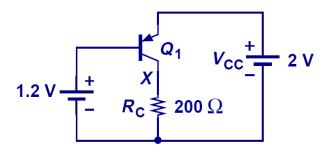
Indian Institute of Technology Jodhpur, Year 2018

Analog Electronics

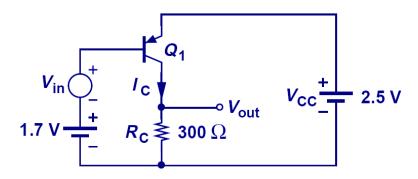
(Course Code: EE314)

Lecture 9-10: BJT Small Signal, Biasing, Amplifiers

Course Instructor: Shree Prakash Tiwari

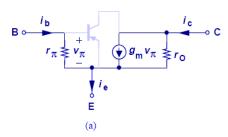

Email: sptiwari@iitj.ac.in

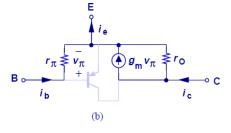
Webpage: http://home.iitj.ac.in/~sptiwari/
Course related documents will be uploaded on http://home.iitj.ac.in/~sptiwari/EE314/

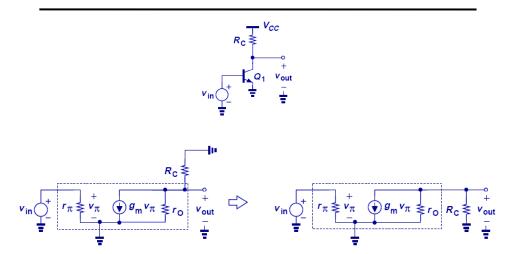

Note: The information provided in the slides are taken form text books for microelectronics (including Sedra & Smith, B. Razavi), and various other resources from internet, for **teaching/academic use only**

PNP BJT Biasing

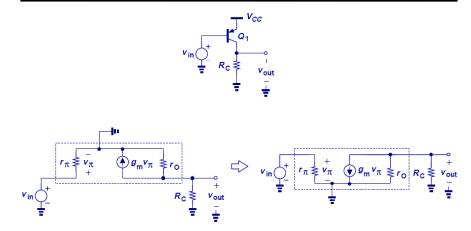
 Note that the emitter is biased at a higher potential than the base and the collector.



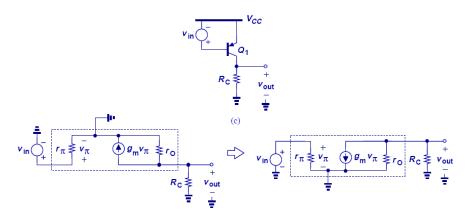

Small-Signal Analysis


PNP BJT Small-Signal Model

- The small-signal model for a PNP transistor is identical to that of an NPN transistor.
 - Note that the polarity of the small-signal currents and voltages are defined to be in the opposite direction with respect to the large-signal model. This is OK, because the small-signal model is used only to determine *changes* in currents and voltages.



Small-Signal Model Example 1



Small-Signal Model Example 2

• Note that the small-signal model is identical to that in the previous example.

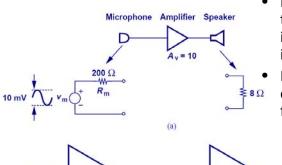
Small-Signal Model Example 3

• Note that the small-signal model is identical to that in the previous examples.

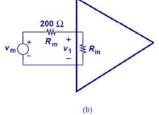
BJT Amplifiers: Overview

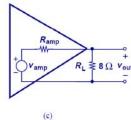
General Concepts

- Input and Output Impedances
- Biasing
- DC and Small-Signal Analysis

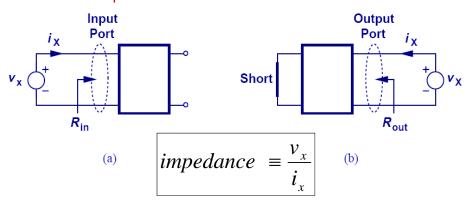

Operating Point Analysis

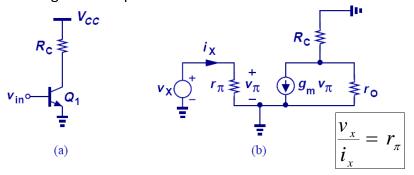
- Simple Biasing
- Emitter Degeneration
- Self-Biasing
- Biasing of PNP Devices


Amplifier Topologies

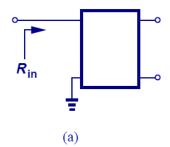

- Common-Emitter Stage
- Common-Base Stage
- Emtter Follower

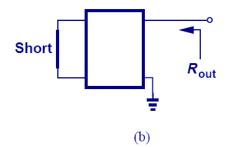
Voltage Amplifier


- In an ideal voltage amplifier, the input impedance is infinite and the output impedance is zero.
- In reality, the input and output impedances depart from their ideal values.

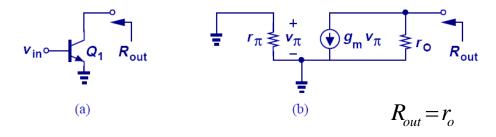

Input/Output Impedances

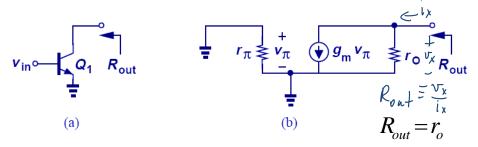
- The figures below show how input and output impedances are determined.
 - All independent sources are set to zero.


Input Impedance Example

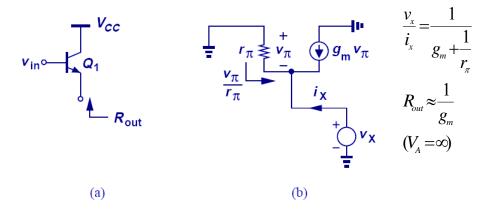

- Note that input/output impedances are usually regarded as small-signal quantities.
 - The input impedance is obtained by applying a small change in the input voltage and finding the resultant change in the input current:

Impedance at a Node


 When calculating I/O impedances at a port, we usually ground one terminal. We often refer to the "impedance seen at a node" rather than the impedance between two nodes (i.e. at a port).


Impedance seen at the Collector

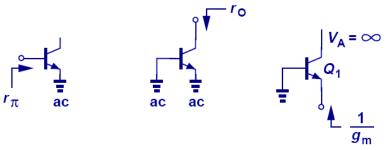
• The impedance seen at the collector is equal to the intrinsic output impedance of the transistor, if the emitter is grounded.


Impedance seen at the Collector

 The impedance seen at the collector is equal to the intrinsic output impedance of the transistor, if the emitter is grounded.

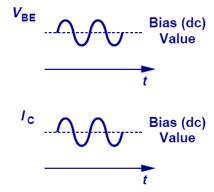
Impedance seen at the Emitter

 The impedance seen at the emitter is approximately equal to the inverse of its transconductance, if the base is grounded.

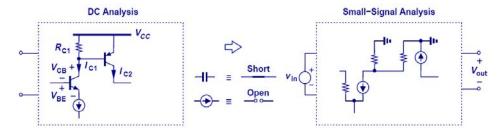

Impedance seen at the Emitter

 The impedance seen at the emitter is approximately equal to the inverse of its transconductance, if the base is grounded.

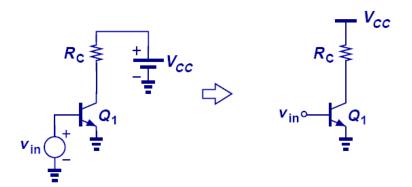
$$v_{\text{in}} \sim \begin{array}{c} V_{\text{cc}} \\ \hline \\ v_{\text{in}} \\ \hline \\ R_{\text{out}} \end{array} \qquad \begin{array}{c} V_{x} \\ \hline \\ v_{\pi} \\ \hline \\ r_{\pi} \\ \hline \end{array} \qquad \begin{array}{c} V_{x} \\ \hline \\ v_{\pi} \\ \hline \\ r_{\pi} \\ \hline \end{array} \qquad \begin{array}{c} V_{x} \\ \hline \\ v_{\pi} \\ \hline \\ v_{\pi} \\ \hline \\ v_{\chi} \\ v_{\chi} \\ \hline \\ v_{\chi} \\ v_{\chi} \\ \hline \\ v_{\chi} \\ v_{\chi}$$


Summary of BJT Impedances

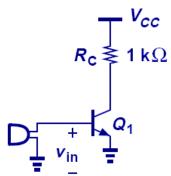
- 1. Looking into the base, the impedance is r_{π} if the emitter is (ac) grounded.
- 2. Looking into the collector, the impedance is r_0 if emitter is (ac) grounded.
- 3. Looking into the emitter, the impedance is $1/g_{\rm m}$ if base is (ac) grounded and Early effect is neglected.


Biasing of BJT

- Transistors must be biased because
 - 1. They must operate in the active region, and
 - 2. Their small-signal model parameters are set by the bias conditions.

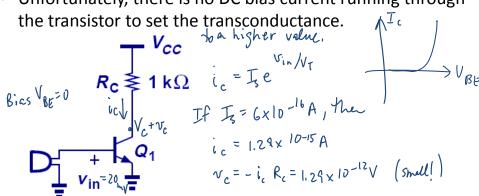

DC Analysis vs. Small-Signal Analysis

- Firstly, DC analysis is performed to determine the operating point and to obtain the small-signal model parameters.
- Secondly, independent sources are set to zero and the small-signal model is used.

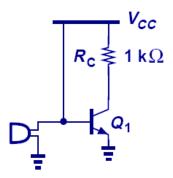

Simplified Notation

• Hereafter, the voltage source that supplies power to the circuit is replaced by a horizontal bar labeled $V_{\rm CC}$, and input signal is simplified as one node labeled $v_{\rm in}$.

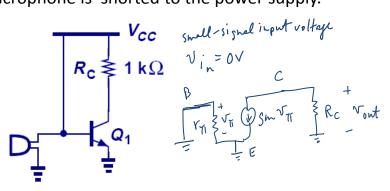
Example of Bad Biasing


- The microphone is connected to the amplifier in an attempt to amplify the small output signal of the microphone.
- Unfortunately, there is no DC bias current running through the transistor to set the transconductance.

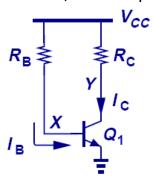
Example of Bad Biasing


• The microphone is connected to the amplifier in an attempt to amplify the small output signal of the microphone.

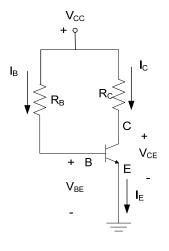
Unfortunately, there is no DC bias current running through


Another Example of Bad Biasing

- The base of the amplifier is connected to $V_{\rm CC}$, trying to establish a DC bias.
- Unfortunately, the output signal produced by the microphone is shorted to the power supply.


Another Example of Bad Biasing

- The base of the amplifier is connected to $V_{\rm CC}$, trying to establish a DC bias.
- Unfortunately, the output signal produced by the microphone is shorted to the power supply.



Biasing with Base Resistor

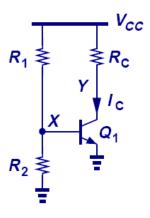
- Assuming a constant value for $V_{\rm BE}$, one can solve for both $I_{\rm B}$ and $I_{\rm C}$ and determine the terminal voltages of the transistor.
- However, the bias point is sensitive to β variations.

Biasing with Base Resistor

Using KVL in the base-emitter loop,

$$V_{CC} - I_B R_B - V_{BE} = 0$$
or, $I_B = (V_{CC} - V_{BE})/R_B$

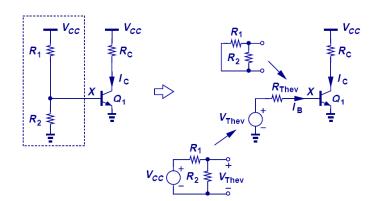
$$I_C = \beta I_B = \beta (V_{CC} - V_{BE})/R_B$$


Using KVL in the collector-emitter loop,

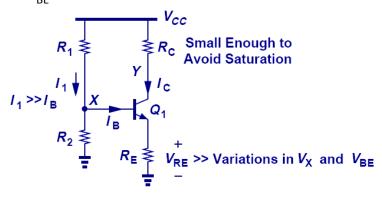
$$V_{CC} - I_C R_C - V_{CE} = 0$$

or, $V_{CE} = V_{CC} - I_C R_C$

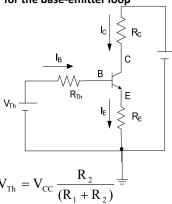
 $Q(V_{CE},I_{C})$ is set


Improved Biasing: Resistive Divider

• Using a resistive divider to set $V_{\rm BE}$, it is possible to produce an $I_{\rm C}$ that is relatively insensitive to variations in β , if the base current is small.


Accounting for Base Current

• With a proper ratio of R_1 to R_2 , I_C can be relatively insensitive to β . However, its exponential dependence on R_1 // R_2 makes it less useful.


Emitter Degeneration Biasing

- $R_{\rm F}$ helps to absorb the change in $V_{\rm X}$ so that $V_{\rm BF}$ stays relatively constant.
- This bias technique is less sensitive to β (if $I_1 >> I_B$) and $V_{\rm BE}$ variations.

Emitter Degeneration Biasing

Thevenin's Equivalent Circuit for the base-emitter loop

$$R_{Th} = R_1 || R_2 = \frac{R_1 R_2}{(R_1 + R_2)}$$

Base-Emitter Loop

Base-Emitter Loop

$$V_{Th} - I_{B}R_{Th} - V_{BE} - (\beta + 1)I_{B}R_{E} = 0$$
or,
$$I_{B} = \frac{V_{Th} - V_{BE}}{R_{Th} + (\beta + 1)R_{E}}$$

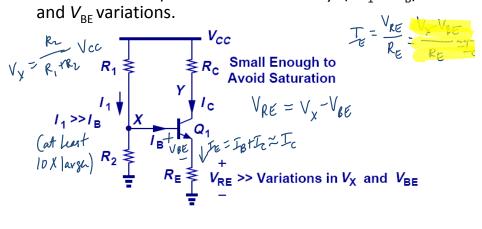
$$Collector-Emitter Loop$$

$$I_{C} = \beta I_{P} = \frac{\beta(V_{Th} - V_{BE})}{\beta(V_{Th} - V_{BE})}$$

$$I_{C} = \beta I_{B} = \frac{\beta (V_{Th} - V_{BE})}{R_{Th} + (\beta + 1)R_{E}}$$

$$V_{CE} = V_{CC} - I_{C}R_{C} - I_{E}R_{E} = V_{CC} - I_{C}R_{C} - (I_{C} + I_{B})R_{E}$$

Emitter Degeneration Biasing

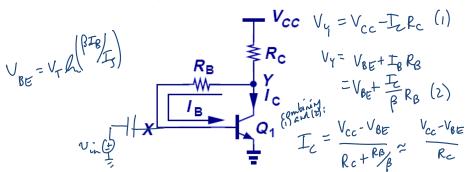

Bias Stabilization

$$\begin{split} I_{C} &= \frac{\beta(V_{Th} - V_{BE})}{R_{Th} + (\beta + 1)R_{E}} & \left[V_{Th} = V_{CC} \, \frac{R_{2}}{(R_{1} + R_{2})} \right] \\ \text{If R}_{Th} &<< (\beta + 1)R_{E} \text{, then} & \left[R_{Th} = R_{1} \middle\| R_{2} = \frac{R_{1}R_{2}}{(R_{1} + R_{2})} \right] \\ I_{C} &\approx \frac{V_{Th} - V_{BE}}{R_{E}} \end{split}$$

So, I_C is independent of β

Emitter Degeneration Biasing

- R_F helps to absorb the change in V_X so that V_{BE} stays relatively constant.
- This bias technique is less sensitive to β (if $I_1 >> I_B$) and $V_{\rm BE}$ variations.

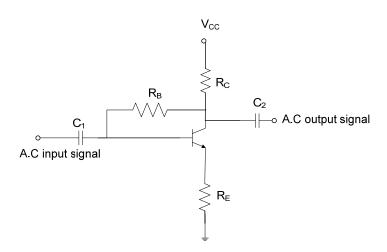

Bias Circuit Design Procedure

1. Choose a value of I_C to provide the desired smallsignal model parameters: $g_{\rm m}$, r_{π} , etc.

- $\Im_{m} = \frac{\mathcal{F}_{m}}{V_{*}} \mathcal{F}_{m} = \frac{\mathcal{F}_{m}}{\mathcal{F}_{m}}$ 2. Considering the variations in R_{1} , R_{2} , and V_{BE} , choose a value for V_{RE.} V_{RE} ~ IcRE , e.s. 200 mV = dolumine
- 3. With $V_{\rm RE}$ chosen, and $V_{\rm BE}$ calculated, $V_{\rm x}$ can be determined. $V_{BE} = V_{T} h_{T} = V_{X} = V_{RE} + V_{BE}$
- 4. Select R_1 and R_2 to provide V_x . $V_y = \frac{k_1}{R_1 T R_1} V_{cc}$ and I >> IB 5. Choose Rc to guarantee active mode operation.

Self-Biasing Technique

- This bias technique utilizes the collector voltage to provide the necessary V_{ν} and $I_{\rm R}$.
- One important characteristic of this approach is that the collector has a higher potential than the base, thus guaranteeing active-mode operation of the BJT.


Self-Biasing Design Guidelines

$$(1) R_C >> \frac{R_B}{\beta}$$

$$(2) \Delta V_{BE} << V_{CC} - V_{BE}$$

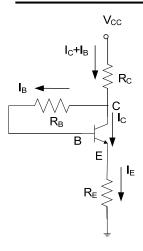
- (1) provides insensitivity to β .
- (2) provides insensitivity to variation in $V_{\mathrm{BE}\,.}$

Emitter and Collector Feedback Bias

Emitter and Collector Feedback Bias

Applying KVL

or,
$$V_{CC}^{-}(I_C + I_B)R_{C}^{-}I_BR_{B}^{-}V_{BF}^{-}(\beta + 1)I_BR_F^{-} = 0$$


or,
$$V_{CC}^{-} (\beta I_B + I_B) R_{C}^{-} I_B R_B - V_{BE}^{-} (\beta + 1) I_B R_E = C$$

or,
$$V_{CC} - \{R_B + (\beta + 1) (R_C + R_E)\}I_B - V_{BE} = 0$$

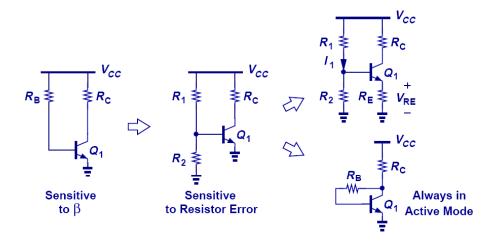
$$I_{_{B}} = \frac{V_{_{CC}} - V_{_{BE}}}{R_{_{B}} + (\beta + 1)(R_{_{C}} + R_{_{E}})}$$

$$V_{CE} = V_{CC} - (I_C + I_B)(R_C + R_E)$$

Emitter and Collector Feedback Bias

$$I_{C} = \frac{(V_{CC} - V_{BE})\beta}{R_{B} + (\beta + 1)(R_{C} + R_{E})}$$

$$V_{CE} = V_{CC} - (I_C + I_B)(R_C + R_E)$$
Bias Stabilization

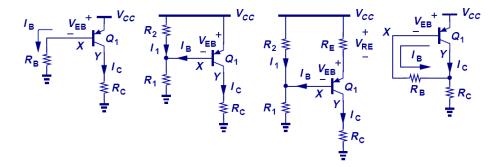

Bias Stabilization

If $R_B << (\beta+1)(R_C + R_E)$, then


or,
$$I_C \approx \frac{(V_{CC} - V_{BE})}{(R_C + R_E)}$$

So, I_c is independent of β

Summary of Biasing Techniques



Transistor as an Amplifier (ac in active region)

PNP BJT Biasing Techniques

• The same principles that apply to NPN BJT biasing also apply to PNP BJT biasing, with only voltage and current polarity modifications.

