
4/1/2019

1

Digital Logic and Design
(Course Code: EE222)

Lecture 25‐26: Sequential Circuits Contd..

Indian Institute of Technology Jodhpur, Year 2018‐2019

Course Instructor: Shree Prakash
Tiwari

Email: sptiwari@iitj.ac.in

b h //h / /Webpage: http://home.iitj.ac.in/~sptiwari/

Course related documents will be uploaded on
http://home.iitj.ac.in/~sptiwari/DLD/

1

Note: The information provided in the slides are taken form text books Digital Electronics
(including Mano & Ciletti), and various other resources from internet, for teaching/academic
use only

State Assignment Problem

 Some state assignments are better than others.

 The state assignment influences the complexity of The state assignment influences the complexity of
the state machine.

 The combinational logic required in the state
machine design is dependent on the state
assignment.

Types of state assignment Types of state assignment
 Binary encoding: 2N states → N Flip-Flops

 Gray-code encoding: 2N states → N Flip-Flops

 One-hot encoding: N states → N Flip-
Flops

4/1/2019

2

FSM: State Assignment

Example:

Design a FSM that detects a sequence of two or more
consecutive ones on an input bit stream.

The FSM should output a 1 when the sequence is
d t t d d 0 th idetected, and a 0 otherwise.

This is another example of a sequence detector.

FSM: State Assignment

Input: 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 …

Output: 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 …

4/1/2019

3

FSM: State Assignment

Reset

State

B z 0 = A z 0 = w 0 =

w 1 =

w 0 =

w 0 = w 1 =

S0 / 0 S1 / 0

State
Diagram

C z = 1

w 1 =

S2 / 1

FSM: State Assignment

Present State Next State Output

w = 0 w = 1

S0 S0 S1 0

S1 S0 S2 0

S2 S0 S2 1

State Table

4/1/2019

4

FSM: State Assignment #1

State Assigned Table

Present State Next State Output

w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ z

S0 0 0 S0 0 0 S1 0 1 0

S1 0 1 S0 0 0 S2 1 0 0

S2 1 0 S0 0 0 S2 1 0 1

1 1 d d d d d1 1 d d d d d

Using Binary Encoding
for the State Assignment

FSM: State Assignment #1

State Assigned Table

Present State Next State FF Inputs

w = 0 w = 1 w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ DA DB DA DB

S0 0 0 0 0 0 1 0 0 0 1

S1 0 1 0 0 1 0 0 0 1 0

S2 1 0 0 0 1 0 0 0 1 0

1 1 d d d d d d d d

Characteristic Equation: D = Q+

4/1/2019

5

FSM: State Assignment #1

FSM: State Assignment #1

K-Map and Boolean expression for z

4/1/2019

6

FSM: State Assignment #1

D Q

Q

Y 2

Y

z
y 2

A
zDA = w.(QA + QB)

z = QA

D Q

Q

Y 1
w

Clock

y 1

Resetn

B
w

DB = w.QA'.QB'

FSM: State Assignment #2

State Assigned Table

Present State Next State Output

w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ z

S0 0 0 S0 0 0 S1 0 1 0

S1 0 1 S0 0 0 S2 1 1 0

S2 1 1 S0 0 0 S2 1 1 1

1 0 d d d d d1 0 d d d d d

Using Gray-code Encoding
for the State Assignment

4/1/2019

7

FSM: State Assignment #2

State Assigned Table

Present State Next State FF Inputs

w = 0 w = 1 w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ DA DB DA DB

S0 0 0 0 0 0 1 0 0 0 1

S1 0 1 0 0 1 1 0 0 1 1

S2 1 1 0 0 1 1 0 0 1 1

1 0 d d d d d d d d

Characteristic Equation: D = Q+

FSM: State Assignment #2

K-Map and Boolean expression for DA, DB and z

4/1/2019

8

FSM: State Assignment #2

D Q
Y 2

z
y 2

D = w Q zQ

Q

D Q
Y 1

w
y 1

A

B

DA = w.QB

DB = w

z = QA

Q Clock

Resetn

B

FSM: State Assignment #3

State Assigned Table

Present State Next State

w = 0 w = 1

QA QB QC
QA

+ QB
+ QC

+ QA
+ QB

+ QC
+

S0 0 0 1 S0 0 0 1 S1 0 1 0

S1 0 1 0 S0 0 0 1 S2 1 0 0

S2 1 0 0 S0 0 0 1 S2 1 0 0

Using One-hot Encoding
for the State Assignment

For each state only one flip-flop is set to 1.
The remaining combination of state variables are not used.

Characteristic Equation: D = Q+

4/1/2019

9

FSM: State Assignment #3

FSM: State Assignment #3

D Q

Q

DA = w.QC' z

z = QA

A

D Q

Q
B

DB = w.QC

Reset

D Q

Q Clock
C

DC = w.' w

4/1/2019

10

Finite State Machines: Other Examples

° Example: Edge Detector

Bit are received one at a time (one per cycle),

such as: 000111010 timesuch as: 000111010 time

Design a circuit that asserts

its output for one cycle when

FSM

CLK

IN OUT

the input bit stream changes

from 0 to 1.

Try two different solutions.

State Transition Diagram Solution A

ZERO
OUT=0

IN=0

IN=0

IN PS NS OUT
OUT 0

CHANGE
OUT=1

IN=1

IN=1 IN=0

0 00 00 0
1 00 01 0
0 01 00 1
1 01 11 1
0 11 00 0
1 11 11 0

ZERO

CHANGE

ONE

ONE
OUT=0

IN=1

IN=1

4/1/2019

11

Solution A, circuit derivation

IN PS NS OUT
0 00 00 0
1 00 01 0
0 01 00 1

ZERO

 00 01 11 10

0 0 0 0 -
1 0 1 1 -

PS

IN NS
1
= IN PS

0

FF
NS1

PS
1

0 01 00 1
1 01 11 1
0 11 00 0
1 11 11 0

CHANGE

ONE

 00 01 11 10

0 0 0 0 -
1 1 1 1 -

PS

IN

 00 01 11 10

0 1 0

PS

NS0= IN

FF

OUT

IN
NS0 PS0

0 0 1 0 -
1 0 1 0 -

IN OUT= PS1 PS0

Solution B

Output depends non only on PS but also on input, IN

IN=0
OUT=0

IN PS NS OUT
0 0 0 0

Let ZERO=0,
ONE=1

ZERO

ONE

IN=0
OUT=0

IN=1
OUT=1

FF
NS PS

IN

0 1 0 0
1 0 1 1
1 1 1 0

ONE=1

NS = IN, OUT = IN PS’

IN=1
OUT=0

FF

OUT

IN

What’s the intuition about this solution?

4/1/2019

12

Edge detector timing diagrams

CLK

OUT (solution A)

IN

OUT (solution B)

° S l ti A t t f ll th l k° Solution A: output follows the clock

° Solution B: output changes with input rising edge and
is asynchronous wrt the clock.

FSM Comparison

Solution A

Moore Machine

° output function only of PS

Solution B

Mealy Machine

° output function of both PS &
input

° maybe more state

° synchronous outputs
• no glitching

• one cycle “delay”

• full cycle of stable output

° maybe fewer states

° asynchronous outputs
• if input glitches, so does output

• output immediately available

• output may not be stable long
enough to be useful:

CLK

IN

OUT CL

CLK

OUT

4/1/2019

13

FSM Recap

Moore Machine Mealy Machine

STATE

input value input value/output values

S
[output values] STATE

Both machine types allow one-hot implementations.

What next……

° Sequential Circuits contd…

4/1/2019

14

Overview

° Important to minimize the size of digital circuitry

° Analysis of state machines leads to a state table (or
diagram)

° In many cases reducing the number of states reduces
the number of gates and flops

• This is not true 100% of the time

° We attempt state reduction by examining the state table

° Other, more advanced approaches, possible

° R d i th b f t t ll d° Reducing the number of states generally reduces
complexity.

FSM Optimization

° State Reduction:
Motivation:

lower cost

f fli fl i

° Example: Odd parity checker

0
- fewer flip-flops in one-

hot implementations

- possibly fewer flip-
flops in encoded
implementations

- more don’t cares in
next state logic

- fewer gates in next
state logic

S0
[0]

S1
[1]

1

11

0

S0
[0]

0

11

Moore machine

state logic

Simpler to design with
extra states then reduce
later.

S2
[0]

0

S1
[1]

0

4/1/2019

15

State Reduction

° “Row Matching” is based on the state-transition table:

• If two states
• have the same output and both transition to the same next state

• or both transition to each other

• or both self-loop

• then they are equivalent.

• Combine the equivalent states into a new renamed state.

• Repeat until no more states are combined

NS output

State Transition Table

NS output
PS x=0 x=1
S0 S0 S1 0
S1 S1 S2 1
S2 S2 S1 0

FSM Optimization

° Merge state S2 into S0

° Eliminate S2

° New state machine

° Example: Odd parity
checker.

New state machine
shows same I/O
behavior S0

[0]

S1
[1]

0

1

11

0

S0
[0]

0

11

NS output
PS x=0 x=1
S0 S0 S1 0

State Transition Table

S2
[0]

11

0

S1
[1]

1

0

1S0 S0 S1 0
S1 S1 S0 1

4/1/2019

16

Row Matching Example

NS output
PS x=0 x=1 x=0 x=1
a a b 0 0

State Transition Table

b c d 0 0
c a d 0 0
d e f 0 1
e a f 0 1
f g f 0 1
g a f 0 1

Row Matching Example

NS output
PS x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0

Reduced State Transition Diagram

c a d 0 0
d e f 0 1
e a f 0 1
f e f 0 1

NS output
PS x=0 x=1 x=0 x=1

b 0 0a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

4/1/2019

17

State Reduction

° The “row matching” method is not guaranteed to
result in the optimal solution in all cases, because
it only looks at pairs of states.

° Another method guarantees
the optimal solution:

° “Implication table” method:

Read Mano, chapter 9.

Submit one page as assignment

Encoding State Variables

° Option 1: Binary values

° 000, 001, 010, 011, 100 …

° Option 2: Gray codep y

° 000, 001, 011, 010, 110 …

° Option 3: One hot encoding

° One bit for every state

° Only one bit is a one at a given time

° For a 5-state machine

° 00001, 00010, 00100, 01000, 10000

4/1/2019

18

Summary

° Important to create smallest possible FSMs

° This course: use visual inspection method

° Oft ibl t d l i d fli fl° Often possible to reduce logic and flip flops

° State encoding is important

