1

Indian Institute of Technology Jodhpur, Year 2018‐2019

Digital Logic and Design (Course Code: EE222) **Lecture 20‐21: Counters contd….**

Course Instructor: Shree Prakash Tiwari

Email: sptiwari@iitj.ac.in

Webpage: http://home.iitj.ac.in/~sptiwari/ **Course related documents will be uploaded on http://home.iitj.ac.in/~sptiwari/DLD/**

Note: The information provided in the slides are taken form text books Digital Electronics (including Mano & Ciletti), and various other resources from internet, for **teaching/academic use only**

Counters Overview

- ° **Counters are important components in computers**
	- **The increment or decrement by one in response to input**
- ° **Two main types of counters**
	- **Ripple (asynchronous) counters**
	- **Synchronous counters**
- ° **Ripple counters**
	- **Flip flop output serves as a source for triggering other flip flops**
- ° **Synchronous counters**
	- All flip flops triggered by a clock signal
- ° **Synchronous counters are more widely used in industry.**

Counters

- **Asynchronous counters: the flip-flops do not change states at exactly the same time as they do not have a common clock pulse.**
- **Known as ripple counters, as the input clock pulse "ripples" through the counter – cumulative delay is a drawback.**
- *n* flip-flops \rightarrow a MOD (modulus) 2^{*n*} counter. (Note: **A MOD-***x* **counter cycles through** *x* **states.)**
- **Output of the last flip-flop (MSB) divides the input clock frequency by the MOD number of the counter, hence a counter is also a** *frequency divider***.**

Counters

- ° **Counter: A register that goes through a prescribed series of states**
- ° **Binary counter**
	- **Counter that follows a binary sequence**
	- **N bit binary counter counts in binary from n to 2n-1**

° **Ripple counters triggered by initial Count signal**

° **Applications:**

- **Watches**
- **Clocks**
- **Alarms**
- **Web browser refresh**

Asynchronous Counters

- ° **Each FF output drives the CLK input of the next FF.**
- ° **FFs do not change states in exact synchronism with the applied clock pulses with the applied clock pulses.**
- ° *There is delay between the responses of successive FFs.*
- ° *Ripple counter* **due to the way the FFs respond one after another in a kind of rippling effect.**

Binary Ripple Counters with T and D-FF

 \Box A_0 A_0 Count $\varepsilon_{\rm R}$ Count ° **Reset signal sets all outputs to 0** \sqrt{D} $A₁$ A_1 ° **Count signal toggles output of low-order flip flop** ° **Low-order flip flop provides** $\sqrt{2}$ $A₂$ $A₂$ **trigger for adjacent flip flop** ° **Not all flops change value simultaneously** • Lower-order flops change first \sqrt{D} $A₃$ A_3 ° **Focus on D flip flop implementation**Logic-1 Reset Reset (a) With T flip-flops (b) With D flip-flops

Asynchronous Counters

- **Example: 2-bit ripple binary counter.**
- **Output of one flip-flop is connected to the clock input of the next more-significant flip-flop.**

Asynchronous Counters

Example: 3-bit ripple binary counter.

Asynchronous Counters

- **Propagation delays in an asynchronous (rippleclocked) binary counter.**
- **If the accumulated delay is greater than the clock If the accumulated delay is greater than the pulse, some counter states may be misrepresented!**

Asynchronous Counters

Example: 4-bit ripple binary counter (negative-edge triggered).

Asynchronous Counters with MOD no. < 2n

- **States may be skipped resulting in a truncated sequence.**
- **Technique: force counter to** *recycle before going**through all of the states* **in the binary sequence.**
- **Example: Given the following circuit, determine the counting sequence (and hence the modulus no.)**

Asynchronous Counters with MOD no. < 2n

Example (cont'd):

Asynchronous Counters with MOD no. < 2n

Example (cont'd): Counting sequence of circuit (in CBA order).

Asynchronous Counters with MOD no. < 2n

- *Exercise:* **How to construct an asynchronous MOD-5 counter? MOD-7 counter? MOD-12 counter?**
- **E** Question: The following is a MOD-? counter?

Asynchronous Counters with MOD no. < 2n

- **Decade counters (or BCD counters) are counters with 10 states (modulus-10) in their sequence.** They are commonly used in daily life (e.g.: utility **meters, odometers, etc.).**
- **Design an asynchronous decade counter.**

Asynchronous Counters with MOD no. < 2n

^D **HIGH** *^J ^Q ^J ^Q ^C ^J ^Q ^B ^J ^Q ^A* **(***A C***)***' A.C* **CLK** *C C C C K K K K CLR CLR CLR CLR* **1 2 3 4 5 6 7 8 9 10 11 Clock** *D* **0 1 0 1 0 1 0 1 0 1 0 C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0** *B* **0 0 0 1 0 0 0 1 1 1** *A* **0 0 0 0 0 0 0 0 1 1 0NAND** V **output**

Asynchronous decade/BCD counter (cont'd).

8

Asynchronous Down Counters

- **So far we are dealing with** *up counters***.** *Down counters***, on the other hand, count downward** from a maximum value to zero, and repeat.
- **Example: A 3-bit binary (MOD-2³) down counter.**

Asynchronous Down Counters

Example: A 3-bit binary (MOD-8) down counter.

Cascading Asynchronous Counters

- **Larger asynchronous (ripple) counter can be constructed by cascading smaller ripple counters.**
- **Connect last Connect last-stage output of one counter to the stage output of one counter to clock input of next counter so as to achieve higher-modulus operation.**
- **Example: A modulus-32 ripple counter constructed from a modulus-4 counter and a modulus-8 counter.**

Cascading Asynchronous Counters

Example: A 6-bit binary counter (counts from 0 to 63) constructed from two 3-bit counters.

Cascading Asynchronous Counters

- **If counter is a not a binary counter, requires additional output.**
- **Example: A modulus-100 counter using two decade counters.**

Synchronous counters

- ° **Synchronous(parallel) counters**
	- **All of the FFs are triggered simultaneously by the clock input pulses.**
	- **All FFs change at same time**
- ° **Remember**
	- **If J=K=0, flop maintains value**
	- **If J=K=1, flop toggles**
- ° **Most counters are synchronous in computer systems.**
- ° **Can also be made from D flops**
- ° **Value increments on positive edge**

Fig. 6-12 4-Bit Synchronous Binary Counter

Synchronous (parallel) counters

- **Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse.**
- **We can design these counters using the sequential logic design process (will be covered in coming Lectures).**
- **Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).**

Synchronous (Parallel) Counters

Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Synchronous (Parallel) Counters

Example: 3-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J, K inputs).

Synchronous (Parallel) Counters

Example: 3-bit synchronous binary counter (cont'd).

 $TA_2 = A_1.A_0$ $TA_1 = A_0 TA_0 = 1$

Synchronous (Parallel) Counters

Note that in a binary counter, the nth bit (shown underlined) is always complemented whenever 011…11 → 100…00 or $111...11 → 000...00$ **Hence,** X_n **is complemented whenever**
 $X_{n-1}X_{n-2}$ \dots $X_1X_0 = 11...11$. **As a result, if T flip-flops are used, then** $TX_n = X_{n-1} \cdot X_{n-2} \cdot ... \cdot X_1 \cdot X_0$

Synchronous (Parallel) Counters

Example: 4-bit synchronous binary counter.

 $TA_3 = A_2 \cdot A_1 \cdot A_0$ $TA_2 = A_1 \cdot A_0$ $TA_1 = A_0$ $TA_0 = 1$

Synchronous (Parallel) Counters

Example: Synchronous decade/BCD counter.

Synchronous (Parallel) Counters

Example: Synchronous decade/BCD counter (cont'd).

Synchronous UP/Down counters

- ° **Up/Down Counter can either count up or down on each clock cycle**
- ° **Up counter counts from 0000 to 1111 and then changes back to 0000**
- ° **Down counter counts from 1111 to 0000 and then back to 1111**
- ° **Counter counts up or down each clock cycle each clock**
- ° **Output changes occur on clock rising edge**

Fig. 6-13 4-Bit Up-Down Binary Counter

Up/Down Synchronous Counters

- **Up/down synchronous counter: a** *bidirectional* counter that is capable of counting either up or
down.
- **4 An input (control) line** *Up***/***Down* **(or simply** *Up***) specifies the direction of counting.**

*Up***/***Down* **= 1 Count upward**

*Up***/***Down* **= 0 Count downward**

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter.

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter (cont'd).

Designing

Up/Down Synchronous Counters

3-bit Gray code counter: flip-flop inputs.

Up/Down Synchronous Counters

3-bit Gray code counter: logic diagram.

 $JQ_2 = Q_1 \cdot Q_0'$ $JQ_1 = Q_2' \cdot Q_0$ $JQ_0 = (Q_2 \oplus Q_1)'$ $KQ_2 = Q_1' \cdot Q_0'$ $KQ_1 = Q_2 \cdot Q_0$ $KQ_0 = Q_2 \oplus Q_1$

Counters with Parallel Load

Fig. 6-14 4-Bit Binary Counter with Parallel Load

Counters with Parallel Load

Fig. 6-14 4-Bit Binary Counter with Parallel Load

Binary Counter with Parallel Load and Preset

• **Commercial version of binary counter**

Summary

- ° **Binary counters can be ripple or synchronous**
- ° **Ripple counters use flip flop outputs as flop triggers**
	- **Some delay before all flops settle on a final value**
	- **Do no require a clock signal**
- ° **Synchronous counters are controlled by a clock**
	- **All flip flops change at the same time**
- ° **Up/Down counters can either increment or decrement a stored binary value**
	- **Control signal determines if counter counts up or down**
- ° **Counters with parallel load can be set to a known value before counting begins.**