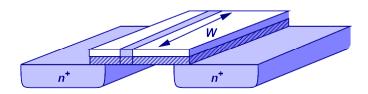
Indian Institute of Technology Jodhpur, Year 2018

Analog Electronics

(Course Code: EE314)

Lecture 18-19: MOSFETs, Biasing


Course Instructor: Shree Prakash Tiwari

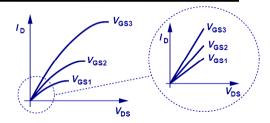
Email: sptiwari@iitj.ac.in

Webpage: http://home.iitj.ac.in/~sptiwari/
Course related documents will be uploaded on http://home.iitj.ac.in/~sptiwari/EE314/

Note: The information provided in the slides are taken form text books for microelectronics (including Sedra & Smith, B. Razavi), and various other resources from internet, for **teaching/academic use only**

MOSFET in ON State $(V_{GS} > V_{TH})$

 The channel charge density is equal to the gate capacitance times the gate voltage in excess of the threshold voltage.

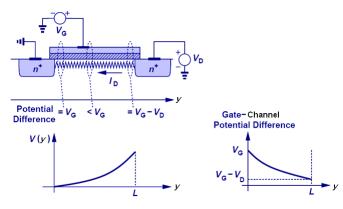

Areal inversion charge density [C/cm²]:
$$Q_{inv} = C_{ox}(V_{GS} - V_{TH})$$

Note that the reference voltage is the source voltage.

In this case, V_{TH} is defined as the value of V_{GS} at which the channel surface is strongly inverted (i.e. $n = N_A$ at x=0, for an NMOSFET).

MOSFET as Voltage-Controlled Resistor

 For small V_{DS}, the MOSFET can be viewed as a resistor, with the channel resistance depending on the gate voltage.

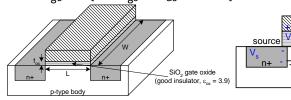

$$R_{ON} = \text{resistivity} \cdot \frac{L}{t_{inv} \cdot W} = \frac{1}{q \mu_n n_{inv}} \cdot \frac{L}{t_{inv} \cdot W}$$

• Note that $qn_{inv} \cdot t_{inv} = Q_{inv} = C_{ox} (V_{GS} - V_{TH})$

$$R_{ON} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

MOSFET Channel Potential Variation

- If the drain is biased at a higher potential than the source, the channel potential increases from the source to the drain.
- → The potential difference between the gate and channel decreases from the source to drain.


Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversions
 - Gate oxide channel
- Q_{channel} = CV
- $C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$

$$C_{ox} = \varepsilon_{ox} / t_{ox}$$

p-type body

• $V = V_{gc} - V_t = (V_{gs} - V_{ds}/2) - V_t$

5

Carrier velocity

- Charge is carried by e-
- Electrons are propelled by the lateral electric field between source and drain

$$-E=V_{ds}/L$$

- Carrier velocity v proportional to lateral E-field
 - $-v = \mu E$ μ called mobility
- Time for carrier to cross channel:

$$-t=L/v$$

6

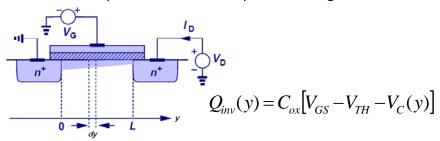
nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$\begin{split} I_{ds} &= \frac{Q_{\text{channel}}}{t} \\ &= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \\ &= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \qquad \beta = \mu C_{\text{ox}} \frac{W}{L} \end{split}$$

7

nMOS Saturation I-V


- If V_{gd} < V_t, channel pinches off near drain
 When V_{ds} > V_{dsat} = V_{gs} V_t
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

8

Charge Density along the Channel

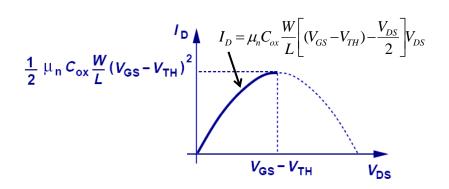
• The channel potential varies with position along the channel:

- The current flowing in the channel is $I_D = WQ_{inv}(y) \cdot v(y)$
- The carrier drift velocity at position y is $v(y) = \mu_n E = \mu_n \frac{dV_C(y)}{dy}$ where μ_n is the electron field-effect mobility

Drain Current, I_D (for $V_{DS} < V_{GS} - V_{TH}$)

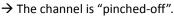
$$I_D = WQ_{mv}(y) \cdot v(y) = WQ_{mv}(y) \cdot \mu_n \frac{dV_C(y)}{dy}$$

Integrating from source to drain:

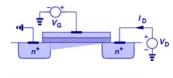

$$\int_{0}^{L} I_{D} dy = \int_{V_{S}}^{V_{D}} W \mu_{n} Q_{inv}(V_{C}) dV_{C}$$

$$I_{D} L = W \mu_{n} \int_{V_{S}}^{V_{D}} C_{ox} \left[V_{GS} - V_{TH} - V_{C} \right] dV_{C} = W \mu_{n} C_{ox} \left\{ \left[V_{GS} - V_{TH} \right] V_{DS} - \frac{1}{2} V_{DS}^{2} \right\}$$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) - \frac{V_{DS}}{2} \right] V_{DS}$$


$I_{\rm D}$ - $V_{\rm DS}$ Characteristic

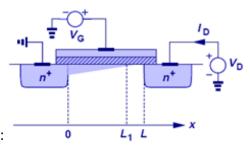
- For a fixed value of $V_{\rm GS}$, $I_{\rm D}$ is a parabolic function of $V_{\rm DS}$.
- I_D reaches a maximum value at $V_{DS} = V_{GS} V_{TH}$.

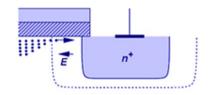


Inversion-Layer Pinch-Off (V_{DS} > V_{GS} - V_{TH})

• When $V_{DS} = V_{GS} - V_{TH}$, $Q_{inv} = 0$ at the drain end of the channel.

- As V_{DS} increases above V_{GS}-V_{TH}, the pinch-off point (where Q_{inv} = 0) moves toward the source.
 - Note that the channel potential $V_{\rm C}$ is always equal to $V_{\rm GS}$ - $V_{\rm TH}$ at the pinch-off point.
 - → The maximum voltage that can be applied across the inversion-layer channel (from source to drain) is V_{GS}-V_{TH}.
 - → The drain current "saturates" at a maximum value.

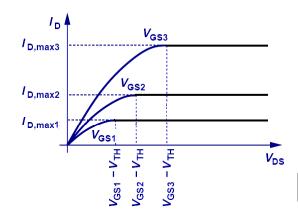



Current Flow in Pinch-Off Region

- Under the influence of the lateral electric field, carriers drift from the source (through the inversion-layer channel) toward the drain.
- A large lateral electric field exists in the pinch-off region:

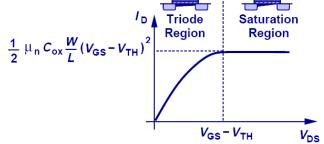
$$E = \frac{V_{DS} - \left(V_{GS} - V_{TH}\right)}{L - L_1}$$

 Once carriers reach the pinch-off point, they are swept into the drain by the electric field.



Drain Current Saturation

(Long-Channel MOSFET)


• For $V_{DS} > V_{GS} - V_{TH}$: $I_D = I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$

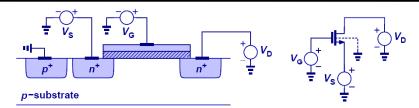
$$V_{D,sat} = V_{GS} - V_{TH}$$

MOSFET Regions of Operation

- When the potential difference between the gate and drain is greater than $V_{\rm TH}$, the MOSFET is operating in the *triode region*.
- When the potential difference between the gate and drain is equal to or less than V_{TH}, the MOSFET is operating in the saturation region.

Triode or Saturation?

 In DC circuit analysis, when the MOSFET region of operation is not known, an intelligent guess should be made; then the resulting answer should be checked against the assumption.

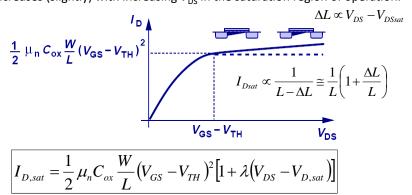

Example: Given $\mu_{\rm n}C_{\rm ox}$ = 100 μ A/V², $V_{\rm TH}$ = 0.4V. If $V_{\rm G}$ increases by 10mV, what is the change in $V_{\rm D}$?

$$V_{DD} = 1.8 \text{ V}$$

$$R_{D} \ge 5 \text{ k}\Omega$$

$$V_{DD} = 1.8 \text{ V}$$

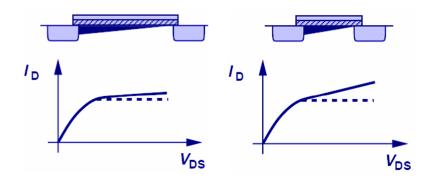
The Body Effect



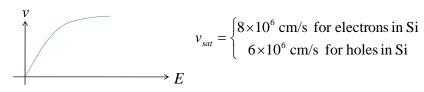
V_{TH} is increased by reverse-biasing the body-source PN junction:

$$\begin{split} V_{TH} &= V_{FB} + 2\phi_B + \frac{\sqrt{2qN_A\varepsilon_{Si}(2\phi_B + V_{SB})}}{C_{ox}} \\ &= V_{FB} + 2\phi_B + \frac{\sqrt{2qN_A\varepsilon_{Si}(2\phi_B)}}{C_{ox}} - \frac{\sqrt{2qN_A\varepsilon_{Si}(2\phi_B)}}{C_{ox}} + \frac{\sqrt{2qN_A\varepsilon_{Si}(2\phi_B + V_{SB})}}{C_{ox}} \\ &= V_{TH0} + \frac{\sqrt{2qN_A\varepsilon_{Si}}}{C_{ox}} \left(\sqrt{2\phi_B + V_{SB}} - \sqrt{2\phi_B} \right) = V_{TH0} + \gamma \left(\sqrt{2\phi_B + V_{SB}} - \sqrt{2\phi_B} \right) \\ \gamma \quad \text{is the body effect parameter.} \end{split}$$

Channel-Length Modulation


- The pinch-off point moves toward the source as $V_{\rm DS}$ increases.
- ightarrow The length of the inversion-layer channel becomes shorter with increasing $V_{
 m DS}$.
- ightarrow $I_{\rm D}$ increases (slightly) with increasing $V_{\rm DS}$ in the saturation region of operation.

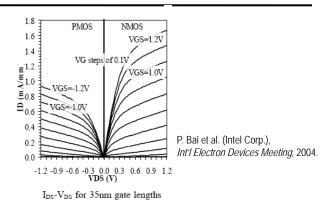
 λ is the **channel length modulation coefficient**.


λ and L

• The effect of channel-length modulation is less for a longchannel MOSFET than for a short-channel MOSFET.

Velocity Saturation

- In state-of-the-art MOSFETs, the channel is very short (<0.1 μ m); hence the lateral electric field is very high and carrier drift velocities can reach their saturation levels.
 - The electric field magnitude at which the carrier velocity saturates is $\textit{\textbf{E}}_{\text{sat}}$.


Impact of Velocity Saturation

- Recall that $I_D = WQ_{inv}(y)v(y)$
- If V_{DS} > E_{sat}×L, the carrier velocity will saturate and hence the drain current will saturate:

$$I_{D,sat} = WQ_{inv}v_{sat} = WC_{ox}(V_{GS} - V_{TH})v_{sat}$$

- $I_{D,sat}$ is proportional to $V_{GS}-V_{TH}$ rather than $(V_{GS}-V_{TH})^2$
- I_{D.sat} is not dependent on L
- I_{D.sat} is dependent on W

Short-Channel MOSFET I_D - V_{DS}

- $I_{\rm D,sat}$ is proportional to $V_{\rm GS}$ - $V_{\rm TH}$ rather than $(V_{\rm GS}$ - $V_{\rm TH})^2$
- $V_{D,sat}$ is smaller than V_{GS} - V_{TH}
- Channel-length modulation is apparent (?)

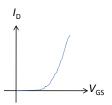
Drain Induced Barrier Lowering (DIBL)

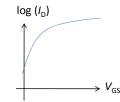
- In a short-channel MOSFET, the source & drain regions each "support"
 a significant fraction of the total channel depletion charge Q_{den}×W×L
 - $\rightarrow V_{TH}$ is lower than for a long-channel MOSFET
- As the drain voltage increases, the reverse bias on the body-drain PN junction increases, and hence the drain depletion region widens.
 - \rightarrow V_{TH} decreases with increasing drain bias. (The barrier to carrier diffusion from the source into the channel is reduced.)
 - \rightarrow $I_{\rm D}$ increases with increasing drain bias.

NMOSFET in OFF State

- We had previously assumed that there is no channel current when V_{GS} < V_{TH}. This is incorrect!
- As V_{GS} is reduced (toward 0 V) below V_{TH}, the potential barrier to carrier diffusion from the source into the channel is increased.
 I_D becomes limited by carrier diffusion into the channel, rather than by carrier drift through the channel.

(This is similar to the case of a PN junction diode!)

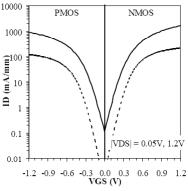

 \rightarrow I_D varies exponentially with the potential barrier height at the source, which varies directly with the channel potential.


Sub-Threshold Leakage Current

• Recall that, in the depletion (sub-threshold) region of operation, the channel potential is capacitively coupled to the gate potential. A change in gate voltage ($\Delta V_{\rm GS}$) results in a change in channel voltage ($\Delta V_{\rm CS}$):

 $\Delta V_{CS} = \Delta V_{GS} \times \left(\frac{C_{ox}}{C_{ox} + C_{dep}} \right) \equiv \Delta V_{GS} / m$

• Therefore, the sub-threshold current ($I_{D,subth}$) decreases exponentially with linearly decreasing V_{GS}/m



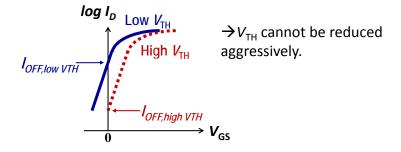
"Sub-threshold swing":

$$S \equiv \left(\frac{d(\log_{10} I_{DS})}{dV_{GS}}\right)^{-1}$$

 $S = mV_T \ln(10) > 60 \text{mV/dec}$

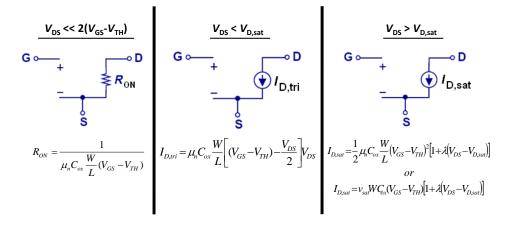
Short-Channel MOSFET I_D - V_{GS}

|VDS| = 0.05V, 1.2V | P. Bai et al. (Intel Corp.), | Int'l Electron Devices Meeting, 2004.


Sub-threshold curves (I_{DS} - V_{GS}) for 35nm gate lengths

V_{TH} Design Trade-Off

• Low V_{TH} is desirable for high ON-state current:


$$I_{\text{D,sat}} \propto (V_{\text{DD}} - V_{\text{TH}})^{\eta}$$
 1 < η < 2

• But high V_{TH} is needed for low OFF-state current:

MOSFET Large-Signal Models ($V_{GS} > V_{TH}$)

• Depending on the value of $V_{\rm DS}$, the MOSFET can be represented with different large-signal models.

MOSFET Transconductance, $g_{\rm m}$

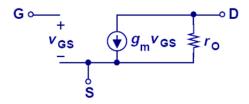
• Transconductance (g_m) is a measure of how much the drain current changes when the gate voltage changes.

$$g_m \equiv \frac{\partial I_D}{\partial V_{GS}}$$

- For amplifier applications, the MOSFET is usually operating in the saturation region.
 - For a long-channel MOSFET:

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \{ 1 + \lambda (V_{DS} - V_{D,sat}) \}$$

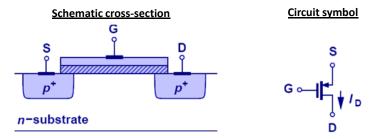
$$g_{m} = \sqrt{2 \mu_{n} C_{ox} \frac{W}{L} \{ 1 + \lambda (V_{DS} - V_{D,sat}) \} I_{D}}$$


- For a short-channel MOSFET:

$$g_m = v_{sat}WC_{ox}\left\{1 + \lambda \left(V_{DS} - V_{D,sat}\right)\right\}$$

MOSFET Small-Signal Model

(Saturation Region of Operation)


The effect of channel-length modulation or DIBL (which cause I_D to increase linearly with V_{DS}) is modeled by the transistor output resistance, r_o.

$$r_o \equiv \frac{\partial V_{DS}}{\partial I_D} \approx \frac{1}{\lambda I_D}$$

PMOS Transistor

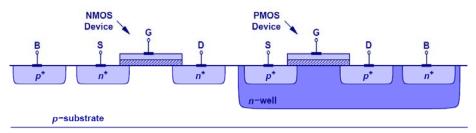
 A p-channel MOSFET behaves similarly to an n-channel MOSFET, except the polarities for I_D and V_{GS} are reversed.

- The small-signal model for a PMOSFET is the same as that for an NMOSFET.
 - The values of $g_{\rm m}$ and $r_{\rm o}$ will be different for a PMOSFET vs. an NMOSFET, since mobility & saturation velocity are different for holes vs. electrons.

PMOS I-V Equations

• For
$$|V_{\rm DS}| < |V_{\rm D,sat}|$$
:
$$I_{D,tri} = \mu_p C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) - \frac{V_{DS}}{2} \right] V_{DS} \left[1 - \lambda \left(V_{DS} - V_{D,sat} \right) \right]$$

• For |V_{DS}| > |V_{D,sat}|:

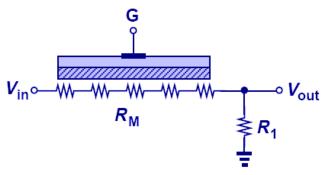

$$I_{D,sat} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \left[1 - \lambda \left(V_{DS} - V_{D,sat} \right) \right] \qquad \text{for long channel}$$

$$Or \\ I_{D,sat} = -v_{sat}WC_{ox}(V_{GS} - V_{TH}) \Big[1 - \lambda \Big(V_{DS} - V_{D,sat} \Big) \Big] \qquad \text{ for short channel}$$

CMOS Technology

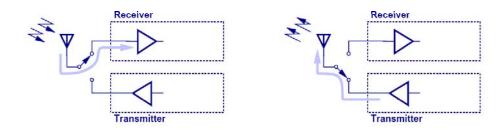
- It possible to form deep n-type regions ("well") within a p-type substrate to allow PMOSFETs and NMOSFETs to be co-fabricated on a single substrate.
- This is referred to as CMOS ("Complementary MOS") technology.

Schematic cross-section of CMOS devices

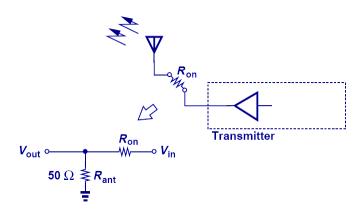


Comparison of BJT and MOSFET

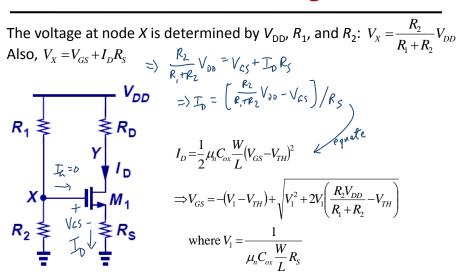
• The BJT can achieve much higher $g_{\rm m}$ than a MOSFET, for a given bias current, due to its exponential *I-V* characteristic.


Bipolar Transistor	MOSFET
Exponential Characteristic Active: V _{CB} > 0 Saturation: V _{CB} < 0 Finite Base Current Early Effect Diffusion Current	Quadratic Characteristic Saturation: $V_{DS} > V_{GS} - V_{TH}$ Triode: $V_{DS} < V_{GS} - V_{TH}$ Zero Gate Current Channel-Length Modulation Drift Current
Early Effect	Channel-Length Modulation

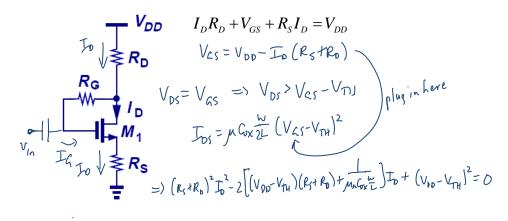
Voltage-Controlled Attenuator


- As the gate voltage decreases, the output drops because the channel resistance increases.
- This type of gain control finds application in cell phones to avoid saturation near base stations.

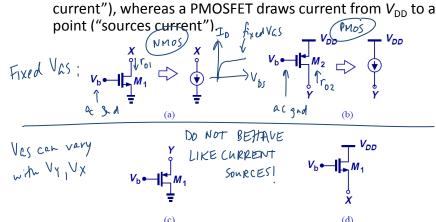
Application of Electronic Switches


• In a cordless telephone system in which a single antenna is used for both transmission and reception, a switch is used to connect either the receiver or transmitter to the antenna.

Effects of On-Resistance


 To minimize signal attenuation, R_{on} of the switch has to be as small as possible. This means larger W/L aspect ratio and greater V_{GS}.

MOSFET Biasing


Self-Biased MOSFET Stage

- Note that there is no voltage dropped across R_G
- → M1 is operating in the saturation region.

MOSFETs as Current Sources

- A MOSFET behaves as a current source when it is operating in the saturation region.
- An NMOSFET draws current from a point to ground ("sinks") current"), whereas a PMOSFET draws current from $V_{\rm DD}$ to a

What next

• MOSFET Amplifiers