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~ Abstract—This study identifies the first lattice decoding solu- decoder (SD) have been known to accept reduced computa-
tion that achieves, in the general outage-limited multiple-input tional resources. Despite the reduced complexity of sphere
multiple-output (MIMO) setting and in the high-rate and high-  gecoding, recent work in [8] has revealed that, to achieve

signal-to-noise ratio limit, both a vanishing gap to the error ishi ¢ timal ML soluti h
performance of the exact solution of regularized lattice decoding, a vanishing error-gap 10 optima solutions, even suc

as well as a computational complexity that is subexponential in Pranch-and-bound algorithms generally require comparati
the number of codeword bits and in the rate. The proposed resources that, albeit significantly smaller than thoseiired

solution employs Lenstra-Lenstra-Lovasz-based lattice reduction py a brute-force ML decoder, again grow exponentially in the

(LR)-aided regularized (lattice) sphere decoding and proper a6 ang the dimensionality, and remain prohibitive foresals
timeout policies. These performance and complexity guarantees MIMO scenarios '

hold for most MIMO scenarios, most fading statistics, all channel - O ) . .
dimensions, and all full-rate lattice codes. In sharp contrast to tie This high complexity required by ML-based decoding solu-
aforementioned very manageable complexity, the complexity of tions, serves as further motivation for exploring other ifeen

other standard preprocessed lattice decoding solutions is reveale of decoding methods. A natural alternative is lattice déupd
here to be extremely high. Specifically, this study has quantified obtained by simply removing the constellation boundaries o

the complexity of regularized lattice (sphere) decoding and has . . .
proved that the computational resources required by this decoer "€ ML-based search, an action that loosely speaking ezploi

to achieve a good rate-reliability performance are exponential in & certain symmetry which in turn may yield faster implemen-
the lattice dimensionality and in the number of codeword bits, tations. It is the case though that even with lattice deapdin
and it in fact matches, in common scenarios, the complexity of the computational complexity can be prohibitive: finding th
ML-based sphere decoders. Through this sharp contrast, this gyact solution to the lattice decoding problem is generaity
study was able to, for the first time, rigorously demonstrate and .

quantify the pivotal role of LR as a special complexity reducing NP hard problem (cf. [2]). A_t th? same tlm.e though, .the other
ingredient. extreme of very early terminations of lattice decoding,hsuc
as linear solutions, have been known to achieve computdtion
efficiency at the expense though of a very sizable, and often
unbounded, gap to the exact solution of the lattice decoding
problem.

} , In this study, we explore preprocessed lattice decoding
THIS study applies to the general setting of outageyytions that, in conjunction with terminating policiesrike

limited (nonergodic) multiple-input multiple-output (MIO) ¢ proper balance between this exponential complexity and
communications, where MIMO techniques offer Signiﬁcar@rror-performance gap.

advantages in terms of increased throughput and religbilit

although at a cost of a potentially much higher computationa

complexity for decoding at the receivers (cf., [1]-[8]).igh A System model

high complexity brings to the fore the need for efficient We consider the generat x n point-to-point multiple-input
decoders that tradeoff error performance with complexity multiple-output model given by

a better manner than computationally expensive decodezs li

the strictly optimal maximum-likelihood (ML) decoder. y =VpHx +w )

Specifically in terms of ML-based decoding, the use of ﬂ\ﬁherex € R™, y € R* andw € R" respectively denote

brute-forc_e ML_decoder, introduces a complexity that Ealg,e ransmitted codewords, the received signal vectord, an
exponentially with the number of codeword bits. If on theesth 1,5 54gitive white Gaussian noise with unit variance, where

hand, a small gap to the exact ML performance is acceptaliga harameter, takes the role of the signal to noise ratio
then different branch-and-bound algorithms such as thereph(SNR) and where the fading matrbl € R"*™ is assumed
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B. Rate, reliability and complexity in outage-limited MIMO If this canonical code though is linear, searching the entir

communications codebook can be avoided by algorithmic solutions like the
In terms of error performance, we 16t denote the proba- sphere decoder (SD) which can provide substantial contplexi
bility of codeword error, and we consider the rate, reductions at a potential small loss in error performancehS
1 solutions take advantage of the linear nature of the cogie tha
R= T log | X|, (3) is defined by agenerator matrix G and ashaping region R .

o ~ Specifically forr > 0, a (sequence of) full-rate linear (lattice)

in bits per channel use (bpcu), whel®| denotes the cardi- code(s)X, is given by X, = A, NR whereA, ép‘;TA and

nality of . _ _ A2{Gs | s € Z*}, whereZ" denotes thes = min{m,n}
Regarding complexity, we leNy.x describe the compu- gimensional integer lattice, wher®' is a compact convex

tational resources, in floating point operations (flops) per sypset ofR” that is independent of, and whereG € R™**

channel uses, that the transceiver is endowed with, in th&eseis fy|| rank and independent gf For the class of lattice codes

that after V. flops, the transceiver must simply terminategonsidered here, the codewords take the form

potentially prematurely and before completion of its tagle o N o

note that naturally,N,.. is intimately intertwined with the x=p~ Gs, seS=Z"Np~R, (6)

desiredP, and R, and that any attempt to significantly reduc%vhereR C R* is a natural bijection of the shaping region

Numax may be at the expense of a substantial degradation . preserves the code, and wh@eontains the all zero
error-performance. vector0 ,

D Inatrzesr;%htfgzhisém;uﬁi %ZEE en;ondf;: (ipd[g]?cggsr As noted before, despite the reduced complexity of sphere
di:/ersity gain d(r) if P 99 ' decoding of such lattice codes (as compared to brute-force
ML decoding), recent work in [8] has revealed that even such
lim R(p) o and C im d(r). (4 branch-and-bound algorithms .gene':rally require compriati
p—oo log p p—oo logp resources that grow exponentially in the number of codeword
In the same high SNR regime, the complexity is here chosEHs and the G!imensionality. As an indicat_ive example o§ thi
to take the form high complexity, we note that the work in [8] showed that
such SD algorithms, when applied for decoding a large family
(5) of high-performing codes including all known full-rate DMT
optimal codes, over ther x ng quasi-static MIMO channel

which is henceforth denoted as thE)mpI@(lty exponent.  with Ray|e|gh fad|ng anle > nr, introduce a Comp|exity
Noting that R = rlog p, we observe that(r) > 0 implies exponert of the form

a complexity that is exponential in the rate. T

Remark 1: A reasonable question at this point would per- ¢(r) = 7(7”(77/T —|r] =1+ (nt |r] —r(nr — 1))+),
tain as to why the computational resour@ég., scale withp nr 7
and are dependent of to which we note that the complexity (7)
of decoding is generally dependent on the density of tte the above,r| denotes the largest integer not greater than
codebook, which in turn depends gnand R. Furthermore r. The exponent, which simplifies to(r) = %r(nT —r)
this dependence of the complexity exponent (and by extensior integer values ofr, reaches atr = nt/2 (for even
of Nmax) On r, reflects a potential ability to regulate thevalues ofnt) an overall maximum value ofr7/4 which,
computational resources depending on the rate. Finally tlee the aforementioned codes is equalx8, corresponding
fact that bothP, and N,.. are represented as polynomiato complexity in the order oRs”<logr — po/8 — | /[X].
functions of p, simply stems from the fact that both. and At any fixed multiplexing gain, these required computationa
|¥| naturally scale as polynomial functions of Specifically resources can be seen to be in the orde2 5 #= ) flops
we quickly note that(r) captures the entire complexity rang&yhich reveals a complexity that is exponential in the number

0<clr)<rT of codeword bits, and a corresponding exponential slope of

nr—r
np

log P,

Nl’ﬂ X
c(r) ;== lim —==,
p—oo log p

of all reasonable transceivers, witlir) = 0 corresponding

to the fastest possible transceiver (requiring a subexpg@ie . . . . .
number of flops pefl’ channel uses), and with(r) — T C. Transition to lattice decoding for reducing complexity

corresponding to the optimal but arguably slowest, fullrsh ~ As mentioned, this high complexity of ML based (con-

uninterrupted ML decodéiin the presence of a canonical codétrained) decoders, motivates consideration of other dtco
with multiplexing gainr, i.e., with |X,| = 287 = prT. families, with a natural alternative being the unconsgdin

(naive) lattice decoder which takes the general form

1We here note that strictly speaking;., D,, may potentially introduce a 9
complexity exponent larger thariT'. In such a case though¥,, D, may X1, = arg min ||y — /pHZX|". (8)
be substituted by a lookup table implementationAgf and an unrestricted ReA,
ML decoder. This encoder-decoder will jointly require resmes that are a
constant multiple of X,.| = p"7 as it has to construct and visit all possible 2Although premature at this point, we hasten to note for theegxgader
| x| codewords, at a computational cost of a bounded number of fleps fthat this complexity indeed holds irrespective of the radipslating policy,
codeword visit. It is noted that the number of flops per visitedeword is irrespective of the decoding ordering, and as we will seerlah, holds even
naturally independent gs. in the presence of MMSE preprocessing.



Naturally whenk, ¢ X, the decoder declares an error. The With provable evidence of the very high complexity of
use of lattice decoding, and specifically of preprocessiidda regularized lattice decoding, we turn to the powerful tool
decoding in MIMO communications has received substantiaf lattice reduction and seek to understand its effects on
attention from works like [3], [10] and [11], where thecomputational complexity. While there has existed a general
latter proved that lattice decoding in the presence of MMS&greement in the community that lattice reduction doesaedu
preprocessing achieves the optimal DMT for specific MIM@omplexity, cf. [15], this has not yet been supported amalyt
channels and statistics, and for DMT-optimal random codeslly in any relevant communication settings. In fact, andey
The use of lattice decoding as an alternative to computalfipn opposite to common wisdom, it was recently shown that for
expensive ML based solutions, was recently further vadidata fixed-radiug sphere decoding implementation of the naive
on the one hand by the aforementioned work in [8], [12] whiclattice decoder [16], LR does not improve the sphere decoder
revealed the large computational disadvantages of ML basmmmplexity tail exponent.
solutions, and on the other hand by the work in [13] which What our study shows is that LR reduces an ML-like ex-
further confirmed the performance advantages of latticedlec ponentially increasing complexity to very manageable gube
ing by showing that regularized (MMSE-preprocesséaltice ponential values. We specifically proceed to prove that the
decoding achieves the optimal DMT performance, for almokR-aided regularized lattice decoder, implemented ushgy t
all MIMO scenarios and fading statistics, and all non-randoLenstra-LenstraLovsz (LLL) lattice basis reduction altfon
lattice codes, irrespective of the codes’ ML performance. ( [17]), and a fixed-radius SD with timeout policies that
It is the case though that the aforementioned extremecasionally abort decoding and declare an error, achieves
complexity of exact lattice decoding solutions, in conjime a vanishing gap to the error performance of the exact im-
with the potentially unbounded error-performance degradplementation of regularized lattice decoding and does so
tion (gap) of very early terminations (as opposed to exaefth a complexity exponent that vanishes to zero, which in
implementations) of lattice decoding, bring to the fore thiirn implies subexponential complexity in the sense that th
need for balanced approximations of lattice decoding gmiat complexity scales slower than any conceivable exponential
that better balance the very sizable complexity and errdunction of the total number of codeword bits and of the fate
performance gap. It is finally noted that this vanishing gap approach serves
the practical purpose of an analytical refinement over basic
diversity analysis which generally fails to address poédigt

) ) _ . massive gaps between theory and fact.
We first show that the computational complexity required

by the MMSE-preprocessed (unconstrained) lattice sphere )

decoder, asymptotically matches the complexity of the {cofr- Notation

strained) ML-based (MMSE-preprocessed or not) sphere de\We use= to denote thesxponential equality, i.e., we write
coders, and is commonly expongntial ip t'he dimensionali%p) =~ pP to denote lim log f(p) — B, and <, > are
and the number of codeword bits. This is established for - i ~pooo logp )

a large class of codes of arbitrary error-performance, fétmilarly defined. With this notation, we can writ¢ = p
Rayleigh fading statistics, and specifically for the quetaiic (cf. (4)). In this paper we uses ' to denote the smallest integer
MIMO channel — for example the complexity required fofOt smaller than the argumen®_ to denote the largest integer
DMT optimal lattice sphere decoding, in the presence of ¥t larger than the arguments)” to denote the conjugate
large family of DMT optimal codes, takes the previousljfanspose ofe), (¢)* to denotemax{0, (¢)} andvec(e) to
seen simple piecewise linear form in (7). In a parentheticdgnote the operation whereby the columns of the arguifsgnt
note, and deviating slightly from the spirit of this papere ware stacked to form a vector.

also provide a universal upper bound on the complexity of

regularized lattice sphere decoding, which holds irrespeof 1. MMSE-PREPROCESSEN.ATTICE SPHEREDECODING

the lattice code applied and irrespective of the fadingsties. COMPLEXITY

This upper bound again takes the form in (7), matching thatwe proceed to describe the preprocessed lattice decoder,
in the case of constrained ML-based sphere decoding, thtssphere decoding implementation, and for a practical set
revealing the surprising fact that there exists no statibti ting of interest that includes the quasi-static MIMO chdnne
channel behavior that will allow the removal of the boundingnd common codes, to establish the decoder’s computational
region to cause unbounded increases in the complexity of gmplexity.

decodet.

3We will interchangeably uskIMSE-preprocessed decoder andregularized A Lattice sphere decoding
decoder, with the first term being more commonly used, and with the second P : :
implying a more general family of decoders (cf. [13] where theiesjence Combining (1) and (6) yields the equivalent model
between the two decoders is discussed.). Even though in shepotic
setting of interest, the two accept the same results thraitghe paper, some y=M,s+w (9)
extra error-performance gains can be achieved by propemigatiion of the
regularized decoder (cf. [14]). 5The radius here is considered fixed in the sense that it ddeganpwith
“4In other words, this complexity bound holds even if the chastagistics respect to the channel realization and rate.
are such that the channel realizations cause the decoddwaysahave to SWe caution the reader that the proven subexponential coityplies not
solve the hardest possible lattice search problem. necessarily imply polynomial complexity.

D. Contributions

—d(r)



where k components that fail to satisfy (18), may be excluded from
the set of candidate vectors that satisfy (17).

1 rT
M, = pz~ ~ HG € R (10) The enumeration of partial symbol vectds is equivalent
is a function of the multiplexing galnr. to the traversal of a regular tree withlayers — one layer per
Consequently the corresponding naive lattice decoder)in @mbol component of the symbol vectors, such that layer
takes the form (see for example [13], also [15]) corresponds to théth component of the transmitted symbol
. ) o vectoP s. There is a one-to-one correspondence between the
Sp = arg min [y —Ms||”. (11) nodes at layerk and the partial vectors,. We say that

a node is visited by the sphere decoder if and only if the

As a result though of neglecting the boundary region, t%rresponding partial vectay, satisfies (18), i.e., there is a

" e .
_above d_ecoder declares additional errorg;if¢ S, res_ultmg k%ijection between the visited nodes at layieand the set
in possible performance costs. These costs motivated the

use of MMSE preprocessing which essentially regularizes N 2{8, € ZF | |rp — Ry || < €2}, (19)
the decision metric to penalize vectors outside the boyndar

constraintSy (cf. [13]). Specifically the MMSE-preprocessedg Complexity of MMSE-preprocessed lattice sphere decoding
lattice decoder is obtained by implementing an unconstthin c v the total ber of visited nodes (in all |
search over the MMSE-preprocessed lattice, and takes tf}e onsequently the total number of visited nodes (in all layer

form of the tree) is given by
o _ .  npall? . a:
814 = arg min |[Fy — R§[*, (12) Nsp = ];Nk, (20)
where F and R are respectively the MMSE forward and R ) ' o
feedback filters such tha = R—# M, where where N, = | Ny | is the number of visited nodes at laykeof
the search tree. The total number of visited nodes is comynonl
RR = MM + o1, (13) taken as a measure of the sphere decoder complexity. It is

easy to show that in the scale of interest the SD complexity
exponentc(r) would not change if instead of considering the
the  humber of visited nodes, we considered the number of flops
spent by the decodér
r = R IMIMs+R IMHw Naturally the total number of visited nodes is a function
CHio H 9 CHnxH of the search radiug. We here use a fixed radius, which
= RPRR-al)s+ R M7w may result in a non-zero probability that the transmitted

wherea, = p¥ and whereR is an upper-triangular matrix
(more details can be found in Appendix D). Fo£ Fy,
model transitions from (9) to

= Rs—o,’R s+ R "M"w symbol vectors is not in\V,.. Consequently we must choose a
= Rs+w (14) radius that strikes the proper balance between decredsing t
aforementioned probability and at the same time suffigrentl
where decreasing the size df/,,. Towards this we note that for the
w = —a’R7 s + R IMHw (15) transmitted symbol vectas, the metric in (16) satisfies
is the equivalent noise that includes self-interferencest(fi lr—Rs|* = [|w |,

summand) and colored Gaussian noise. Consequently \m‘ﬁch means that iﬂ|w'|| > ¢

: . . then the transmitted symbol
corresponding regularized lattice decoder takes the form

vector is excluded from the search, resulting in a decoding
8y_1q = arg min ||r — R§|?, (16) error. As Lemma 2 will later argue taking in}o consideration
sezr the self-interference and non-Gaussianityvef, we can set
which is then solved by the sphere decoder which recursively= /= log p, for somez > d(r) such that
enumerates all lattice vectogse Z* within a given sphere of - 2\ - dr)
radius¢ > 0, i.e., which identifies as candidates the vectrs P (”W I >¢ ) <P

that satisfy which implies a vanishing probability of excluding the tsan

r — R&|]? < €2 (17) mitted information vector from the search, and a vanishing
_ - N _ degradation of error performance.
The algorithm specifically uses the upper-triangular reatur we here note that the MMSE-preprocessed lattice sphere

of R to recursively identify partial symbol vecto&s,, k = decoder differs from its ML-based equivalent in two aspects
1,---,k, for which the presence of MMSE preprocessing and the absence of a
- bounding region to constrain the search. These two aspects
ek — Rasi|* < €2, (18) 9 1ed P

~ . 8 ; o .
wheres,, andr;, respectively denote the laktcomponents of We W|Il-henceforth refer to}pg symbol vectsr.e Sk correspond{ng to
§ andr, and wheréR,, denotes thé x k lower-right submatrix ¢ gj‘”sm'“ed codewordl = o™=~ Gs (cf. (6)) . simply as tharansmitted

' X symbol vector.
of R. Clearly any set of vectors € Z*, with common last 9To see this, we consider that the cost of visiting a node, dependent

of p. Once at a visited node, this same bounded cost includes #teoto
“For simplicity of notation we will, in most cases, dend, with M. establishing which children-nodes not to visit in the nestelr.




are generally perceived to have an opposite effect on tbptimal decoding, in the sense that any timeout policy will
complexity. On the one hand, MMSE preprocessing, whidhadeoffd(r) with ¢(r) identically for ML-based and lattice-

we recall from (19) to introduce unpruned sets based sphere decoding. In other words the three decodees sha
the samel(r) and capabilities, irrespective of the timeout
Nk é{ék S Zk | ”I‘k - Rk§k||2 S 52}7 k= 17 oy Ry pOllcy (r) C(T) p p

is associated to reduced complexity in lattice-based SD-sol Furthermore, considering different SD detection ordesing

tions (cf. [16]) due to the resulting penalization of fargwa(cf. [10]), the following extends the range of codes for whic

lattice points (cf. [13]). On the other hand, the absence Bfe ML-based and lattice-based SD share a similar complexit

boundary constraints can be associated to increased complehe proof follows from the proof of Theorem 1 in Appendix A,

ity as it introduces an unbounded number of candidate vectgtnd from Theorem 4 in [8].

We proceed to show that in terms of the complexity exponent, Corollary 1a: Given any full-rate code of arbitrary DMT

under common MIMO scenarios and codes, these two aspé@,eggformance, there is always at least one non-random fixed

exactly cancel each other out, and that consequently MMSpermutation of the columns o, for which the complexity

preprocessed lattice sphere decoding introduces a coityplegXponent of the MMSE-preprocessed lattice sphere decoder

exponent that matches that of ML-based sphere decodimgtches that of the ML based sphere decoder.

(cf. [8]), which it self is shown here to also match the The following focuses on a specific example of practical

complexity exponent of ML-based SD in the presence dfterest.

MMSE preprocessing. Corollary 1b: The complexity exponent for DMT optimal
Before proceeding we note that this analysis is specific MMSE-preprocessed lattice sphere decoding of minimum de-

sphere decoding, and that it does not account for any othey (7" = ny) DMT optimal threaded codes over the quasi-

ML based solutions that could, under some (arguably rarstatic MIMO channel with i.i.d. Rayleigh fading statistics

circumstances, be more efficient. A classical example ofi sutakes the following form

rare circumstances would be a MIMO scenario, or equivajentl n

a set of fade statistics, that always generate diagonainghan () = 7(nr = [r] = 1)+ (nz 7] = r(n —1))7,

matrices. Another example would be having codes drawn from (21)
orthogonal designs which introduce very small decoding-corwhich simplifies to

plexity, but which are provably shown to be highly suboptima

except for very few unique cases like the = 2,ng = 1 cr—1a(r) = r(nr 1) (22)
quasi-static case [18]. In light of this, in this sectionyoe for integer values of-.

mainly focus on the widely consideredr x ng (ng > nr) Proof: See Appendix B. -

i.i.d. and quasi-static MIMO setting and on the large but . . .
specific family of full-rate ¢ = 2min{nr,ng}T = 2noT) Further evidence that connects the complexity behavior of
threaded codes (cf., [19] and [20]), with a fixed lattice gane E/IMS(;E-preprocessed Iattlce-base_d ShD’ fW'th tr}at of it MLl
tor matrix that does not change withthus encompassing with ase c?gntergarr]t, F‘OWh con(*jlebs '?] the ormho da _Ir_lr(])_n-_trlwa
our analysis all known approximately universal ( [21]) ikt universal bound that is shared by the two methods. This Is par

codes (cf., [22] and [23]) as well as uncoded transmissi&‘fu'arly relevant because unconstrained lattice degpdauld
(V-BLAST)’ conceivably require unbounded computational resourcesngi

We proceed with the main Theorem of the section whictﬁe unbounded number of candidate lattice points. Speltyfica
: t

; ; : following universal upper bound on the complexity of
applies under natural detection ordering (cf. [8], [10]hda e Toll . .
under the assumption of i.i.d. Rayleigh fading statidtics regularized lattice-based SD, matches the upper bound]in [8

Theorem 1. The complexity exponent for MMSE- fotrt_the N(ljl‘ cascT., gnd (ijt .hOIdS irtr.espefcttixe fofd.the f;]llér?te
preprocessed lattice sphere decoding any full-rate tledka Ice code applied and Irrespective ot the tading stass

code over the quasi-static MIMO channel with i.i.d. Rayteig he gene{allty W't? resr)hec;t to thef[ faﬁw&g stat:s?ci IS Itbl it
fading statistics, is equal to the complexity exponent cause it guarantees that no set otfading statistics, iavss

ML-based SD with or without MMSE preprocessing. that always_generate_ infinitely dens_e lattices, can cause an
} unbounded increase in the complexity due to removal of the
Proof: See Appendix A. ®  houndary constraints.
We clarify that even though all three decoders are DMT Corollary 1c: Irrespective of the fading statistics and of
optimal, the above result incorporates more than just DMhe full-rate lattice code applied, the complexity expdsen

of MMSE-preprocessed lattice SD and of ML-based SD, are
10We clarify that ML-based SD in the presence of MMSE preprsites upper bounded by
corresponds to unpruned set§, N SE whereSF is the k-dimensional set

resulting from the natural reduction 8f° from (6). T

11The upper bound in Corollary 1c holds under the very mild assiomp ¢(r) = — (T(nT —|r]=1)+ (nr |r] —r(nr — 1))+)
that the fading statistics accept the large deviation fplaavith a monotonic nr
rate function (cf., [24]). Finally, the main result in Theore2 (as well as (23)

Lemma 1) holds under the very mild assumption that the statistiiosv . . e
for the ML-based DMT to be a continuous and decreasing fanctif the which Slmpllfles to

multiplexing gain. We believe that the aforementioned verydragsumptions T

(continuity and monotonicity) hold in any reasonable commaitiins sce- e(ry=—r(npr—r) (24)
nario and fading statistics. nr



for integerr. allows for calculation of the estimate of the transmittechbgl
Proof: See Appendix B. m vectorsin (9).

. . . We note here that this (exact) solution of the LR-aided
The aforementioned results revealed the very high, ML-I|Iﬁ . )
. . . . MMSE-preprocessed lattice decoder defined by (27), (28),
complexity of MMSE-preprocessed lattice decoding. Commg . ! )
. . - IS identical to the exact solution of the MMSE-preprocessed
back to the main focus of this paper, and afteverting to lattice decoder given by (16), because
the most general setting of fading statistics, full-rate lattice 9 y '
codes, MIMO scenarios (no longer quasi-static), we proceed . Rall? (a) o lF - RT 15 o 5 — Ra
to show how proper utilization of lattice sphere decoding arity lr —Rs8|" = amlr - s on ‘ r—nhs
LR techniques can indeed reduce the complexity exponent to (29)
zero, with an error performance cost (compared to the exact

implementation of regularized lattice decoding) that saes Where(a) follows from the fact thaQR = RT and from the
in the high-SNR limit. rotational invariance of the Euclidean norm, aftd follows

from the fact thatT—'Z~ = Z*.
While, though, the two lattice decoding solutions (with and
without LR) provide identical error performance in the et

of exact implementations, we proceed to show that, in tefms o

Lattice r_eductipn techniques have been typically usede'gn tEompIexity, LR techniques, and specifically a proper utiian
MIMO setting to improve the error performance of suboptimas the L algorithm, can provide dramatic improvements.
decoders (cf. [25], [26], see also [27], [28]). In the cutren

setting the LR algorithm, which is employed at the receiver
after the action of MMSE preprocessing, modifies the searéh Complexity of the LR-Aided Regularized Lattice Sphere

2

)
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Ill. LR-AIDED REGULARIZED LATTICE SPHERE
DECODING COMPLEXITY

of the MMSE-preprocessed lattice decoder, from Decoder
8,14 = arg min ||r—R§||2 We are here interested in establishing the complexity of
sez~ the LR-aided regularized lattice sphere decoder. Givenh tha
(cf. (16)), to the new the costs of implementing MMSE preprocessing and of im-
- i 1 plementing the linear transformation in (28) are negligib
Sir—ria = arg min ||r — RTS||", (25)  the scale of intere&t, we now focus on establishing the cost

by accepting as input the MMSE-preprocessed lattice gene(rjg LR, and then the cost of the SD implementation of the

tor matrix R, and producing as output the matfix € Z"** Siairggnlt?fy(?;()a. cSc)tsglsn%rmiT tti ?Enggz]gtleﬁté@?‘i 't:]e(lg)’
which is unimodular meaning that it has integer coefficients P g unp

and unit-norm determinant, and which is designed so that N 248, € ZF | ||F% — Ride? < €21, (30)
RT is (loosely speaking) more orthogonal thd. As a
result of this unimodularity, we have th&~'Z*® = Z®, and in bounding the size of the above, we first focus on
and consequently the new search in (25) corresponds to yatlerstanding the statistical behavior of thex k lower-
anotherlattice decoder, referred to as the LR-aided MMSEright submatricesR; of matrix R (k = 1,---, k), where
preprocessed lattice decoder, which operates over a dglgnerae recall thatR is the upper triangular code-channel matrix,
better conditioned channel matrRT. after MMSE preprocessing and LLL lattice reduction. Tovgard

Finally with sphere decoding in mind, the LR algorithnthis, and ford,(r — ¢) denoting the diversity gain of the
is followed by the QR decompositiéh of the new lattice- exact implementation of the regularized lattice decoder at
reduced MMSE-preprocessed matlT, resulting in a new multiplexing gainr — ¢, we have the following lemma on
upper-triangular model the smallest singular value dR;. The proof appears in

- - y Appendix C.

T = RS+w (26) Lemma 1: The smallest singular value,;,(Ry) of sub-

and in the new LR-aided MMSE-preprocessed lattice searéhatrix Ry, k= 1,--- , x, satisfies

which accepts the application of the sphere decoder, anchwhi - —eT\ -y

takes the form p (Umin(Rk) < pT) <p~ (=9 forall r>e>0.

2 (31)
; (27)

ffRél

Sir—rid = arg min
o ser To bound the cardinalityv,, of AV} (cf. (30)), and eventually
where QR = RT corresponds to the QR-decomposition ofhe total numberNgsp = >";_, N, of lattice points visited
RT, whereR is upper-triangular, wher@= Q”r,§ = T~'s, by the SD, we proceed along the lines of the work in [8],
and wherew” = Qw'. making sure, though, that the proper modifications are made

At the very end, to account for the currently employed MMSE preprocessing,

Str—rid = TSir—r1a, (28) 1312We here quickly note the obvious fact that, aside from tbepmu-

tational cost of decoding, the cost of encoding (i.e., ofstarcting the
12A more proper statement would be that the QR decomposition i®dewords) is negligible in the scale of interest becaussoding only
performed by the LR algorithm it self. involves a finite-dimensional linear transformation [cf.)](6



for the removal of the bounding region, for the use of LR, and Consequently the overall complexity
for the subtle differences in the complexity exponéhts )
Towards this we see that, after removing the boundary N =Nsp+ Nrr

constraint, Lemma 1 in [8] tells us that in flops, for the LR-aided MMSE preprocessed lattice sphere

k Y 2% decoder, satisfies the following
N2 [N < { PRI } . | | |
i[[l oi(Re) P(N2pT) = P({Nsp=p"}U{NLr=p"})
where < prhero, (38)

Tmin(Ri) = 01(Re) < -+ < o3 (Ry) As a result, for some positive sufficiently smaller thar, it

are the singular values d,. Consequently we have that is the case that
log P (N > p€T+€1)
log p

(32) This € vanishes arbitrarily close to zero, resulting in a zero
complexity exponent, in the sense that the complexity yarel
scales as a strictly positive power @fand specifically it does

33) so with probability that is much smaller than the probapilit
of error of the exact implementation of lattice decoding.

N < [\/m?f]k clr) = inf{e | — lim > dy ()} (39)

Omin k

As a result, for anyR,, such that

= L =T
O'min(Rk')Zp o

and given that = /zlog p for some finitez, then We now consider the overall error-performance gap pro-
& vided by the LR-aided regularized lattice SD, in the presenc
_ 9 /7] ) ) A : o
No< [ VE+ \/Ziggp = :k’ (34) of the priwously |mplle_d timeout policy which interrupts a
P Nax = p* for a vanishingly smalk: > 0.
which guarantees that the total number of visited latticdatso ) )
is upper bounded as B. Gap to the exact solution of MMSE-preprocessed lattice
. . decoding
Nsp =D Ny <Y p= = pT. (35)  We here prove that the LR-aided regularized lattice SD and
k=1 k=1 the associated time-out policies that guarantee a vamshin
Consequently, directly from Lemma 1, we have that complexity exponent also guarantge a vani;hing gap to the
] . error performance of the exact lattice decoding implementa
P (Nsp = p7) < pde(r=e), (36) tion. This result is motivated by potentially exponentialpg

A similar approach deals with the complexity of the LLL al—In the performance of other DMT optimal decoders (cf. [13]

) AR nd [30]), where these gaps may grow exponentially up to
gorithm, which is known (cf. [29]) to be generally unbounded, ~ .
Specifically drawing from [13, Lemma 2], under the naturet (cf. [31]) or may potentially be unbounded [32] (see also

. o 8]).
assumption of power-limited chann¥is(cf. [13]), under the 'IJ())wards establishing this gap, we recall that the exact

gﬁ;u;glr J?fssugqepr?c?t?n thtf é (;u;néirzfiﬁ) (2 lorer?t”be E]eOLLLMMSE—preprocessed lattice decoder in (12) makes errors
o LR g the PS Sp y whens, _;q # s. On the other hand the LLL-reduced MMSE-
algorithm, one can readily conclude that

preprocessed lattice sphere decoder with run-time cantstra
P(Npg > vlogp) < pdr(r=e) (37) in addition to making the same error8, (;._;q # s), also
. o makes errors when the run-time limit @f flops becomes
for any v > 5(d.(r — €)). We note that the implied SNR aetive, j.e., whenV > p7, as well as when a small search

dependence of the LLL complexity is indeed natural in thgygiys causes\V,, = . Consequently the corresponding

presence of halting policies, because such policies aie c@lerformance gap to the exact regularized decoder, takes the
brated as a function of the desired error performance whighym

in turn scales with SNR. N
(@) = lim PUSrtra £5} U{N 2 9"} U (N, = 0D
14We note that there exist subtle differences between therucomplexity gLir) = p—r00 P(8—ia#s)
exponent in (5) and the sphere-decoding complexity expomefi8]. The
first difference is conceptual and has to do with the fact thatcomplexity To bound the above gap, we apply the union bound and the
exponent in [8] alludes to a complexity required to achieveegain DMT fact that
performance, whereas the current exponent in (5) simply ibescrthe /
computational resources available to the transceiver. Boersl difference p (Nn = 0) <P (HW H > f)
is of a more practical nature and has to do with the fact thahéndurrent
setting, the exponent in (5) describes the complexity reguto achieve a to get that
vanishing error performance gap to lattice decoding, ieespe of the speed

at which this gap vanishes, whereas the exponent in [8] caseba as an < P (8 —ir—1a # 8) . P (N > p?)
upper bound on the current exponent, as it specifically asas this gap gr(x) < pgrolo W + pggo m
vanishes as a polynomial function of SNR. 7'—1/‘;’/ r—ld

I5This is a moderate assumption that asks tdt| H ||2F } < p. We note 4 lim P (lw"]| > ¢) _ (40)

that this holds true for any reasonable setting in wirelesarounications. p—oo P (ér—ld 7& s)



Furthermore from (29) we observe that same decoder, where this bound, under the extra assumptions
of i.i.d. Rayleigh fading statistics and of layered coded| w

P(8—tr—1a #8) =P (8;-1a #5), (41) " in fact match the above mentioned upper bound to prove the
and from (38) we recall that theorem and the associated corollaries. Before proceedthg
TN o —dp(r—o) the bounds, we describe ther x ng (ng > nr) quasi-
P(Nzp™)<p~ " static point-to-point MIMO channel, and its corresponding

association to the general MIMO channel model in (9) and

which implies that for any: > 0 it holds that e
metric in (16).

lim P(N 2% —0. (42) The aforementioned quasi-static channel model takes the
p—oo P (ér—ld 7é S) form
Finally the last term in (40) relates to the search radiuand B
to the behavior of the noiser’” which was shown in (15), Ye =VpHcXc + Wo, (45)
(26) to take the form where X € C"*T, Y, e C"»*T and Wg e CrexT
w' = QF (7042R*Hs + RfHMHW) _ (43) represent the transmitted, received and noise signals aver

period of T' time slots, and wher&ls € C"=*"T represents
The following lemma, whose proof is found in Appendix Dthe matrix of fade coefficients. The real-valued representa
accounts for the fact tha includes self-interference andof (45) can be written as
colored noise, to bound the last term in (40).

Lemma 2. There exist a finite: > d,(r) for which a search y = Volr @Hp)x+w (46)
radiusé = /zlog p guarantees that -
whereHp = Re{Hc} —Im{Hc} = (x1, -, x0T

. X
P> ) RelHc)
with x; = [Re{X;c} ,Im{X;c} |* fort = 1,--- T,

p=oc P (8;-1a # 8)
whereX, ¢ is ¢-th column of X, y and wherew are defined

_Consequently, considering such a search radius and cQfjjar tox. The system model in (46) is of the familiar form
bining (41), (42) and (44) gives that,(x) = 1, Vz > 0.

This is described in the following. y = /pHx +w (47)
Theorem 2. LLL-aided MMSE-preprocessed lattice sphere . .
decoding with a computational constraint activateg“atiops, as in (1) withm = 2n7T, n = 2ngT, and where
allows for a vanishing gap to the exact solution of MMSE- H=1,Hj. (48)
preprocessed lattice decoding, for any> 0, for all fading
statistics, all MIMO scenarios, and all full-rate latticedes. As before the vectorized codeworsts associated to the full-
rate code, take the form

— 0. (44)

V. CONCLUSIONS =T 7 T 49
. . . L =p ) ez Np~ )
In light of the fact that, prior to this study, a vanishingarr = 8 P (49)

performance gap was generally attributed only to nearditd! \wherex = 2min{ny,ng}T = 2noT = m, which allows us
tice searches that have exponential complexity, in comijoinc tg rewrite the model as

with the fact that subexponential complexity was generally

attributed to early terminated (linear) solutions whichvéna y =Ms+w, (50)
though, a performance gap that can be up to exponential in
dimension and/or rate, this study constitutes the first l’prot‘)"r
that subexponential complexity need not come at the cost of
exponential reductions in lattice decoding error perfarosa

We hope that the presented analytical approach can hejgally the corresponding coherent MMSE-preprocessed lat

provide concise ratereliabilitycomplexity comparisong- b tice decoder for the transmitted symbol vectar can be
tween different methodologies including deterministiefisti-  expressed to be (cf. (16))

cal, and soft-decision decoding methods found in recenkwor

1_rT

M = p? “HG = p>~ % (I ® Hp)G. (51)

such as [33]-[42]. 814 = arg min [|r — R3|?, (52)
APPENDIXA wherer = Qy andR € C*** is the upper-triangular matrix,
PROOF FORTHEOREM 1 AND COROLLARY 1A where furthermore botl@Q; and R result from the thin QR

In the following we begin by providing an upper boundjecomposition of thén + k) x k dimensional preprocessed

on the complexity exponent of MMSE-preprocessed (uncoﬂhannel matrix
strained) lattice sphere decoding, where this bound halds f
the general quasi-static MIMO channel, for all fading stits

and for any full-rate lattice code. We will then proceed to
provide a lower bound on the complexity exponent of thend where as before, = p%T

M

T

w2 o (e o

Q2



A. Upper bound on complexity of regularized lattice SD and note that for any < =z, then (60) andu ¢ T (y)
1j|?]intly imply that Nsp < p*, which in turn implies that

In establishing the upper bound, we consider Lemma z <P(N - q W th
[8], which we properly modify to account for MMSE prepro- (k¢ T(y)) < P(Nsp < p*) and consequently that

cessing and for the removal of the constellation boundaries  logP (Ngp > p%) . logP(peT(y))
and get that the numbeY,, of nodes visited at layek by the — — pll,n;o log p Z - )LH;O log p :
MMSE-preprocessed lattice sphere decoder, is upper bdunde (62)
as
. In evaluating the right hand side of (62) we note thdy) is a
i 2 closed set and thus, applying the large deviation prindigie
M= <TTVEE+ 5] 69 (ol we have that
1=1
. logP(neT )
whereo;(Ry), i = 1,--- , k denote the singular values B, — lim logP (1 € T(v)) > inf I(p) (63)
in increasing order. e log p HET ()
Towards lower bounding;(Ry), we note that for some rate functiod(u). Consequently from (62) and (63),
it follows that
oi(Rg) > 0i(R) = 0;(M"9) = /a2 + o;(MHM), (55) S T
(Re) ) ) ( ) Cim BPWNsp 200 e ). (64
p—r00 log p HET (y)

where the first inequality makes use of the interlacing prtype
of singular values of sub-matrices [43]. Furthermore for ~ This lower bound specified in (64) holds for amy < =x.

Consequently to get the tightest possible bound, we need

= 1 L j=1,--,nr (56) to find SUp, < infﬂeT(y).I(u). AS .infﬂeT(y) I(p) is non-
ogp decreasing and left-continuous s it follows that
andpy > -+ > i, we see thab;(He) = p~ 2/, and from sup inf I(p)= inf I(p).
(51) that y<z RET (y) KET (x)
0i(M) > pF 7 0in(G)o(y) (Ir @ Hp)) Consequently
. 1_:T logP (Ngsp > p”
=p2" % o) (He) — lim & (1 sp 2 ") > inf I(w), (65)
= p7;T+%(17U12T(i))’ (57) e 08P HeT (=)

which gives that
wherelr (i) £ [ %], and where the asymptotic equality is due _ n. _
to the fact that i, (G) = p°. Substituting from (57) in (55) cr-ta(r) < €r—1a(r) = inf{z| Melr%f(m) I(p) > dp(r)}
we now have that =sup{z| inf I(p)<d(r)}
"

AT Y G S (i )yt . €T (z)
oi(Ry) > pr T @) =1 (58) = max{z| 1171_1; )I(u) <dy(r)} (66)
pel (x

Corresponding to (54) we see that )
where the above follows from the aforementioned fact that

. log P(Nsp>p”® H -
[\/ﬁ—}- 28 ] gp(%*%(lfﬂlzw>>+)+, — pan;o % (and by extension alsf,,c7(,) I(p))
oi(Rk) is continuous and nondecreasingainand from the fact that
for anyi=1,---,2nsT, and from (54) we have that T (x) is a closed set. Consequently_;;(r) takes the form
= A
Nio(p) < p=ios (E=30=mgpo)*) " (59)  Cralr) T (672)
nr r +
wherep = (p1, - - , finy ). It follows that s.t. TZ ( - (1- /,Lj)+> >z, (67b)
° nr
K K J_l
Nsp(w) = Y Ne(w) £ Y- p>ims (F =500 )7 I() < du (1), (670)
k=1 k=1 H1 > > iy, > 0. (67d)

= 14 i <%_%(1_Hl2T(i))+)+ . . . .
Furthermore sincél (z) is a closed set, the maximum in

- pT >4 (#f(wm)* (60) (67) must be such that (67b) is satisfied with equality, incluhi

’ casec,_;4(r) can be obtained as the solution to a constrained
where the last asymptotic equality is due to the multiplicitmaximization problem according to
of the singular values.

nrt +
Now consider the set €r_14(r) = max TZ (r —(1- uj)+> (68a)
1 = nr
nr +
T@) 2| T (nr -(1 —uj)+> >z, (61) s.t. I(p) < dp(r), (68b)
j=1 3T p1 > > g > 0. (68c)



Equivalently for u* = (uj,---,u;,,.) being one of the with a probability that is Iarge compared to the probabitify

maximizing vector¥, i.e., such thap* € 7(z) andI(p*) = decoding erro® (sp #s) = p~%:("), which will prove that
dr(r), thenc,_;4(r) takes the form Cr—1a(1) = Crya(r).
np Going back to (69), we lef be the largest integer for which
. =T — —(1- . 69
Cr—a(r Z( 1) ) (69) nL_(l_M;)+>O7 (71)
T

As we will now show, the above bound is also shared by the \yhich case (69) takes the form
ML-based sphere decoder, with or without MMSE preprocess-

ing, irrespective of the full-rate code and the fading stas. B o (1 79
Directly from [8, Theorem 2], and taking into consideration Gr—1a(r) = Z nr ”J (72)
that MMSE-preprocessed lattice decoding is DMT optimal for =1

any code [13], we recall that the equivalent upper bound fg\r,e recall from (56) thaty; — _loga'jl(Hch), i o=

the ML-based sphere decoder, without MMSE preprocesswlg

takes the form -+, nr, and thatp* € T (z) satisfiesl(u(’)‘%p: dr(r) and

. maximizes (68a). We also note that without loss of gengralit
_ r r we can assume that > 1 as otherwiser,_;4(r) = 0 (cf.
Cmi(r) = max TZ min (nT — It ) (702) " (69y). Consequently it is the case thet > 0 forg(' i 1, ,q.
=t Furthermore given the monotonicity of the rate functidi),
st I(p) <dp(r), (70b)  and the fact that the objective function in (68) does notéase
1> > iy > 0. (70c) in u; beyondu; = 1, we may also assume without loss of
nerality thau; <1 forj=1,--- nr.
As in [8] we proceed to deflne two everils and(), which
we will prove to be jointly sufficient so that, at laykr= 2¢T,
the sphere decoder visits close #o—*(") nodes. These are

Comparing (68) and (70) we are able to conclude that bo?h
the objective functions (68a) and (70a) as well as both palr
of constraints are identical. To see this, we first note tbat f
0 <p; <1, then

given by
. r T + r + A * * .
min | ——14p;,, — | = — —14upu ), W ={p; —20<p;<p;—0,j=1,---,q
nr nr nr . (73)
, + , + 0<p; <6,j=q+1,---,nr},
(nT - (=) ) - (nT -1+ “J> : for a given smal > 0, and
and furthermore we note that far; > 1, then 0y {0, ((IT ® Vf)G|p) > ul, (74)

+ +

min (T — 1+, 7"> - (’" —(1—py) ) — " for some giveru > 0, where forp = nr — g thenGy, denotes
nr nr nr  the first2pT columns of G, and whereV, denotes the last

which proves that,,,;(r) and,_,q(r) are identical. 2p columns of V obtained by applying the singular value

In considering the case of MMSE-preprocessed Mf@€composition orHp, i.e., Hr = UXV™, where

SD, it is easy to see that the summands in the objec- a

tive function in (70a) will be modified to take the form % & diag{o1 (Hp), -+ 02nr (Hp)}

min (= — (1 — p;)* ,#) which can be seen to matchwith o1 (Hg) < --- < 03,,,(Hg) andVV# =1. Hence V//

(68a) for aIIMJ > 0, which in turn concludes the proof that thecorresponds to th@p largest singular values dfl . _

upper boundz, _;4(r) for MMSE-preprocessed lattice SD is Note also that by choosing sufficiently small, and using

also shared by the ML-based sphere decoder, with or withdbe fact thaty; > 0 for i = 1,---,¢, we may without loss
MMSE preprocessing, irrespective of the full-rate codej arPf generality assume that, implies thatu; > 0 for all j =
for all fade statistics represented by monotonic rate fonst 1, ,n7.

Modifying the approach in [8, Theorem 1] to account for
MMSE preprocessing and unconstrained decoding, the lower

bound on the number of nodes visited at laydry the sphere
We will here, under the extra assumptions of i.i.d. Rayleighecoder, is given by

fading statistics and of layered codes with natural deapdin

B. Lower bound on complexity of regularized lattice SD

order, provide a lower bound that matches the upper bound b *

in (69). The same bound and tightness will also apply to any Ny = H [\/Ea(Rk) n \/E} : (75)
full-rate code, under the assumption of a fixed, worst case =t ’

decoding ordering. In the following, and up until (81), we will work towards uppe

The goal here is to show that at layker= 24T, for some boundingo;(Ry) so that we can then lower bourid;.
q € [1,n7], the sphere decoder visits closefo-<(") nodes  Towards this let
1_rT
18|n general, (68) does not have a unique optimal point becéuse is ML | P HG\p c R2(rtnr)Tx2pT
constant ina for a < 0. p a;I,



contain the firs2pT columns of M9 from (53), and note
that

2rT

(M) HMTe9 = 1—*(; HHHG|p+aI

lp [p

and that from (48) we get

reg\ H reg __
(M\p) M\p -

p' TG (I @ HIHR)G), + oL
Since

0o, (HEHR) VT

HYHy = V(diag{o,(HEHp), - -
y O2np (HgHR)}
AV

= V(diag{o1 (H Hp), -
— 0(2q+1) (HgHR)dlag{Ov T 707 ]-7 e
2q 2p
+ U(2q+1)(HgHR)V(diag{07 e 7Oa ]-7 T 1})VH7
2q 2p

we have that

HHp = 02441 (HEHg)V(diag{0,--- ,0,1,--- , 1) V¥
N—_—— N —

2q 2p
= 0(2q+1)(HgHR)V(diag{Oa e 305 17 Tty 1})
2q
HvH

2p
(dlag{o 717"' 7]-
H/—’ N——

2q 2p

=0+ (HFHR)V, V]I

where the last equality follows from the fact the, contains
the last2p columns of V and whereA > B denotes that
A —B is positive-semidefinite. Sineg (H”H) € R and since
the Kronecker product induces singular value multiplicity
follows that
(M7eg)HM7eg

[p |p
2rT

~ 0(2g+1)HEHR)G{I (Ir © V, V]G, + /L

—

p-
With respect to the smallest singular vaIue(MTeg VA M‘T;g
we have

a1 (M) M) > p'™

2rT
Ip Ip e 0(2q+1)(HgHR) ’

o (G (Ir 9V, VI)G,) + a2

and consequently, given thif € Q5, we have that

re —rT
1 (M) > p~ %y Jupoty o) (HEH) + 1
ip—ij(l par)t

>p_7+ 5(1— 6)Jr (76)

where the first inequality follows from (74), the exponehtia

equality follows from (56) and from the fact that > 0 is
fixed and independent g, and the last inequality follows
from (73).

From (51) we have that

:T \/(1 + P(JK(G)leT( )(HC)) )
- 72’)’LTT7 (77)

o (M9) < p
p

+
S (=g (i) L i=1,--

where the asymptotic equality follows from the fact that
0+(G) is fixed and independent @f Furthermore (73) gives
that fori =1,---,2¢T then

. rT 11, * O\t
Gi(Mreg)Sp —+0+5(1 ;LZQT(”) ’

(78)
where we have made use of the fact thgt < 1 for j =
1’ ... 7nT_

Given thatu? > 0 for j = 1,---
small§ and fori =1, --

rl 1 rT 1
(1= >——4+6+-(1
+2( )T > H—i— +2(

,q, then for sufficiently
,2¢T, we have that

x +
- ILLZQT(’L)) ’

which means that for sufficiently smal| a comparison of (76)
and (78) yields

0 (M%) < 0y (M),

fori=1,---,2¢T. The above inequality allows us to apply
Lemma 3 in [8], which in turn gives that
Uﬁ(MTeg)
o (Ry) < : 1| o;(M"9), 79
( k) [ 1(1\/[‘7;9) ( ) ( )

fori=1,---,2¢T.
Settingi = x in (77) upper bounds the maximum singular
value of M"Y as

T

oW (M) < p= 30T < p3=5 - (80)

where the last inequality is due to the fact that > 0.
Consequently combining (80) and (76) gives that

0 (M) ~ 15
—— =+ 1| <
[ () TS
P
which together with (78) and (79) gives that
O'i(Rk) S P_%+%5+%(1_ﬂf2T<i))+v 1= 17 e aQqT (81)
Consequently, going back to (75), we have that
2 . rT +
—_— f] > pUE 8000 S 0 (82
|:faz(Rk) =7 ( )
and furthermore foi = 1,--- ,2¢7T, we have thatL — 25 —
11— /,L;;T(i))+ > 0 directly from definition ofg and for

sufficiently smalld. As a result, fork < 2¢T" we have that

NS ﬁ L= 35- 00 ) (83)
_ i (B (i ) ) =80 (84)
and settingk = 2¢7" we have that
Nogr > p(EH (5 =30ty ) ") =3aT5)  (gp)
= (T (=) ) =3aT5) (86)
. p(aT,ld(r)—:qué)’ (87)

where the last equality follows from (72). Consequently

Nsp > Nogp > ptrtalr) =343,

for small > 0. Given thaté can be chosen arbitrarily small,

and given that event®; and 2, occur, then the number of



nodes visited by the SD at layeyT is arbitrarily close to the
upper bound ofp® ("),
Now to show thatc,_;q(r) > €.—ja(r) — 3¢T0, we
P (NSD épﬁ,_zd(r)—SqTé)
<

just have to prove that lim
p—r00 lo

dp(r). Toward this we note that as (73)
Ngp > ptr—1a(r)=34T9 it follows that

P (Nsp 2 pfr-te(7470) > P (01 0103) = P () P ()

where the equality follows from the i.i.d. Rayleigh assuimpt

and directly from the definition of the complexity exponent,
we have that,_;4(r) > ¢,._14(r) —3¢T'd. As the bound holds
for arbitrarily smally > 0, it follows thatc,—;4(r) = €.—1q(r).
Directly from [8, Theorem 4] which analyzes the ML-based
complexity exponent,,;(r), together with the fact that the

%ﬁd (74) imply thAYIL—based sphere decoder, with or without MMSE prepro-

cessing, shares the same upper bognd,(r) as the MMSE-
preprocessed lattice decoder, gives thai(r) = ¢,._;q(r),
which in turns implies that

cr—1a(r) = cpu(r).

on the entries inH¢, which makes the singular values ofrpis establishes Theorem 1 and Corollary Ta.

HZH¢ independent of the singular vectors HY He [44],

and which in turn also implies independence of the singular

values of HZH¢ (event ;) from the singular vectors of
HZHp (eventQy).

We now turn to [8, Lemma 2] and recall that for the layere

APPENDIXB
PROOF FORCOROLLARIES 1B AND 1C
Section A-A shows that,._;;(r) can be obtained as the
golution to the constrained maximization problem

codes assumed here, as well as for any full-rate design and

some non-random fixed decoding ordering (corresponding to a
permutation of the columns @), there exists a unitary matrix

V., such thatremk((IT ® (V;,’)H)G‘p) = 2pT i.e., that

o1 ((IT ® (\g,’)H)G‘,,) > 0.

However, by continuity of singular values [43] it followsrfo
sufficiently smallu > 0 (cf.(74)) thatP (€2) > 0, which
implies'” that P (€2,) = p° as(2, is independent of. This in
turn implies that

P (Nsp 2 pfrte)=4T8) 2 p(q). (88)
With Q; being an open set, we have that
. P(Q) .
-1 < f I
pLH;O lng - /_Llélﬂl (H '
q
= Y (Inr —nr| +2j - 1) - 20),
j=1
= dp(r) = 2(In7 — nr|+ q)¢d,
< dL(T')’ (89)

where the above follows from the monotonicity of the rate

function

nr

I(p) = (ng —nr +2j = D,

j=1
evaluated at

{7 =26,y —26,0,---,0} = arg inf I(p),

HEN

and also follows from the fact that, by definitiofi(u*)

dL (T‘)
Consequently from (88) we have that

P (NSD > pf“ld(”’i)’q”)
log p

— lim
p—00

< dr(r), (90)

In light of the fact that evenIv; has zero measure, what the continuity]c

of eigenvalues guarantees is that we can construct a netybdmb of matrices

nrp r +
Cr—14(7) émﬁlx Ty ( -(1- Mj)+)
=1

nr
st I(p) <dg(r),
M1 Z"'Z/MLT ZO

(91a)
(91hb)

In some cases though, further knowledge of the error perfor-
mance of the encoder and decoder, can result in an explicit
characterization of the complexity exponent. Take foranse

the case of DMT optimal encoding [22], [23] and DMT op-
timal MMSE-preprocessed lattice decoding [11], [13], wher
the constraintl (u) < dr(r) in (91a) reverts to the constraint
S (1 = py)™ > (cf. [13]), which may be recognized
to correspond to the no-outage region (cf. [9]). In this case
¢,—14(r) can then be explicitly obtained from the optimization
problem

nr +
Cro1a(r) = m&x TZ (7‘ —(1- Mj)+> (92a)
j=1

nr
nr
sty (L—p)t>r (92b)
j=1
Pl > eeee 2 g > 0, (92¢)

which can be solved in a straightforward manner to give that

& alr) = % (r(nr — |r] = 1) + (ng [r] — r(ng — D)),

describing the upper bound on the complexity exponent for
MMSE-preprocessed lattice sphere decoding of DMT optimal
full-rate codes, which for minimum delayx{ = 7)) DMT
optimal full-rate codes takes the form

Cr1a(r) =r(nr — |r] = 1) + (ng |r] —r(ny — 1)),
(93)

and which further simplifies to
Crya(r) =r(np — 1),

or integer multiplexing gains = 0,1, - - - , ny. In conjunction

around\@/ which are full rank, and which have a non zero measure. We al¥¥ith the lower bound in Section A-B, under the conditions lay
note that the matrice%/ can be created recursively, starting from a singl€red codes in Corollary 1b, we have that ;(r) = ¢, _;4(r),

o
matrix V, ..

which proves Corollary 1b]



Moving on to the universal upper bound, we can see froend since the left hand side of (100) cannot be negative, and

(68) that, regardless of the fading statistics and the spoed-
ing I(p), the exponent,_;4(r) is non-decreasing iy, (r)
and is hence maximized wheh, (r) is itself maximized, i.e.,

furthermore given that is independent of, we conclude that
c< pb.
We will now proceed to lower boundy — M, 5| +

it is maximized in the presence of DMT optimal encoding? ||5]|> and then use (100) to Iower boudrf R,3|.
and decoding. Combined with the fact that the correspondlrrgwards lower boundindly — M,.8|> + o2 ||3]|* we draw

maximization problem in (92) does not depend on the fadifgbm Theorem 1 in [13] and we |8 be the spherical region
distribution, other than the natural fact that its tail musjiven by

vanish exponentially fast, results in the fact that, for &
rate code and statistical characterization of the charthel,

B{d e R ||d||* <T?%}

complexity of MMSE-preprocessed lattice SD is universallwhere the radiug® > 0 is independent op and is chosen so

upper bounded as (cf. [8])

L (rr—r) - 1) + (0

nr
This proves Corollary 1d.]

T L’IJ — r(nT — 1))+) . (94)

APPENDIXC
PROOF FORLEMMA 1

For RER, = MEM, + 21 (cf. (13))'8, it follows by

the bounded orthogonality defect of LLL reduced bases that

there is a constanf(, > 0 independent ofR, and p, for
which (cf. [17] and the proof in [45])

~ K
-1 < K
e (Br1) < e (95)
where
AR,)2 min ||R,c| (96)

c€Zx\0

denotes the shortest vector in the lattice generateR hyAs
a result we have that

Umin(Rr) 2 (RT) .

Ky

Looking to lower bounda,,m(f{r), we seek a bound on
A(R,). Towards this let”’ = r — v for somer > ~ > 0,

(97)

thatd; +ds € R for anyd,,d, € B. The existence of the set
BB follows by the assumption th&tis contained in the interior
of R. Now let

A

1
S LIVl

min

Uyt
T
dep = BNZ~:d#0

and for giveny > ¢ > 0 chooseb > 0 such that

20T
L>b>0
K

This may clearly be done for arbitracy> 0. We will in the
following temporanly assume that. . > 1 and prove that,
together W|th||w|| < p®, the two conditions are sufficient for
AR, )>p = to hold.

In order to bound the metric f&¢ L where§ # s, we
'+OT

note thatv,.;¢ > 1 implies thatvd € p~ = BNZ*,d#0
it is the case that
1 2
> HMT’Jer” > 1
o 2
1 1T 20T
ot mcal =

where (a) follows from the fact thatM, = p2~ % HG.

in which case fors being the transmitted symbol vector, a“‘tonsequently

for any § € Z* such thats # s, it follows that

[r—Rp8| = [l(r—Rys)+Rp(s—8)
< [t =Rps)[[+[Rw(s—8)|| (98)
and
[Ri(s=8) = [r—Ru8|—|(r—Rys)
= fr— R3] |w]. (99)

From (99) it is clear that to find a lower bound ofR,.),

we need to lower bounflr — R,/ §|| for all § € Z" and upper
bound||w||. Let us, for now, assume thgiv||> < p°. To lower
bound||r —
preprocessing and the regularized metric (cf. equatioh i(#5
[13]), and rewrite

y = M8|* + a2 |I3]* - (100)

wherec 2y [I — MEZ(MEM,, + o21)"'M,.]Jy > 0. We
now note that fors = s then [ly — M,s||* + a2 [ls|* < ",

e~ R8)2 = |

18Note the transition to the notation reflecting the dependesidR. on .

R,§||, we draw from the equivalence of MMSE

r'+OT

, Vdep =

||1v1 d|? > p5 BNZ<,d+#0. (101)

As R is bounded, and a$ > 0, it holds thatR %p%b’

for all p > p1, for a sufficiently Iargep1 This implies that
+C)

sG%p Bforp>pls|ncesep~72.

Fors,d € %p“ 9T B 7~ there exists a8 € p =" BN
7", 8 # s, such thag = d+s. Hence for any € p( BN
7", we have from (101) that

1 R 1 scr
1Mo (8= 9)|* = L [IMd|® > p7. (102)

As ||w]*> < pb, it follows that X ||Mr,d|| > ||w||* for large
p, and that

A2 A 2 T
M8 = | M, (s - 8) + ] > p™".

ly — (103)

Consequently

ly — Mo8|° + a2 (8> > p™ . (104)



(r’+<>T

On the other hand i§ ¢ p B, then by definition of3 APPENDIXD
we have that?, |8]|* > 1F2 , and consequently that PROOF FORLEMMA 2
For a search radius that grows &s= /=1 = p% we
ly = M8 + a2 87 = TT2*. (105) grows @s= vzlogp = p

4 first prove that

From (104) and (105) we then conclude that Z SR
(109) and (105 P(Iw'I?>€) <

for z > 2’ > dp(r). Towards establishing the properties of
Given (104) and (106), for any e /s such thats # s, it is  the equivalent noisev  (cf. (43)), we consider an equivalent

N A o XT
ly = M,8]* + o2 [8]|* = o™+ (106)

the case thaty — M, §|° +a? |18 12 >p =, which combined representation of the MMSE-preprocessed lattice decautir a
with ¢ < p? allows for (100) to give that let (cf. [46])
~ 2T
Ir = R8> p % (107) Qr = | Y = | M | crimnxs (111)
QQ arI
Applying (96) and (99), we have . N . .
pplying (96) (99) be the thin QR factorization of the modified channel matrix,
ARy) > fr—R.8| — ||wl whereQ; = R™'M € R"*, Qs = o, R™! € R*** and
S L e whereRR = M#M + o?1. It then follows that forF =
- pg P Qlf, the MMSE-preprocessed lattice decoder is equivalent to
= pr (108)  Jattice decoding in the presence of chanRelnd noise
where thekexpotnher;tial inequality follows from (107). Ferth w o = —a?R s + R-IMw
more we know tha
. L —0, Qs + Qf'w. (112)
AR) =p = ARy)Zp v (109)

Consequently we calculate
wheree = v —(, r > ¢ > 0, and from (97) and (109) it

follows thato,,in (R,) > p = . I (||Wl|| > f)
W2e nowbnote that the~abqve£plles that fgr . > .1 and < P(| - Qs + QW] > ¢)
[w]® < p® then o, (R,) > p =, and thus applying the @ 0 w
union bound yields = P ( —a, Q" { < ] I+ Q" { 0 ] | > 5)

P (omin(Re) <p7) = P ((vrac < DU (WP > p")

P (e <1)+P (||w||2 > pb> .
We know from the exponential tail of the Gaussian distribu-

tion thatP (HwH2 > pb) = p~> and from Lemma 1 in [13] =

that P (v ¢ < 1) < p~@mr'+0 Hence © (

< P </€(|IW| + sup | = ausll) > E)
sESE

= Plwll+rK>¢)

IN

P (&|lw] > ( zlogp)% *KK)

rllw| > (2110g p)* )
—eT

p (O-nbin(f{r) < pr ) ép_dML(T—E) _

forall » > ¢ > 0. (d)

= P(|lw]]?> zlo
The association with the singular values ) 7(” ” 2 gp)
= p = (113)

P (lwl* > = log p)

c1(Rrp) <--- <o f{T .
1(Rei) t(Bre) where (a) follows from the MMSE-preprocessed equivalent

is made using the interlacing property of singular values channel representation (cf. (111)), and where the inetipsli
sub-matrices, which gives that in (b), (¢) and(d) follow for some fixedK that upper bounds
Supgcsr || — ars||, and for some arbitrary,, z, satisfying
z >z > 2z > 0 independent of. Consequently

and fork =1,--- ,k, that P (HWHH - 5) _p (IIQHW/H - 5) <

for some0 < 2’ < 2, and as a result

oi(Ryp) > 0y(Ry), i<k=1,--- K, (110)
P (Umin(f{r )< p = )<p dur(r—e)
Finally from the DMT optimality of the exact implementation

of the regularized lattice decoder [11], [13], we have that i P (”W > 5)

P (Umin(f{r ) < p = ) <p—(iL(T‘ €) - -
where the last equality follows after choosing the seardiusa
This proves Lemma [ such thatz > 2z’ > d(r). This proves Lemma 2

"~ Jim plde(N=2) =g,
pP—r 00 P (éT—ld # S) pP—>00 P
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