4/1/2019

Indian Institute of Technology Jodhpur, Year 2018-2019

Digital Logic and Design
(Course Code: EE222)
Lecture 25-26: Sequential Circuits Contd..

Course Instructor: Shree Prakash
Tiwari
Email: sptiwari@iitj.ac.in

Course related documents will be uploaded on
http://home.iitj.ac.in/~sptiwari/DLD/

Note: The information provided in the slides are taken form text books Digital Electronics
(including Mano & Ciletti), and various other resources from internet, for teaching/academic

use only 1

State Assignment Problem

. Some state assignments are better than others.
- The state assignment influences the complexity of
the state machine.

- The combinational logic required in the state
machine design is dependent on the state
assignment.

. Types of state assignment

- Binary encoding: 2N states — N Flip-Flops

- Gray-code encoding: 2N states — N Flip-Flops

- One-hot encoding: N states — N Flip-
Flops

4/1/2019

FSM: State Assignment

Example:

Design a FSM that detects a sequence of two or more
consecutive ones on an input bit stream.

The FSM should output a 1 when the sequence is
detected, and a 0 otherwise.

‘ This is another example of a sequence detector.‘

FSM: State Assignment

Input: 011101011011101 ...
Output: 001100001001100...

FSM: State Assignment

State
Diagram
FSM: State Assignment
Present State Next State Output
w=0 w=1
S, S, S, 0
1 SO SZ 0
S, S, S, 1

State Table

4/1/2019

FSM: State Assignment #1

State Assigned Table

Present State Next State Output
w=0 w=1
L [l] [ofo] [owjo] 2 |
S, S, 0 0 S, 0 1 0
S, 0 1 S, 0 0 S, 1 0 0
S, 1 0 S, 0 0 S, 1 0 1
1 1 d d d d d

Using Binary Encoding
for the State Assignment

FSM: State Assignment #1

State Assigned Table
Present State Next State FF Inputs
w=0 w=1 w=0 w=1
| e || [[| [Da] D | D] D]
S, 0 0 0 0 0 1 0 0 0 1
1 1 0 0 1 0 0 0 1 0
) 1 0 0 0 1 0 0 0 1 0
1 1 d d d d d d d d

Characteristic Equation: D = Q*

4/1/2019

4/1/2019

FSM: State Assignment #1

A Qe Vs 8 Qs ig
u\ w o U Lo w oo ol u
ololo|d]| o ol 0| 0 ‘ d| o
Ao Ao ldlo]|
Dﬁ= (ng QG{" NAQR -DG = W aﬁ‘a;

Da= W (Qa* Qs)

FSM: State Assignment #1

z
~_o |

an 0 m

|O\0‘

: - Q,

K-Map and Boolean expression for z

FSM: State Assignment #1

L

D,=W.(Q,+ Qp) D Q z
A
> Q zZ= QA
7
w } D Q
Dy =W.Q,'.Qg' 9 B 5 _|
Clock
Resetn
FSM: State Assignment #2
State Assigned Table
Present State Next State Output
w=0 w=1
[Tola] Jorfa] Jo o]
S, S, 0 0 S, 0 1 0
S, 0 1 S, 0 0 S, 1 1 0
S, 1 1 S, 0 0 S, 1 1 1
1 0 d d d d d

Using Gray-code Encoding
for the State Assignment

4/1/2019

4/1/2019

FSM: State Assignment #2

State Assigned Table

Present State Next State FF Inputs
w=0 w=1 w=0 w=1
| | | Q% | | Q| |Q | D] Ds| Dy D
S, 0 0 0 0 0 1 0 0 0 1
S, 1 0 0 1 1 0 0 1 1
S, 1 1 0 0 1 1 0 0 1 1
1 0 d d d d d d d d

Characteristic Equation: D = Q*

FSM: State Assignment #2

FSM: State Assignment #2

D,=w.Qg DA Q z
> 0 2=Q,
Dg=w w D 0Q
B -_—
Clock > Q
Resetn ?
FSM: State Assignment #3
State Assigned Table
Present State Next State
w=0 w=1
QA Q Qc QA+ QB+ Qc+ QA+ QB+ QC+
So 0 0 So 1 S, 0
S, 0 1 0 So S,
S, 0 0 So S

For each state only one flip-flop is set to 1.

[The remaining combination of state variables are not used.,

Using One-hot Encoding
for the State Assignment

Characteristic Equation: D = Q*

4/1/2019

4/1/2019

FSM: State Assignment #3

QsQ.
oo ol 1 \o 175 950,_ p QGQL

uﬁ, wl w0 ol u ["-“'Q;\ o ol " Lo
w|d|o _é_‘ 2 R wld|o|d]| o w[ERlL Tm

alo|d d d | 0| 4d C{ 4 o) _L_ d | d
Wy dfdid ulpold|dld ul o|ld|dld
lo d (% d o (l | d \ ° |) & o d o

D, = w &, Dy = w & D=

FSM: State Assignment #3

D,=w.Q.' jD D Q z

> 0 z=Q,

Dg =w.Q. '_\l’ D Q

Clock > 0

Reset

Finite State Machines: Other Examples

¢ Example: Edge Detector
Bit are received one at a time (one per cycle),
such as: 000111010 time CLK

IN ouT

Design a circuit that asserts

its output for one cycle when
the input bit stream changes

from 0 to 1.

Try two different solutions.

State Transition Diagram Solution A

IN PS | NS OUT
erol O 00 [00 0
00|01 O
CHANGE{O 01 0 1
1 01|11 1
ONE{O 11 |00 0
11 |11 0

4/1/2019

10

Solution A, circuit derivation

4/1/2019

IN PS [NS OUT
ZERO{O 00 |00 O
1 00 |01 0
CHANGE{O 01 00 1
1 01 |11 1
ONE{O 117000
1 11 111 o0

- 1“[} fs
0
IN
. ouT L
FF PS

PS

o|ol|8
~ o8

o
1

NS,= IN PS,

01 11 10

o
o
1

— (o8

NS,= IN

=
[
1

PS
01

OUT= PS, PS,

olol|8

|_\
ook
1

NS
IN g A
Solution B
Output depends non only on PS but also on input, IN
oltlﬁgo LetzERo=0, N PS NS OUT
onesr 0 00 0
0 1|0 O
1 0|1 1
1 11 o0
IN=1
ouT=1 IN=0 NS = IN, OUT =IN PS’
ouT=0
NS P
IN=1
OouT=0 ouT

What's the intuition about this solution?

11

4/1/2019

Edge detector timing diagrams

|
CLK |
|

IN

OUT (solution A)

OUT (solution B)

Solution A: output follows the clock

Solution B: output changes with input rising edge and
is asynchronous wrt the clock.

FSM Comparison

) Solution B
Solution A

) Mealy Machine
Moore Machine

° output function of both PS &

° output function only of PS input

° maybe more state ° maybe fewer states

° synchronous outputs ° asynchronous outputs
* no glitching « if input glitches, so does output
* one cycle “delay” « output immediately available
« full cycle of stable output « output may not be stable long

enough to be useful:

IN CLK

OuT |_| out—| CL —»ﬁ

12

FSM Recap
Moore Machine Mealy Machine
input value input value/output values
STATE
[output values]
inputs -+ CL inputs ——4 ——= autputs
CL
present state next state
present state FFs next state

FFs

CL = outpuls

Both machine types allow one-hot implementations.

What next

° Sequential Circuits contd...

4/1/2019

13

Overview

4/1/2019

° Important to minimize the size of digital circuitry

° Analysis of state machines leads to a state table (or
diagram)

° In many cases reducing the number of states reduces
the number of gates and flops

* This is not true 100% of the time

° We attempt state reduction by examining the state table

° Other, more advanced approaches, possible

° Reducing the number of states generally reduces
complexity.

FSM Optimization

° State Reduction:

Motivation:

lower cost

fewer flip-flops in one-
hot implementations

possibly fewer flip-
flops in encoded
implementations

more don’t cares in
next state logic

fewer gates in next
state logic

Simpler to design with
extra states then reduce

later.

° Example: Odd parity checker

0 ﬁ .
1 Moore machine
0

14

State Reduction

° “Row Matching” is based on the state-transition table:

« If two states
* have the same output and both transition to the same next state

¢ or both transition to each other
* or both self-loop
» then they are equivalent.

« Combine the equivalent states into a new renamed state.

« Repeat until no more states are combined

State Transition Table

NS output
PS [x=0 x=1 |
S0| SO S1 0
S1| S1 S2

1
S2| S2 S1 0

FSM Optimization

° Merge state S2 into SO ° Example: Odd parity

checker.
° Eliminate S2

° New state machine
shows same 1/0 0
behavior @
- 0
State Transition Table 1
0

NS output
PS|x=0 x=1 |
S0| SO S1 0 1
S1| S1 SO 1

4/1/2019

15

4/1/2019

Row Matching Example

State Transition Table
NS output

PS[x=0 x=1 | x=0 x=1

a

Q@ "0 a0 T
QDO

-~ —h = =0 0T
cNeoNoNeoNeoNoNe
RPRPRRLROOO

Row Matching Example

NS output
PSIx=0 x=1 | x=0x=1 Reduced State Transition Diagram
ala b 0O O
b|c d 0 O
cla d 0 O 0 [\\
d| e f 0 1 @
e|la f 0 1 0/ » I_‘%
fle f 0 1 10

Y ™~

00
NS output o °
PS|x=0 x=1 | x=0x=1 n 1/0
a 0/0 \Y
B @im)
[}

'\ i

O Q0T
DD Y®O

00 00T
cNoNoloNe]
RF,OOO

16

4/1/2019

State Reduction

° The “row matching” method is not guaranteed to
result in the optimal solution in all cases, because
it only looks at pairs of states.

° Another method guarantees
the optimal solution:

° “Implication table” method:
Read Mano, chapter 9.
Submit one page as assignment

Encoding State Variables

° Option 1: Binary values
° 000, 001, 010, 011, 100 ...
° Option 2: Gray code
° 000, 001, 011, 010, 110 ...
° Option 3: One hot encoding
° One bit for every state
° Only one bit is a one at a given time
° For a 5-state machine
° 00001, 00010, 00100, 01000, 10000

17

4/1/2019

Summary

° Important to create smallest possible FSMs
° This course: use visual inspection method
° Often possible to reduce logic and flip flops

° State encoding is important

18

