
4/1/2019

1

Digital Logic and Design
(Course Code: EE222)

Lecture 25‐26: Sequential Circuits Contd..

Indian Institute of Technology Jodhpur, Year 2018‐2019

Course Instructor: Shree Prakash
Tiwari

Email: sptiwari@iitj.ac.in

b h //h / /Webpage: http://home.iitj.ac.in/~sptiwari/

Course related documents will be uploaded on
http://home.iitj.ac.in/~sptiwari/DLD/

1

Note: The information provided in the slides are taken form text books Digital Electronics
(including Mano & Ciletti), and various other resources from internet, for teaching/academic
use only

State Assignment Problem

 Some state assignments are better than others.

 The state assignment influences the complexity of The state assignment influences the complexity of
the state machine.

 The combinational logic required in the state
machine design is dependent on the state
assignment.

Types of state assignment Types of state assignment
 Binary encoding: 2N states → N Flip-Flops

 Gray-code encoding: 2N states → N Flip-Flops

 One-hot encoding: N states → N Flip-
Flops

4/1/2019

2

FSM: State Assignment

Example:

Design a FSM that detects a sequence of two or more
consecutive ones on an input bit stream.

The FSM should output a 1 when the sequence is
d t t d d 0 th idetected, and a 0 otherwise.

This is another example of a sequence detector.

FSM: State Assignment

Input: 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 …

Output: 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 …

4/1/2019

3

FSM: State Assignment

Reset

State

B z 0 = A z 0 = w 0 =

w 1 =

w 0 =

w 0 = w 1 =

S0 / 0 S1 / 0

State
Diagram

C z = 1

w 1 =

S2 / 1

FSM: State Assignment

Present State Next State Output

w = 0 w = 1

S0 S0 S1 0

S1 S0 S2 0

S2 S0 S2 1

State Table

4/1/2019

4

FSM: State Assignment #1

State Assigned Table

Present State Next State Output

w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ z

S0 0 0 S0 0 0 S1 0 1 0

S1 0 1 S0 0 0 S2 1 0 0

S2 1 0 S0 0 0 S2 1 0 1

1 1 d d d d d1 1 d d d d d

Using Binary Encoding
for the State Assignment

FSM: State Assignment #1

State Assigned Table

Present State Next State FF Inputs

w = 0 w = 1 w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ DA DB DA DB

S0 0 0 0 0 0 1 0 0 0 1

S1 0 1 0 0 1 0 0 0 1 0

S2 1 0 0 0 1 0 0 0 1 0

1 1 d d d d d d d d

Characteristic Equation: D = Q+

4/1/2019

5

FSM: State Assignment #1

FSM: State Assignment #1

K-Map and Boolean expression for z

4/1/2019

6

FSM: State Assignment #1

D Q

Q

Y 2

Y

z
y 2

A
zDA = w.(QA + QB)

z = QA

D Q

Q

Y 1
w

Clock

y 1

Resetn

B
w

DB = w.QA'.QB'

FSM: State Assignment #2

State Assigned Table

Present State Next State Output

w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ z

S0 0 0 S0 0 0 S1 0 1 0

S1 0 1 S0 0 0 S2 1 1 0

S2 1 1 S0 0 0 S2 1 1 1

1 0 d d d d d1 0 d d d d d

Using Gray-code Encoding
for the State Assignment

4/1/2019

7

FSM: State Assignment #2

State Assigned Table

Present State Next State FF Inputs

w = 0 w = 1 w = 0 w = 1

QA QB QA
+ QB

+ QA
+ QB

+ DA DB DA DB

S0 0 0 0 0 0 1 0 0 0 1

S1 0 1 0 0 1 1 0 0 1 1

S2 1 1 0 0 1 1 0 0 1 1

1 0 d d d d d d d d

Characteristic Equation: D = Q+

FSM: State Assignment #2

K-Map and Boolean expression for DA, DB and z

4/1/2019

8

FSM: State Assignment #2

D Q
Y 2

z
y 2

D = w Q zQ

Q

D Q
Y 1

w
y 1

A

B

DA = w.QB

DB = w

z = QA

Q Clock

Resetn

B

FSM: State Assignment #3

State Assigned Table

Present State Next State

w = 0 w = 1

QA QB QC
QA

+ QB
+ QC

+ QA
+ QB

+ QC
+

S0 0 0 1 S0 0 0 1 S1 0 1 0

S1 0 1 0 S0 0 0 1 S2 1 0 0

S2 1 0 0 S0 0 0 1 S2 1 0 0

Using One-hot Encoding
for the State Assignment

For each state only one flip-flop is set to 1.
The remaining combination of state variables are not used.

Characteristic Equation: D = Q+

4/1/2019

9

FSM: State Assignment #3

FSM: State Assignment #3

D Q

Q

DA = w.QC' z

z = QA

A

D Q

Q
B

DB = w.QC

Reset

D Q

Q Clock
C

DC = w.' w

4/1/2019

10

Finite State Machines: Other Examples

° Example: Edge Detector

Bit are received one at a time (one per cycle),

such as: 000111010 timesuch as: 000111010 time

Design a circuit that asserts

its output for one cycle when

FSM

CLK

IN OUT

the input bit stream changes

from 0 to 1.

Try two different solutions.

State Transition Diagram Solution A

ZERO
OUT=0

IN=0

IN=0

IN PS NS OUT
OUT 0

CHANGE
OUT=1

IN=1

IN=1 IN=0

0 00 00 0
1 00 01 0
0 01 00 1
1 01 11 1
0 11 00 0
1 11 11 0

ZERO

CHANGE

ONE

ONE
OUT=0

IN=1

IN=1

4/1/2019

11

Solution A, circuit derivation

IN PS NS OUT
0 00 00 0
1 00 01 0
0 01 00 1

ZERO

 00 01 11 10

0 0 0 0 -
1 0 1 1 -

PS

IN NS
1
= IN PS

0

FF
NS1

PS
1

0 01 00 1
1 01 11 1
0 11 00 0
1 11 11 0

CHANGE

ONE

 00 01 11 10

0 0 0 0 -
1 1 1 1 -

PS

IN

 00 01 11 10

0 1 0

PS

NS0= IN

FF

OUT

IN
NS0 PS0

0 0 1 0 -
1 0 1 0 -

IN OUT= PS1 PS0

Solution B

Output depends non only on PS but also on input, IN

IN=0
OUT=0

IN PS NS OUT
0 0 0 0

Let ZERO=0,
ONE=1

ZERO

ONE

IN=0
OUT=0

IN=1
OUT=1

FF
NS PS

IN

0 1 0 0
1 0 1 1
1 1 1 0

ONE=1

NS = IN, OUT = IN PS’

IN=1
OUT=0

FF

OUT

IN

What’s the intuition about this solution?

4/1/2019

12

Edge detector timing diagrams

CLK

OUT (solution A)

IN

OUT (solution B)

° S l ti A t t f ll th l k° Solution A: output follows the clock

° Solution B: output changes with input rising edge and
is asynchronous wrt the clock.

FSM Comparison

Solution A

Moore Machine

° output function only of PS

Solution B

Mealy Machine

° output function of both PS &
input

° maybe more state

° synchronous outputs
• no glitching

• one cycle “delay”

• full cycle of stable output

° maybe fewer states

° asynchronous outputs
• if input glitches, so does output

• output immediately available

• output may not be stable long
enough to be useful:

CLK

IN

OUT CL

CLK

OUT

4/1/2019

13

FSM Recap

Moore Machine Mealy Machine

STATE

input value input value/output values

S
[output values] STATE

Both machine types allow one-hot implementations.

What next……

° Sequential Circuits contd…

4/1/2019

14

Overview

° Important to minimize the size of digital circuitry

° Analysis of state machines leads to a state table (or
diagram)

° In many cases reducing the number of states reduces
the number of gates and flops

• This is not true 100% of the time

° We attempt state reduction by examining the state table

° Other, more advanced approaches, possible

° R d i th b f t t ll d° Reducing the number of states generally reduces
complexity.

FSM Optimization

° State Reduction:
Motivation:

lower cost

f fli fl i

° Example: Odd parity checker

0
- fewer flip-flops in one-

hot implementations

- possibly fewer flip-
flops in encoded
implementations

- more don’t cares in
next state logic

- fewer gates in next
state logic

S0
[0]

S1
[1]

1

11

0

S0
[0]

0

11

Moore machine

state logic

Simpler to design with
extra states then reduce
later.

S2
[0]

0

S1
[1]

0

4/1/2019

15

State Reduction

° “Row Matching” is based on the state-transition table:

• If two states
• have the same output and both transition to the same next state

• or both transition to each other

• or both self-loop

• then they are equivalent.

• Combine the equivalent states into a new renamed state.

• Repeat until no more states are combined

NS output

State Transition Table

NS output
PS x=0 x=1
S0 S0 S1 0
S1 S1 S2 1
S2 S2 S1 0

FSM Optimization

° Merge state S2 into S0

° Eliminate S2

° New state machine

° Example: Odd parity
checker.

New state machine
shows same I/O
behavior S0

[0]

S1
[1]

0

1

11

0

S0
[0]

0

11

NS output
PS x=0 x=1
S0 S0 S1 0

State Transition Table

S2
[0]

11

0

S1
[1]

1

0

1S0 S0 S1 0
S1 S1 S0 1

4/1/2019

16

Row Matching Example

NS output
PS x=0 x=1 x=0 x=1
a a b 0 0

State Transition Table

b c d 0 0
c a d 0 0
d e f 0 1
e a f 0 1
f g f 0 1
g a f 0 1

Row Matching Example

NS output
PS x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0

Reduced State Transition Diagram

c a d 0 0
d e f 0 1
e a f 0 1
f e f 0 1

NS output
PS x=0 x=1 x=0 x=1

b 0 0a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

4/1/2019

17

State Reduction

° The “row matching” method is not guaranteed to
result in the optimal solution in all cases, because
it only looks at pairs of states.

° Another method guarantees
the optimal solution:

° “Implication table” method:

Read Mano, chapter 9.

Submit one page as assignment

Encoding State Variables

° Option 1: Binary values

° 000, 001, 010, 011, 100 …

° Option 2: Gray codep y

° 000, 001, 011, 010, 110 …

° Option 3: One hot encoding

° One bit for every state

° Only one bit is a one at a given time

° For a 5-state machine

° 00001, 00010, 00100, 01000, 10000

4/1/2019

18

Summary

° Important to create smallest possible FSMs

° This course: use visual inspection method

° Oft ibl t d l i d fli fl° Often possible to reduce logic and flip flops

° State encoding is important

