprocessed lattice SD and of ML-based SD, are
upper bounded by

c(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)

(23)

which simplifies to

c(r) =
T

nT
r(nT − r) (24)



for integerr.

Proof: See Appendix B.

The aforementioned results revealed the very high, ML-like
complexity of MMSE-preprocessed lattice decoding. Coming
back to the main focus of this paper, and afterreverting to
the most general setting of fading statistics, full-rate lattice
codes, MIMO scenarios (no longer quasi-static), we proceed
to show how proper utilization of lattice sphere decoding and
LR techniques can indeed reduce the complexity exponent to
zero, with an error performance cost (compared to the exact
implementation of regularized lattice decoding) that vanishes
in the high-SNR limit.

III. LR- AIDED REGULARIZED LATTICE SPHERE

DECODING COMPLEXITY

Lattice reduction techniques have been typically used in the
MIMO setting to improve the error performance of suboptimal
decoders (cf. [25], [26], see also [27], [28]). In the current
setting the LR algorithm, which is employed at the receiver
after the action of MMSE preprocessing, modifies the search
of the MMSE-preprocessed lattice decoder, from

ŝrld = arg min
ŝ∈Zκ

‖r−Rŝ‖2

(cf. (16)), to the new

s̃lr−rld = arg min
ŝ∈Zκ

‖r−RTŝ‖2 , (25)

by accepting as input the MMSE-preprocessed lattice genera-
tor matrix R, and producing as output the matrixT ∈ Z

κ×κ

which is unimodular meaning that it has integer coefficients
and unit-norm determinant, and which is designed so that
RT is (loosely speaking) more orthogonal thanR. As a
result of this unimodularity, we have thatT−1

Z
κ = Z

κ,
and consequently the new search in (25) corresponds to yet
anotherlattice decoder, referred to as the LR-aided MMSE-
preprocessed lattice decoder, which operates over a generally
better conditioned channel matrixRT.

Finally with sphere decoding in mind, the LR algorithm
is followed by the QR decomposition12 of the new lattice-
reduced MMSE-preprocessed matrixRT, resulting in a new
upper-triangular model

r̃ = R̃s̃+w′′ (26)

and in the new LR-aided MMSE-preprocessed lattice search,
which accepts the application of the sphere decoder, and which
takes the form

s̃lr−rld = arg min
ŝ∈Zκ

∥
∥
∥r̃− R̃ŝ

∥
∥
∥

2

, (27)

where Q̃R̃ = RT corresponds to the QR-decomposition of
RT, whereR̃ is upper-triangular, wherẽr, Q̃Hr, s̃ = T−1s,
and wherew′′ = Q̃Hw′.

At the very end,

ŝlr−rld = Ts̃lr−rld, (28)

12A more proper statement would be that the QR decomposition is
performed by the LR algorithm it self.

allows for calculation of the estimate of the transmitted symbol
vectors in (9).

We note here that this (exact) solution of the LR-aided
MMSE-preprocessed lattice decoder defined by (27), (28),
is identical to the exact solution of the MMSE-preprocessed
lattice decoder given by (16), because

min
ŝ∈Zκ

‖r−Rŝ‖2 (a)
= min

ŝ∈Zκ

∥
∥
∥r̃− R̃T−1ŝ

∥
∥
∥

2 (b)
= min

ŝ∈Zκ

∥
∥
∥r̃− R̃ŝ

∥
∥
∥

2

,

(29)

where(a) follows from the fact that̃QR̃ = RT and from the
rotational invariance of the Euclidean norm, and(b) follows
from the fact thatT−1

Z
κ = Z

κ.
While, though, the two lattice decoding solutions (with and

without LR) provide identical error performance in the setting
of exact implementations, we proceed to show that, in terms of
complexity, LR techniques, and specifically a proper utilization
of the LLL algorithm, can provide dramatic improvements.

A. Complexity of the LR-Aided Regularized Lattice Sphere
Decoder

We are here interested in establishing the complexity of
the LR-aided regularized lattice sphere decoder. Given that
the costs of implementing MMSE preprocessing and of im-
plementing the linear transformation in (28) are negligible in
the scale of interest13, we now focus on establishing the cost
of LR, and then the cost of the SD implementation of the
search in (27). Starting with the SD complexity, as in (19),
we identify the corresponding unpruned set at layerk to be

Nk ,{ŝk ∈ Z
k | ‖r̃k − R̃kŝk‖2 ≤ ξ2}, (30)

and in bounding the size of the above, we first focus on
understanding the statistical behavior of thek × k lower-
right submatricesR̃k of matrix R̃ (k = 1, · · · , κ), where
we recall thatR̃ is the upper triangular code-channel matrix,
after MMSE preprocessing and LLL lattice reduction. Towards
this, and for dL(r − ǫ) denoting the diversity gain of the
exact implementation of the regularized lattice decoder at
multiplexing gain r − ǫ, we have the following lemma on
the smallest singular value of̃Rk. The proof appears in
Appendix C.

Lemma 1: The smallest singular valueσmin(R̃k) of sub-
matrix R̃k, k = 1, · · · , κ, satisfies

P
(

σmin(R̃k)
.
< ρ

−ǫT
κ

) .
≤ ρ−dL(r−ǫ), for all r ≥ ǫ > 0.

(31)

To bound the cardinalityNk of Nk (cf. (30)), and eventually
the total numberNSD =

∑κ
k=1 Nk of lattice points visited

by the SD, we proceed along the lines of the work in [8],
making sure, though, that the proper modifications are made
to account for the currently employed MMSE preprocessing,

1312We here quickly note the obvious fact that, aside from the compu-
tational cost of decoding, the cost of encoding (i.e., of constructing the
codewords) is negligible in the scale of interest because encoding only
involves a finite-dimensional linear transformation [cf., (6)].



for the removal of the bounding region, for the use of LR, and
for the subtle differences in the complexity exponents14.

Towards this we see that, after removing the boundary
constraint, Lemma 1 in [8] tells us that

Nk , |Nk| ≤
k∏

i=1

[√
k +

2ξ

σi(R̃k)

]

,

where
σmin(R̃k) = σ1(R̃k) ≤ · · · ≤ σk(R̃k)

are the singular values of̃Rk. Consequently we have that

Nk ≤
[√

k +
2ξ

σmin(R̃k)

]k

.

(32)

As a result, for anỹRk such that

σmin(R̃k)
.
≥ ρ

−ǫT
κ , (33)

and given thatξ =
√
z log ρ for some finitez, then

Nk

.
≤
(
√
k +

2
√
z log ρ

ρ
−ǫT
κ

)k

.
= ρ

ǫTk
κ , (34)

which guarantees that the total number of visited lattice points
is upper bounded as

NSD =

κ∑

k=1

Nk

.
≤

κ∑

k=1

ρ
ǫTk
κ

.
= ρǫT . (35)

Consequently, directly from Lemma 1, we have that

P
(
NSD ≥̇ ρǫT

)
≤̇ ρ−dL(r−ǫ). (36)

A similar approach deals with the complexity of the LLL al-
gorithm, which is known (cf. [29]) to be generally unbounded.
Specifically drawing from [13, Lemma 2], under the natural
assumption of power-limited channels15 (cf. [13]), under the
natural assumption thatdL(r − ǫ) > dL(r) for all ǫ > 0,
and forNLR denoting the number of flops spent by the LLL
algorithm, one can readily conclude that

P (NLR ≥ γ log ρ) ≤̇ ρ−dL(r−ǫ), (37)

for any γ > 1
2 (dL(r − ǫ)). We note that the implied SNR

dependence of the LLL complexity is indeed natural in the
presence of halting policies, because such policies are cali-
brated as a function of the desired error performance which
in turn scales with SNR.

14We note that there exist subtle differences between the current complexity
exponent in (5) and the sphere-decoding complexity exponentin [8]. The
first difference is conceptual and has to do with the fact thatthe complexity
exponent in [8] alludes to a complexity required to achieve a certain DMT
performance, whereas the current exponent in (5) simply describes the
computational resources available to the transceiver. The second difference
is of a more practical nature and has to do with the fact that in the current
setting, the exponent in (5) describes the complexity required to achieve a
vanishing error performance gap to lattice decoding, irrespective of the speed
at which this gap vanishes, whereas the exponent in [8] can beseen as an
upper bound on the current exponent, as it specifically asks that this gap
vanishes as a polynomial function of SNR.

15This is a moderate assumption that asks thatE
{

‖H‖2F
}

.

≤ ρ. We note
that this holds true for any reasonable setting in wireless communications.

Consequently the overall complexity

N
.
= NSD +NLR

in flops, for the LR-aided MMSE preprocessed lattice sphere
decoder, satisfies the following

P
(
N≥̇ρǫT

) .
= P

(
{NSD≥̇ρǫT } ∪ {NLR≥̇ρǫT }

)

.
≤ ρ−dL(r−ǫ). (38)

As a result, for some positiveǫ1 sufficiently smaller thanǫ, it
is the case that

c(r) = inf{ǫ | − lim
ρ→∞

log P
(
N ≥ ρǫT+ǫ1

)

log ρ
> dL(r)} (39)

This ǫ vanishes arbitrarily close to zero, resulting in a zero
complexity exponent, in the sense that the complexity rarely
scales as a strictly positive power ofρ, and specifically it does
so with probability that is much smaller than the probability
of error of the exact implementation of lattice decoding.

We now consider the overall error-performance gap pro-
vided by the LR-aided regularized lattice SD, in the presence
of the previously implied timeout policy which interrupts at
Nmax = ρx for a vanishingly smallx > 0.

B. Gap to the exact solution of MMSE-preprocessed lattice
decoding

We here prove that the LR-aided regularized lattice SD and
the associated time-out policies that guarantee a vanishing
complexity exponent also guarantee a vanishing gap to the
error performance of the exact lattice decoding implementa-
tion. This result is motivated by potentially exponential gaps
in the performance of other DMT optimal decoders (cf. [13]
and [30]), where these gaps may grow exponentially up to
2

κ
2 (cf. [31]) or may potentially be unbounded [32] (see also

[28]).
Towards establishing this gap, we recall that the exact

MMSE-preprocessed lattice decoder in (12) makes errors
when ŝr−ld 6= s. On the other hand the LLL-reduced MMSE-
preprocessed lattice sphere decoder with run-time constraints,
in addition to making the same errors (ŝr−lr−ld 6= s), also
makes errors when the run-time limit ofρx flops becomes
active, i.e., whenN ≥ ρx, as well as when a small search
radius causesNκ = ∅. Consequently the corresponding
performance gap to the exact regularized decoder, takes the
form

gL(x) = lim
ρ→∞

P ({ŝr−lr−ld 6= s} ∪ {N ≥ ρx} ∪ {Nκ = ∅})
P (̂sr−ld 6= s)

.

To bound the above gap, we apply the union bound and the
fact that

P (Nκ = ∅) ≤ P (‖w′′‖ > ξ)

to get that

gL(x) ≤ lim
ρ→∞

P (̂sr−lr−ld 6= s)

P (̂sr−ld 6= s)
+ lim

ρ→∞

P (N ≥ ρx)

P (̂sr−ld 6= s)

+ lim
ρ→∞

P (‖w′′‖ > ξ)

P (̂sr−ld 6= s)
. (40)



Furthermore from (29) we observe that

P (̂sr−lr−ld 6= s) = P (̂sr−ld 6= s) , (41)

and from (38) we recall that

P
(
N≥̇ρǫT

) .
≤ ρ−dL(r−ǫ)

which implies that for anyx > 0 it holds that

lim
ρ→∞

P (N ≥ ρx)

P (̂sr−ld 6= s)
= 0. (42)

Finally the last term in (40) relates to the search radiusξ, and
to the behavior of the noisew

′′

which was shown in (15),
(26) to take the form

w′′ = Q̃H
(
−α2

rR
−Hs+R−HMHw

)
. (43)

The following lemma, whose proof is found in Appendix D,
accounts for the fact thatw

′′

includes self-interference and
colored noise, to bound the last term in (40).

Lemma 2: There exist a finitez > dL(r) for which a search
radiusξ =

√
z log ρ guarantees that

lim
ρ→∞

P (‖w′′‖ > ξ)

P (̂sr−ld 6= s)
= 0. (44)

Consequently, considering such a search radius and com-
bining (41), (42) and (44) gives thatgL(x) = 1, ∀x > 0.
This is described in the following.

Theorem 2: LLL-aided MMSE-preprocessed lattice sphere
decoding with a computational constraint activated atρx flops,
allows for a vanishing gap to the exact solution of MMSE-
preprocessed lattice decoding, for anyx > 0, for all fading
statistics, all MIMO scenarios, and all full-rate lattice codes.

IV. CONCLUSIONS

In light of the fact that, prior to this study, a vanishing error
performance gap was generally attributed only to near-fulllat-
tice searches that have exponential complexity, in conjunction
with the fact that subexponential complexity was generally
attributed to early terminated (linear) solutions which have,
though, a performance gap that can be up to exponential in
dimension and/or rate, this study constitutes the first proof
that subexponential complexity need not come at the cost of
exponential reductions in lattice decoding error performance.

We hope that the presented analytical approach can help
provide concise ratereliabilitycomplexity comparisons be-
tween different methodologies including deterministic, statisti-
cal, and soft-decision decoding methods found in recent work
such as [33]–[42].

APPENDIX A
PROOF FORTHEOREM 1 AND COROLLARY 1A

In the following we begin by providing an upper bound
on the complexity exponent of MMSE-preprocessed (uncon-
strained) lattice sphere decoding, where this bound holds for
the general quasi-static MIMO channel, for all fading statistics
and for any full-rate lattice code. We will then proceed to
provide a lower bound on the complexity exponent of the

same decoder, where this bound, under the extra assumptions
of i.i.d. Rayleigh fading statistics and of layered codes, will
in fact match the above mentioned upper bound to prove the
theorem and the associated corollaries. Before proceedingwith
the bounds, we describe thenT × nR (nR ≥ nT ) quasi-
static point-to-point MIMO channel, and its corresponding
association to the general MIMO channel model in (9) and
metric in (16).

The aforementioned quasi-static channel model takes the
form

YC =
√
ρHCXC +WC , (45)

where XC ∈ C
nT×T , YC ∈ C

nR×T and WC ∈ C
nR×T

represent the transmitted, received and noise signals overa
period ofT time slots, and whereHC ∈ C

nR×nT represents
the matrix of fade coefficients. The real-valued representation
of (45) can be written as

y =
√
ρ(IT ⊗HR)x+w (46)

whereHR =

[
Re{HC} −Im{HC}
ImHC} Re{HC}

]

, x = (xT
1 , · · · ,xT

T )
T

with xt = [Re{Xt,C}T, Im{Xt,C}T]T for t = 1, · · · , T ,
whereXt,C is t-th column ofXC , y and wherew are defined
similar tox. The system model in (46) is of the familiar form

y =
√
ρHx+w (47)

as in (1) withm = 2nTT , n = 2nRT , and where

H = IT ⊗HR. (48)

As before the vectorized codewordsx, associated to the full-
rate code, take the form

x = ρ
−rT
κ Gs, s ∈ Z

κ ∩ ρ
rT
κ R, (49)

whereκ = 2min{nT, nR}T = 2nTT = m, which allows us
to rewrite the model as

y = Ms+w, (50)

for

M = ρ
1
2−

rT
κ HG = ρ

1
2−

rT
κ (IT ⊗HR)G. (51)

Finally the corresponding coherent MMSE-preprocessed lat-
tice decoder for the transmitted symbol vectors, can be
expressed to be (cf. (16))

ŝr−ld = arg min
ŝ∈Zκ

‖r−Rŝ‖2 , (52)

wherer = QH
1 y andR ∈ C

κ×κ is the upper-triangular matrix,
where furthermore bothQ1 and R result from the thin QR
decomposition of the(n + κ) × κ dimensional preprocessed
channel matrix

Mreg ,

[
M

αrI

]

= QR =

[
Q1

Q2

]

R (53)

and where as beforeαr = ρ
−rT
κ .



A. Upper bound on complexity of regularized lattice SD

In establishing the upper bound, we consider Lemma 1 in
[8], which we properly modify to account for MMSE prepro-
cessing and for the removal of the constellation boundaries,
and get that the numberNk of nodes visited at layerk by the
MMSE-preprocessed lattice sphere decoder, is upper bounded
as

Nk = |Nk| ≤
k∏

i=1

[√
2k +

2ξ

σi(Rk)

]

, (54)

whereσi(Rk), i = 1, · · · , k denote the singular values ofRk

in increasing order.
Towards lower boundingσi(Rk), we note that

σi(Rk) ≥ σi(R) = σi(M
reg) =

√

α2
r + σi(MHM), (55)

where the first inequality makes use of the interlacing property
of singular values of sub-matrices [43]. Furthermore for

µj ,− log σj(H
H
CHC)

log ρ
, j = 1, · · · , nT (56)

andµ1 ≥ · · · ≥ µnT
, we see thatσj(HC) = ρ−

1
2µj , and from

(51) that

σi(M) ≥ ρ
1
2−

rT
κ σmin(G)σ(i)(IT ⊗HR))

.
= ρ

1
2−

rT
κ σl2T (i)(HC)

= ρ
−rT
κ

+ 1
2 (1−µl2T (i)), (57)

wherelT (i),
⌈

i
T

⌉
, and where the asymptotic equality is due

to the fact thatσmin(G)
.
= ρ0. Substituting from (57) in (55)

we now have that

σi(Rk)
.
≥ ρ

−rT
κ

+ 1
2 (1−µl2T (i))

+

, i = 1, · · · , κ. (58)

Corresponding to (54) we see that
[√

2k +
2ξ

σi(Rk)

]
.
≤ ρ(

rT
κ

− 1
2 (1−µl2T (i))

+)
+

,

for any i = 1, · · · , 2nTT , and from (54) we have that

Nk(µ)
.
≤ ρ

∑k
i=1 ( rT

κ
− 1

2 (1−µl2T (i))
+)

+

, (59)

whereµ = (µ1, · · · , µnT
). It follows that

NSD(µ) =

κ∑

k=1

Nk(µ)
.
≤

κ∑

k=1

ρ
∑k

i=1 ( rT
κ

− 1
2 (1−µl2T (i))

+)
+

.
= ρ

∑κ
i=1 ( rT

κ
− 1

2 (1−µl2T (i))
+)

+

.
= ρ

T
∑nT

j=1

(

r
nT

−(1−µj)
+
)+

, (60)

where the last asymptotic equality is due to the multiplicity
of the singular values.

Now consider the set

T (x),






µ | T

nT∑

j=1

(
r

nT
− (1− µj)

+

)+

≥ x






, (61)

and note that for anyy < x, then (60) andµ /∈ T (y)
jointly imply that NSD < ρx, which in turn implies that
P (µ /∈ T (y)) ≤ P (NSD < ρx) and consequently that

− lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
≥ − lim

ρ→∞

log P (µ ∈ T (y))

log ρ
.

(62)

In evaluating the right hand side of (62) we note thatT (y) is a
closed set and thus, applying the large deviation principle(cf.
[24]), we have that

− lim
ρ→∞

log P (µ ∈ T (y))

log ρ
≥ inf

µ∈T (y)
I(µ) (63)

for some rate functionI(µ). Consequently from (62) and (63),
it follows that

− lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
≥ inf

µ∈T (y)
I(µ). (64)

This lower bound specified in (64) holds for anyy < x.
Consequently to get the tightest possible bound, we need
to find supy<x infµ∈T (y) I(µ). As infµ∈T (y) I(µ) is non-
decreasing and left-continuous iny, it follows that

sup
y<x

inf
µ∈T (y)

I(µ) = inf
µ∈T (x)

I(µ).

Consequently

− lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
≥ inf

µ∈T (x)
I(µ), (65)

which gives that

cr−ld(r) ≤ cr−ld(r), inf{x| inf
µ∈T (x)

I(µ) > dL(r)}

=sup{x| inf
µ∈T (x)

I(µ) ≤ dL(r)}

=max{x| inf
µ∈T (x)

I(µ) ≤ dL(r)} (66)

where the above follows from the aforementioned fact that
− lim

ρ→∞

log P(NSD≥ρx)
log ρ (and by extension alsoinfµ∈T (x) I(µ))

is continuous and nondecreasing inx, and from the fact that
T (x) is a closed set. Consequentlycr−ld(r) takes the form

cr−ld(r),max
µ

x (67a)

s.t. T

nT∑

j=1

(
r

nT
− (1− µj)

+

)+

≥ x, (67b)

I(µ) ≤ dL(r), (67c)

µ1 ≥ · · · ≥ µnT
≥ 0. (67d)

Furthermore sinceT (x) is a closed set, the maximumx in
(67) must be such that (67b) is satisfied with equality, in which
casecr−ld(r) can be obtained as the solution to a constrained
maximization problem according to

cr−ld(r),max
µ

T

nT∑

j=1

(
r

nT
− (1− µj)

+

)+

(68a)

s.t. I(µ) ≤ dL(r), (68b)

µ1 ≥ · · · ≥ µnT
≥ 0. (68c)



Equivalently for µ∗ = (µ∗
1, · · · , µ∗

nT
) being one of the

maximizing vectors16, i.e., such thatµ∗ ∈ T (x) andI(µ∗) =
dL(r), thencr−ld(r) takes the form

cr−ld(r) = T

nT∑

j=1

(
r

nT
− (1− µ∗

j )
+

)+

. (69)

As we will now show, the above bound is also shared by the
ML-based sphere decoder, with or without MMSE preprocess-
ing, irrespective of the full-rate code and the fading statistics.
Directly from [8, Theorem 2], and taking into consideration
that MMSE-preprocessed lattice decoding is DMT optimal for
any code [13], we recall that the equivalent upper bound for
the ML-based sphere decoder, without MMSE preprocessing,
takes the form

cml(r),max
µ

T

nT∑

j=1

min

(
r

nT
− 1 + µj ,

r

nT

)+

(70a)

s.t. I(µ) ≤ dL(r), (70b)

µ1 ≥ · · · ≥ µnT
≥ 0. (70c)

Comparing (68) and (70) we are able to conclude that both
the objective functions (68a) and (70a) as well as both pairs
of constraints are identical. To see this, we first note that for
0 ≤ µj ≤ 1, then

min

(
r

nT
− 1 + µj ,

r

nT

)+

=

(
r

nT
− 1 + µj

)+

,

(
r

nT
− (1− µj)

+

)+

=

(
r

nT
− 1 + µj

)+

,

and furthermore we note that forµj > 1, then

min

(
r

nT
− 1 + µj ,

r

nT

)+

=

(
r

nT
− (1− µj)

+

)+

=
r

nT
,

which proves thatcml(r) andcr−ld(r) are identical.
In considering the case of MMSE-preprocessed ML

SD, it is easy to see that the summands in the objec-
tive function in (70a) will be modified to take the form

min
(

r
nT

− (1− µj)
+, r

nT

)+

which can be seen to match
(68a) for allµj ≥ 0, which in turn concludes the proof that the
upper boundcr−ld(r) for MMSE-preprocessed lattice SD is
also shared by the ML-based sphere decoder, with or without
MMSE preprocessing, irrespective of the full-rate code, and
for all fade statistics represented by monotonic rate functions.

B. Lower bound on complexity of regularized lattice SD

We will here, under the extra assumptions of i.i.d. Rayleigh
fading statistics and of layered codes with natural decoding
order, provide a lower bound that matches the upper bound
in (69). The same bound and tightness will also apply to any
full-rate code, under the assumption of a fixed, worst case
decoding ordering.

The goal here is to show that at layerk = 2qT , for some
q ∈ [1, nT], the sphere decoder visits close toρcr−ld(r) nodes

16In general, (68) does not have a unique optimal point because(a)+ is
constant ina for a ≤ 0.

with a probability that is large compared to the probabilityof
decoding errorP (sL 6= s)

.
= ρ−dL(r), which will prove that

cr−ld(r) = cr−ld(r).
Going back to (69), we letq be the largest integer for which

r

nT
− (1− µ∗

q)
+ > 0, (71)

in which case (69) takes the form

cr−ld(r) = T

q
∑

j=1

r

nT
− (1− µ∗

j )
+. (72)

We recall from (56) thatµj = − log σj(H
H
CHC)

log ρ , j =
1, · · · , nT , and thatµ∗ ∈ T (x) satisfiesI(µ∗) = dL(r) and
maximizes (68a). We also note that without loss of generality
we can assume thatq ≥ 1 as otherwisecr−ld(r) = 0 (cf.
(69)). Consequently it is the case thatµ∗

j > 0 for j = 1, · · · , q.
Furthermore given the monotonicity of the rate functionI(µ),
and the fact that the objective function in (68) does not increase
in µj beyondµj = 1, we may also assume without loss of
generality thatµ∗

j ≤ 1 for j = 1, · · · , nT .
As in [8] we proceed to define two eventsΩ1 andΩ2 which

we will prove to be jointly sufficient so that, at layerk = 2qT ,
the sphere decoder visits close toρcr−ld(r) nodes. These are
given by

Ω1 ,{µ∗
j − 2δ < µj < µ∗

j − δ, j = 1, · · · , q
0 < µj < δ, j = q + 1, · · · , nT },

(73)

for a given smallδ > 0, and

Ω2 ,{σ1

(
(IT ⊗VH

p )G|p

)
≥ u}, (74)

for some givenu > 0, where forp,nT − q thenG|p denotes
the first 2pT columns ofG, and whereVp denotes the last
2p columns ofV obtained by applying the singular value
decomposition onHR, i.e.,HR = UΣVH , where

Σ, diag{σ1(HR), · · · , σ2nT
(HR)}

with σ1(HR) ≤ · · · ≤ σ2nT
(HR) andVVH = I. Hence,VH

p

corresponds to the2p largest singular values ofHR.
Note also that by choosingδ sufficiently small, and using

the fact thatµ∗
i > 0 for i = 1, · · · , q, we may without loss

of generality assume thatΩ1 implies thatµj > 0 for all j =
1, · · · , nT .

Modifying the approach in [8, Theorem 1] to account for
MMSE preprocessing and unconstrained decoding, the lower
bound on the number of nodes visited at layerk by the sphere
decoder, is given by

Nk ≥
k∏

i=1

[
2ξ√

kσi(Rk)
−
√
k

]+

. (75)

In the following, and up until (81), we will work towards upper
boundingσi(Rk) so that we can then lower boundNk.

Towards this let

M
reg
|p ,

[

ρ
1
2−

rT
κ HG|p

αrI|p

]

∈ R
2(nR+nT )T×2pT



contain the first2pT columns ofMreg from (53), and note
that

(Mreg
|p )HM

reg
|p = ρ1−

2rT
κ GH

|pH
HHG|p + α2

rI ,

and that from (48) we get

(Mreg
|p )HM

reg
|p = ρ1−

2rT
κ GH

|p(IT ⊗HH
RHR)G|p + α2

rI.

Since

HH
RHR = V(diag{σ1(H

H
RHR), · · · , σ2nT

(HH
RHR)})VH

= V(diag{σ1(H
H
RHR), · · · , σ2nT

(HH
RHR)}

− σ(2q+1)(H
H
RHR)diag{0, · · · , 0

︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})VH

+ σ(2q+1)(H
H
RHR)V(diag{0, · · · , 0

︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})VH ,

we have that

HH
RHR � σ(2q+1)(H

H
RHR)V(diag{0, · · · , 0

︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})VH

= σ(2q+1)(H
H
RHR)V(diag{0, · · · , 0

︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})

(diag{0, · · · , 0
︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})VH

= σ(2q+1)(H
H
RHR)VpV

H
p

where the last equality follows from the fact thatVp contains
the last2p columns ofV and whereA � B denotes that
A−B is positive-semidefinite. Sinceσi(H

HH) ∈ R and since
the Kronecker product induces singular value multiplicity, it
follows that

(Mreg
|p )HM

reg
|p

� ρ1−
2rT
κ σ(2q+1)(H

H
RHR)G

H
|p(IT ⊗VpV

H
p )G|p + α2

rI.

With respect to the smallest singular value of(Mreg
|p )HM

reg
|p

we have

σ1((M
reg
|p )HM

reg
|p ) ≥ ρ1−

2rT
κ σ(2q+1)(H

H
RHR) ·

σ1

(

GH
|p(IT ⊗VpV

H
p )G|p

)

+ α2
r

and consequently, given thatHR ∈ Ω2, we have that

σ1(M
reg
|p ) ≥ ρ−

rT
κ

√

u2ρσl2(2q+1)(H
H
CHC) + 1

.
= ρ−

rT
κ ρ

1
2 (1−µq+1)

+

≥ ρ−
rT
κ

+ 1
2 (1−δ)+ , (76)

where the first inequality follows from (74), the exponential
equality follows from (56) and from the fact thatu > 0 is
fixed and independent ofρ, and the last inequality follows
from (73).

From (51) we have that

σi(M
reg) ≤ ρ

−rT
κ

√

(1 + ρ(σκ(G)σl2T (i)(HC))2)

.
= ρ

−rT
κ

+ 1
2 (1−µl2T (i))

+

, i = 1, · · · , 2nTT, (77)

where the asymptotic equality follows from the fact that
σκ(G) is fixed and independent ofρ. Furthermore (73) gives
that for i = 1, · · · , 2qT then

σi(M
reg)

.
≤ ρ−

rT
κ

+δ+ 1
2 (1−µ∗

l2T (i))
+

, (78)

where we have made use of the fact thatµ∗
j ≤ 1 for j =

1, · · · , nT .
Given thatµ∗

j > 0 for j = 1, · · · , q, then for sufficiently
small δ and for i = 1, · · · , 2qT , we have that

−rT

κ
+

1

2
(1− δ)+ ≥ −rT

κ
+ δ +

1

2
(1− µ∗

l2T (i))
+,

which means that for sufficiently smallδ, a comparison of (76)
and (78) yields

σi(M
reg) < σ1(M

reg
|p ),

for i = 1, · · · , 2qT . The above inequality allows us to apply
Lemma 3 in [8], which in turn gives that

σi(Rk) ≤
[

σκ(M
reg)

σ1(M
reg
|p )

+ 1

]

σi(M
reg), (79)

for i = 1, · · · , 2qT .
Settingi = κ in (77) upper bounds the maximum singular

value ofMreg as

σκ(M
reg)

.
≤ ρ−

rT
κ

+ 1
2 (1−µnT

)+ ≤ ρ
1
2−

rT
κ , (80)

where the last inequality is due to the fact thatµj ≥ 0.
Consequently combining (80) and (76) gives that

[

σκ(M
reg)

σ1(M
reg
|p )

+ 1

]

.
≤ ρ

1
2 δ,

which together with (78) and (79) gives that

σi(Rk)
.
≤ ρ−

rT
κ

+ 3
2 δ+

1
2 (1−µ∗

l2T (i))
+

, i = 1, · · · , 2qT. (81)

Consequently, going back to (75), we have that
[

2ξ√
kσi(Rk)

−
√
k

]+
.
≥ ρ(

rT
κ

− 3
2 δ−

1
2 (1−µ∗

l2T (i))
+) > 0 (82)

and furthermore fori = 1, · · · , 2qT , we have thatrTκ − 3
2δ−

1
2 (1 − µ∗

l2T (i))
+ > 0 directly from definition of q and for

sufficiently smallδ. As a result, fork ≤ 2qT we have that

Nk

.
≥

k∏

i=1

ρ(
rT
κ

− 3
2 δ−

1
2 (1−µ∗

l2T (i))) (83)

= ρ
∑k

i=1 ( rT
κ

− 1
2 (1−µ∗

l2T (i))
+)− 3

2kδ, (84)

and settingk = 2qT we have that

N2qT

.
≥ ρ(

∑2qT
i=1 ( rT

κ
− 1

2 (1−µ∗

l2T (i))
+)−3qTδ) (85)

= ρ(T
∑q

j=1 ( rT
κ

−(1−µ∗

j )
+)−3qTδ) (86)

= ρ(cr−ld(r)−3qTδ), (87)

where the last equality follows from (72). Consequently

NSD ≥ N2qT

.
≥ ρcr−ld(r)−3qTδ,

for small δ > 0. Given thatδ can be chosen arbitrarily small,
and given that eventsΩ1 andΩ2 occur, then the number of



nodes visited by the SD at layer2qT is arbitrarily close to the
upper bound ofρcr−ld(r).

Now to show that cr−ld(r) ≥ cr−ld(r) − 3qTδ, we

just have to prove that− lim
ρ→∞

P
(

NSD

.
≥ ρcr−ld(r)−3qTδ

)

log ρ
<

dL(r). Toward this we note that as (73) and (74) imply that
NSD

.
≥ ρcr−ld(r)−3qTδ, it follows that

P
(

NSD

.
≥ ρcr−ld(r)−3qTδ

)

≥ P (Ω1 ∩ Ω2) = P (Ω1) P (Ω2)

where the equality follows from the i.i.d. Rayleigh assumption
on the entries inHC , which makes the singular values of
HH

CHC independent of the singular vectors ofHH
CHC [44],

and which in turn also implies independence of the singular
values ofHH

CHC (event Ω1) from the singular vectors of
HH

RHR (eventΩ2).
We now turn to [8, Lemma 2] and recall that for the layered

codes assumed here, as well as for any full-rate design and
some non-random fixed decoding ordering (corresponding to a
permutation of the columns ofG), there exists a unitary matrix
V

′

p such thatrank
(

(IT ⊗ (V
′

p )
H)G|p

)

= 2pT i.e., that

σ1

(

(IT ⊗ (V
′

p )
H)G|p

)

> 0.

However, by continuity of singular values [43] it follows for
sufficiently smallu > 0 (cf.(74)) thatP (Ω2) > 0, which
implies17 thatP (Ω2)

.
= ρ0 asΩ2 is independent ofρ. This in

turn implies that

P
(

NSD

.
≥ ρcr−ld(r)−3qTδ

) .
≥P (Ω1) . (88)

With Ω1 being an open set, we have that

− lim
ρ→∞

P (Ω1)

log ρ
≤ inf

µ∈Ω1

I(µ),

=

q
∑

j=1

(|nT − nR|+ 2j − 1)(µ∗
j − 2δ),

= dL(r)− 2(|nT − nR|+ q)qδ,

< dL(r), (89)

where the above follows from the monotonicity of the rate
function

I(µ) =

nT∑

j=1

(nR − nT + 2j − 1)µi,

evaluated at

{µ∗
1 − 2δ · · · , µ∗

q − 2δ, 0, · · · , 0} = arg inf
µ∈Ω1

I(µ),

and also follows from the fact that, by definition,I(µ∗) =
dL(r).

Consequently from (88) we have that

− lim
ρ→∞

P
(

NSD

.
≥ ρcr−ld(r)−3qTδ

)

log ρ
< dL(r), (90)

17In light of the fact that eventV
′

p has zero measure, what the continuity
of eigenvalues guarantees is that we can construct a neighborhood of matrices
aroundV

′

p which are full rank, and which have a non zero measure. We also

note that the matricesV
′

p can be created recursively, starting from a single

matrix V
′

nT
.

and directly from the definition of the complexity exponent,
we have thatcr−ld(r) ≥ cr−ld(r)−3qTδ. As the bound holds
for arbitrarily smallδ > 0, it follows thatcr−ld(r) = cr−ld(r).
Directly from [8, Theorem 4] which analyzes the ML-based
complexity exponentcml(r), together with the fact that the
ML-based sphere decoder, with or without MMSE prepro-
cessing, shares the same upper boundcr−ld(r) as the MMSE-
preprocessed lattice decoder, gives thatcml(r) = cr−ld(r),
which in turns implies that

cr−ld(r) = cml(r).

This establishes Theorem 1 and Corollary 1a.�

APPENDIX B
PROOF FORCOROLLARIES 1B AND 1C

Section A-A shows thatcr−ld(r) can be obtained as the
solution to the constrained maximization problem

cr−ld(r),max
µ

T

nT∑

j=1

(
r

nT
− (1− µj)

+

)+

s.t. I(µ) ≤ dL(r), (91a)

µ1 ≥ · · · ≥ µnT
≥ 0. (91b)

In some cases though, further knowledge of the error perfor-
mance of the encoder and decoder, can result in an explicit
characterization of the complexity exponent. Take for instance
the case of DMT optimal encoding [22], [23] and DMT op-
timal MMSE-preprocessed lattice decoding [11], [13], where
the constraintI(µ) ≤ dL(r) in (91a) reverts to the constraint
∑nT

j=1(1 − µj)
+ ≥ r (cf. [13]), which may be recognized

to correspond to the no-outage region (cf. [9]). In this case
cr−ld(r) can then be explicitly obtained from the optimization
problem

cr−ld(r) = max
µ

T

nT∑

j=1

(
r

nT
− (1− µj)

+

)+

(92a)

s.t.
nT∑

j=1

(1− µj)
+ ≥ r (92b)

µ1 ≥ .... ≥ µnT
≥ 0, (92c)

which can be solved in a straightforward manner to give that

cr−ld(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
,

describing the upper bound on the complexity exponent for
MMSE-preprocessed lattice sphere decoding of DMT optimal
full-rate codes, which for minimum delay (nT = T ) DMT
optimal full-rate codes takes the form

cr−ld(r) = r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+,
(93)

and which further simplifies to

cr−ld(r) = r(nT − r),

for integer multiplexing gainsr = 0, 1, · · · , nT . In conjunction
with the lower bound in Section A-B, under the conditions lay-
ered codes in Corollary 1b, we have thatcr−ld(r) = cr−ld(r),
which proves Corollary 1b.�



Moving on to the universal upper bound, we can see from
(68) that, regardless of the fading statistics and the correspond-
ing I(µ), the exponentcr−ld(r) is non-decreasing indL(r)
and is hence maximized whendL(r) is itself maximized, i.e.,
it is maximized in the presence of DMT optimal encoding
and decoding. Combined with the fact that the corresponding
maximization problem in (92) does not depend on the fading
distribution, other than the natural fact that its tail must
vanish exponentially fast, results in the fact that, for anyfull-
rate code and statistical characterization of the channel,the
complexity of MMSE-preprocessed lattice SD is universally
upper bounded as (cf. [8])

T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
. (94)

This proves Corollary 1c.�

APPENDIX C
PROOF FORLEMMA 1

For RH
r Rr = MH

r Mr + α2
rI (cf. (13))18, it follows by

the bounded orthogonality defect of LLL reduced bases that
there is a constantKκ > 0 independent ofRr and ρ, for
which (cf. [17] and the proof in [45])

σmax(R̃
−1
r ) ≤ Kκ

λ(Rr)
(95)

where

λ(Rr), min
c∈Zκ\0

‖Rrc‖ (96)

denotes the shortest vector in the lattice generated byRr. As
a result we have that

σmin(R̃r) ≥
λ(Rr)

Kκ
. (97)

Looking to lower boundσmin(R̃r), we seek a bound on
λ(Rr). Towards this letr′ = r − γ for somer ≥ γ > 0,
in which case fors being the transmitted symbol vector, and
for any ŝ ∈ Z

κ such that̂s 6= s, it follows that

‖r−Rr′ ŝ‖ = ‖(r−Rr′s) +Rr′(s− ŝ)‖
≤ ‖(r−Rr′s)‖+ ‖Rr′(s− ŝ)‖ (98)

and

‖Rr′(s− ŝ)‖ ≥ ‖r−Rr′ ŝ‖ − ‖(r−Rr′s)‖
= ‖r−Rr′ ŝ‖ − ‖w‖. (99)

From (99) it is clear that to find a lower bound onλ(Rr′),
we need to lower bound‖r−Rr′ ŝ‖ for all ŝ ∈ Z

κ and upper
bound‖w‖. Let us, for now, assume that‖w‖2 ≤ ρb. To lower
bound‖r−Rr′ ŝ‖, we draw from the equivalence of MMSE
preprocessing and the regularized metric (cf. equation (45) in
[13]), and rewrite

‖r−Rr′ ŝ‖2 = ‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2 − c, (100)

where c,yH [I − MH
r′ (M

H
r′Mr′ + α2

r′I)
−1Mr′ ]y ≥ 0. We

now note that for̂s = s then ‖y −Mr′s‖2 + α2
r′ ‖s‖

2 .
≤ ρb,

18Note the transition to the notation reflecting the dependence of R on r.

and since the left hand side of (100) cannot be negative, and
furthermore given thatc is independent of̂s, we conclude that
c

.
≤ ρb.
We will now proceed to lower bound‖y −Mr′ ŝ‖2 +

α2
r′ ‖ŝ‖

2 and then use (100) to lower bound‖r − Rr′ ŝ‖.
Towards lower bounding‖y −Mr′ ŝ‖2 + α2

r′ ‖ŝ‖
2 we draw

from Theorem 1 in [13] and we letB be the spherical region
given by

B,{d ∈ R
κ| ‖d‖2 ≤ Γ2}

where the radiusΓ > 0 is independent ofρ and is chosen so
thatd1+d2 ∈ R for anyd1,d2 ∈ B. The existence of the set
B follows by the assumption that0 is contained in the interior
of R. Now let

νr′ , min
d∈ρ

r′T
κ B∩Zκ:d 6=0

1

4
‖Mr′d‖2 ,

and for givenγ > ζ > 0 chooseb > 0 such that

2ζT

κ
> b > 0.

This may clearly be done for arbitraryζ > 0. We will in the
following temporarily assume thatνr′+ζ ≥ 1 and prove that,
together with‖w‖2 ≤ ρb, the two conditions are sufficient for
λ(R̃r′)

.
≥ ρ

ζT
κ to hold.

In order to bound the metric for̂s ∈ Z
κ where ŝ 6= s, we

note thatνr′+ζ ≥ 1 implies that∀d ∈ ρ
(r′+ζ)T

κ B ∩ Z
κ,d 6= 0

it is the case that

1

4
‖Mr′+ζd‖2 ≥ 1

1

4

∥
∥
∥ρ

1
2−

(r′+ζ)T
κ HGd

∥
∥
∥

2 (a)

≥ 1

1

4

∥
∥
∥ρ

1
2−

r′T
κ HGd

∥
∥
∥

2

≥ ρ
2ζT
κ

where (a) follows from the fact thatMr = ρ
1
2−

rT
κ HG.

Consequently

1

4
‖Mr′d‖2 ≥ ρ

2ζT
κ , ∀d ∈ ρ

(r′+ζ)T
κ B ∩ Z

κ,d 6= 0. (101)

As R is bounded, and asζ > 0, it holds thatR ⊂ 1
2ρ

ζT
κ B

for all ρ ≥ ρ1, for a sufficiently largeρ1. This implies that

s ∈ 1
2ρ

(r′+ζ)T
κ B for ρ ≥ ρ1 sinces ∈ ρ

r′T
κ R.

For s,d ∈ 1
2ρ

(r′+ζ)T
κ B∩Z

κ, there exists an̂s ∈ ρ
(r′+ζ)T

κ B∩
Z
κ, ŝ 6= s, such that̂s = d+s. Hence for anŷs ∈ ρ

(r′+ζ)T
κ B∩

Z
κ, we have from (101) that

1

4
‖Mr′ (̂s− s)‖2 =

1

4
‖Mr′d‖2 ≥ ρ

2ζT
κ . (102)

As ‖w‖2 ≤ ρb, it follows that 1
4 ‖Mr′d‖2 ≥ ‖w‖2 for large

ρ, and that

‖y −Mr′ ŝ‖2 = ‖Mr′(s− ŝ) +w‖2
.
≥ ρ

2ζT
κ . (103)

Consequently

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2

.
≥ ρ

2ζT
κ . (104)



On the other hand if̂s /∈ ρ
(r′+ζ)T

κ B, then by definition ofB
we have thatα2

r′ ‖ŝ‖
2 ≥ 1

4Γ
2ρ

2ζT
κ , and consequently that

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2 ≥ 1

4
Γ2ρ

2ζT
κ . (105)

From (104) and (105) we then conclude that

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2

.
≥ ρ

2ζT
κ . (106)

Given (104) and (106), for anŷs ∈ Z
κ such that̂s 6= s, it is

the case that‖y −Mr′ ŝ‖2+α2
r′ ‖ŝ‖

2 .
≥ ρ

2ζT
κ , which combined

with c
.
≤ ρb allows for (100) to give that

‖r−Rr′ ŝ‖2
.
≥ ρ

2ζT
κ . (107)

Applying (96) and (99), we have

λ(Rr′) ≥ ‖r−Rr′ ŝ‖ − ‖w‖
.
≥ ρ

ζT
κ − ρ

b
2

.
= ρ

ζT
κ (108)

where the exponential inequality follows from (107). Further-
more we know that

λ(Rr) = ρ
−γT

κ λ(Rr′)
.
≥ ρ

−ǫT
κ (109)

where ǫ = γ − ζ, r ≥ ǫ > 0, and from (97) and (109) it
follows thatσmin(R̃r)

.
≥ ρ

−ǫT
κ .

We now note that the above implies that forνr′+ζ ≥ 1 and
‖w‖2 ≤ ρb then σmin(R̃r)

.
≥ ρ

−ǫT
κ , and thus applying the

union bound yields

P
(

σmin(R̃r)
.
< ρ

−ǫT
κ

)

= P
(

(νr′+ζ < 1) ∪ (‖w‖2 > ρb)
)

≤ P (νr′+ζ < 1) + P
(

‖w‖2 > ρb
)

.

We know from the exponential tail of the Gaussian distribu-
tion thatP

(

‖w‖2 > ρb
)

.
= ρ−∞ and from Lemma 1 in [13]

thatP (νr′+ζ < 1)
.
≤ ρ−dML(r′+ζ). Hence

P
(

σmin(R̃r)
.
< ρ

−ǫT
κ

) .
≤ ρ−dML(r−ǫ)

for all r ≥ ǫ > 0.
The association with the singular values

σ1(R̃r,k) ≤ · · · ≤ σk(R̃r,k)

is made using the interlacing property of singular values of
sub-matrices, which gives that

σi(R̃r,k) ≥ σi(R̃r), i ≤ k = 1, · · · , κ, (110)

and fork = 1, · · · , κ, that

P
(

σmin(R̃r,k)
.
< ρ

−ǫT
κ

) .
≤ ρ−dML(r−ǫ).

Finally from the DMT optimality of the exact implementation
of the regularized lattice decoder [11], [13], we have that

P
(

σmin(R̃r,k)
.
< ρ

−ǫT
κ

) .
≤ ρ−dL(r−ǫ).

This proves Lemma 1.�

APPENDIX D
PROOF FORLEMMA 2

For a search radius that grows asξ =
√
z log ρ

.
= ρ0, we

first prove that

P
(

‖w′′‖2 > ξ2
) .
≤ ρ−z′

for z > z′ > dL(r). Towards establishing the properties of
the equivalent noisew

′′

(cf. (43)), we consider an equivalent
representation of the MMSE-preprocessed lattice decoder and
let (cf. [46])

QR =

[
Q1

Q2

]

R =

[
M

αrI

]

∈ R
(n+κ)×κ (111)

be the thin QR factorization of the modified channel matrix,
whereQ1 = R−1M ∈ R

n×κ, Q2 = αrR
−1 ∈ R

κ×κ and
whereRHR = MHM + α2

rI. It then follows that forF =
QH

1 , the MMSE-preprocessed lattice decoder is equivalent to
lattice decoding in the presence of channelR and noise

w
′

= −α2
rR

−Hs+R−HMHw

= −αrQ
H
2 s+QH

1 w. (112)

Consequently we calculate

P
(

‖w′‖ > ξ
)

≤ P
(
‖ − αrQ

H
2 s‖+ ‖QH

1 w‖ > ξ
)

(a)
= P

(

‖ − αrQ
H

[
0

s

]

‖+ ‖QH

[
w

0

]

‖ > ξ

)

≤ P

(

κ
(
‖w‖+ sup

s∈Sκr

‖ − αrs‖
)
> ξ

)

(b)
= P(κ‖w‖+ κK > ξ)

= P
(

κ‖w‖ > (z log ρ)
1
2 − κK

)

(c)

≤ P
(

κ‖w‖ > (z1 log ρ)
1
2

)

= P
(

‖w‖2 >
z1
κ2

log ρ
)

(d)
= P

(
‖w‖2 > z2 log ρ

)

.
= ρ−z2 (113)

where (a) follows from the MMSE-preprocessed equivalent
channel representation (cf. (111)), and where the inequalities
in (b), (c) and(d) follow for some fixedK that upper bounds
sups∈Sκr

‖ − αrs‖, and for some arbitraryz1, z2 satisfying
z > z1 > z2 > 0 independent ofρ. Consequently

P
(

‖w′′‖ > ξ
)

= P
(

‖Q̃Hw
′‖ > ξ

) .
≤ ρ−z′

for some0 < z′ < z2, and as a result

lim
ρ→∞

P
(

‖w′′‖ > ξ
)

P (̂sr−ld 6= s)
= lim

ρ→∞
ρ(dL(r)−z′) = 0,

where the last equality follows after choosing the search radius
such thatz > z′ > dL(r). This proves Lemma 2.�
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