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and Social Link Prediction
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Abstract—The paper describes a new approach of viewing a social relation as a string with various forces acting on it. Accordingly, a
tension measure for a relation is defined. Various component forces of the tension measure are identified based on the structural
information of the network. A new variant of rough set, namely, double bounded rough set is developed in order to define these forces
mathematically. It is revealed experimentally with synthetic and real-world data that positive and negative tension characterize,
relatively, the presence and absence of a physical link between two nodes. An algorithm based on tension measure is proposed for link
prediction. Superiority of the algorithm is demonstrated on nine real-world networks which include four temporal networks. The source
code for calculating tension measure and link prediction algorithm is publicly available at
https://gitlab.com/suman5/social-tension-measure.
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1 INTRODUCTION

A Society is a group of people formed due to interactions
among themselves. The word “society” came from a

Latin word “societas” which was derived from the noun
socius, used for the bond and interaction between friends
and parties. Human beings are socialogical creatures and
they have been living in a society for ages. With the develop-
ment of science and technology the interactions among them
have taken a new form. Along with the existing physical
communication, they now form virtual connections with
their peers. These virtual connections even grow beyond
one’s geographical boundaries. Facebook, Twitter, Flickr,
Whatsapp etc. are some of the popular social networking
apps which provide platforms for such long distance inter-
actions among people.

Research shows that, unlike their physical counter parts,
online social networks rapidly change over time. New links
appear between actors and old edges become dormant over
time. These very properties of network provide a new area
of research and is referred as network evolution. Several
researchers have studied its different aspects. These include
empirical analysis of an evolving social network [1], actor-
oriented models for co-evolving social networks and indi-
vidual behaviors [2], time-aware link prediction in evolving
networks [3], emergence of segregation in evolving social
networks [4] and user preferences dynamics on evolving
social networks [5], just to name a few.

A deep psychology works behind any relationship in a
society and the same is also true for online social networks.
A person usually gets motivated by the activities within
its peers (neighbors). Understanding how an individual
relationship works may help understanding the dynamics
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of the evolving network. In the present study we focused
on an individual relationship and its local neighborhood to
identify the different forces acting between the participating
nodes of the said relationship. It is found that there exist at
least four forces working on each individual relationship.
Of them, two are positive and two are negative on the
relations. The present paper proposes a tension measure
on a social relation based on these forces. Tension force, in
Physics, describes the pulling force transmitted axially by
means of a string, cable, chain, or similar one-dimensional
continuous object. A social relation may be viewed as a
string connecting two nodes. The tension force on a social
relationship, which is a novel concept, is the cumulative
force which pulls the individual participants towards each
other. A negative value of tension on a relation, on the other
hand, indicates that the relationship is slack (i.e., inactive or
no physical link between the participants in concern).

In order to find the value of the tension and the el-
ementary forces constituting it, one needs to analyze the
neighborhood of a relationship. Further, social networks
show complex overlapping-neighborhood structures which
are often indistinguisable, depicting granular structure [6],
[7] (A granule is a clump of objects or points in the uni-
verse of discourse, drawn together, for example, by indis-
tinguishability, similarity, proximity or functionality [8]). In
such a system, the neighborhood of a relationship consti-
tutes the granules which are in relation with either or both
the participating nodes. Pawlak’s theory of rough sets [9]
provides a well known technology to extract knowledge
from such indiscernible (ill-defined) information in gran-
ulated domain. Rough set theoretic approach is based on
the principles of granular approximation of a set from its
inner and outer sides concerning the belonging of granules
to it. The theory hinges on the concept of two bounds of a
set, namely, lower approximation and upper approximation
which represent the sense of “definitely belonging”, and
“definitely and possibly belonging” of granules. Accord-
ingly, the lower and (upper - lower) approximate regions



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. X, XXXXX 2018 2

characterize two regions of a set or cluster, viz, the core
(definite) and boundary (ambiguous) regions respectively.
However, in social networks the neighborhood set of a
relation consists of three types of elements, namely, gran-
ules which are related to both the participating nodes, and
granules related to either of the nodes. These characteristics
create three different types of regions in the neighborhood
set. Granules which are related to both the participants
constitute the core region of the neighborhood set, whereas,
those related to either of the participating nodes constitute
two types of boundary regions of the neighborhood set.
Since we have two boundary regions, unlike Pawlak’s rough
set with single boundary region, we describe here a new
variant of rough set, called double bounded rough set to deal
with the situation.

Experiments with different synthetic and real world so-
cial networks reveal that the tension measure is positive for
above 90% of linked pairs, and zero or negative for above
85% non-linked pairs for all the data sets. This shows a
strong correlation between the tension measure and phys-
ical edges in the network. Because of this characteristic, the
tension value is used for link prediction problem. Experi-
ments have been conducted over nine real world network
data. It is shown that our method is superior to the best
known similarity based algorithms.

In summary, the contributions of this investigation are:

1) A new variant of rough set, namely, double
bounded rough set has been introduced which can
express the imperfect knowledge with relational
data in granular framework.

2) The concept of viewing a social relation in terms of
a string with different forces acting on it is unique.
A tension measure depicting the cumulative force
which pulls the nodes closer along the string has
been provided.

3) The algorithm based on the tension measure to
predict future links is new. This measure can also
predict the removal of link in future.

The rest of the paper is organized as follows. The prob-
lem statement is presented in Section 2. In Section 3 we
define the novel double bounded rough set. Different forces
and the tension measure are described in Section 4. A solu-
tion of link prediction based on the tension measure along
with the experiments and analysis is presented in Section 5.
Significance of link prediction and the related review of
the methods are also provided. Finally we conclude with
summary of findings in Section 6.

2 PROBLEM STATEMENT

The social relation between two nodes has been viewed here
as a string connecting the nodes (actors). The problems dealt
with are as follows:

• To identify and quantify the tension force and its ele-
mentary component forces acting on a social relation
by exploiting only the structural information of the
network

• To design a link prediction algorithm as an applica-
tion of the tension measure

3 DOUBLE BOUNDED ROUGH SET

Before describing in Section 4 the details of the forces acting
between actors, here we will define the mathematical foun-
dations that would be used in developing the underlying
theory. In modern social networks, relations show complex
characteristics due to high overlap in the neighborhood.
Hence, it is very hard to define crisp boundary of a node’s
neighborhood. Expressing such ill-defined neighborhood
in granular computing framework provides advantages in
problem solving [6], [7]. A granule is a collection of data
points which are indiscernible with respect to a given set of
attributes. In such an environment one may need to extract
the knowledge about a relational tuple. A relational tuple,
say (a, b), is a relation which indicates that a data point
a is explicitly related to another point b. This relationship
might be of different types, e.g., transaction in financial
data, friendship in social network data, email exchange in
communication data, co-participation in event related data.
A granule is said to be related to a data point a when any
element of the granule is explicitly related to a. One may
define the domain of a tuple by all the granules which
are related to the tuple. Granules in the domain may not
be expressed with a crisp set as there might be granules
which are related to only one of the member of the tuple
instead of both the members. In other words, granules may
partially fall within the domain of the said relationship.
The theory of rough sets [9] appears to be appropriate to
represent such imperfect knowledge. In rough set theoretic
framework, the lower approximate region of the set consists
of the granules which are related to both the players a and
b of the tuple, and the upper approximate region contains
the granules which are related to either of a and b, or both
a and b. That means the region corresponding to “either
of a and b” represents the boundary (possibly belonging)
region of the set. One may note that, in case of relation
data, “either of a” and “either of b” may characterize two
different aspects of knowledge. Therefore, it may be noted
that the boundary region, i.e., (upper - lower) approximate
region, here, comprises two distinct classes of granules,
namely, those related to only a and those related to only
b. In order to deal with this situation, we propose here a
new variant of rough set, namely, double bounded rough
set, to express the domain of such relational tuple in the
granulated environment.

a b

Lower ApproximationLeft Upper Approximation

Right Upper Approximation

Fig. 1: Illustration: Double Bounded Rough Set
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The double bounded rough set, defined here, has three
distinct elements in the set. One is the lower approximation,
second is the left upper approximation and the last one is the
right upper approximation. Figure 1 shows an illustration of
double bounded rough set. Here, a and b represents the two
nodes between which an explicit relation exists. Blue region
indicates the lower approximation of this relation. Blue and
yellow together constitute the left-upper approximation and
blue plus orange define the right-upper approximation of
the relation. Let us now mathematically define the double
bounded rough set.

Suppose we have an information system S = (U,A),
where U is the universe and A is the set of attributes. Both U
and A are finite and non empty sets. For any P ⊆ A, there
is an equivalence relation IND(P ) such that

IND(P ) =
{
(x, y) ∈ U2

∣∣∣ ∀p ∈ P, p(x) = p(y)
}

(1)

Here, p(x) function returns the value of the attribute
p for data point x. The relation IND(P ) is called P -
indiscernibility relation and any two points (x, y) ∈ P
indicate that x and y can not be distinguishable using the at-
tribute set P . The equivalence class of the P -indiscernibility
relation is denoted by [x]P , and U/P denotes all the classes.
Let us denote this granulated information system with
SP = (U,A, [x]P ).

When dealing with the relational data, data points usu-
ally have explicitly defined connections (e.g. friendship, fol-
lower, transactions etc.) with each other. Let this connection
be denoted by Q. In SP , let us now define a relation I on
U × U/P such that,

I(x) =
{
[x]P

∣∣ ∃y ∈ [x]P where (x, y) ∈ Q
}

(2)

For a given information system SP = (U,A, [x]P ),
and relations Q and I , we now define three operations
assigning to every xQy. These three operations output three
sets P∗(xQy), ∗P (xQy) and P ∗(xQy), called P -lower, P -
left-upper and P -right-upper approximation of (xQy) pair
respectively. These are defined as follows:

P∗(xQy) = I(x) ∩ I(y) (3)
∗P (xQy) = I(x) ∪ (I(x) ∩ I(y)) (4)
P ∗(xQy) = I(y) ∪ (I(x) ∩ I(y)) (5)

where I(x) returns the set of P -granules which are
related to data point x.

Hence, P -lower approximation of the domain of relation
xQy is the collection of P -granules which has I-relationship

p q

Fig. 2: An example network

with both x and y data points. On the other hand, P -
granules in the boundary region have I-relationship with
either x or y. The boundary region of the set is defined by

(∗P (xQy) ∪ P ∗(xQy)) \ P∗(xQy) (6)

If the boundary region is empty then the set is crisp with
respect to P , otherwise the set is rough. In addition, the
upper approximation of the set has two different bounds.
Hence, the set is named as double bounded rough set.

4 TENSION BETWEEN A PAIR OF SOCIAL ACTORS

In this section, we define a social tension measure of a pair
of nodes in the network. The tension measure attributed
to a pair could predict the dynamics between the two
individuals in the pair.

A person’s current network structure can reveal the cur-
rent psychological state of that person with its neighboring
peers. From these structures we could identify several forces
which are critical to the changes in the network. The source
of these forces is explained here before formulating the
tension measure mathematically.

The first source of attraction (f1) for a pair of nodes (say,
(p, q)) is the common neighbors. In the example network
(Figure 2), this region is shown with light yellow. Classical
say is that larger the number of common neighbors, higher
the probability that p and q are attracted towards each
other. Our intuition says that a positive force towards the
formation (or beholding) of connection between p and q
comes from the activities within the common neighbors.
Hence more denser the common neighbors are, more the
nodes p and q are attracted to each other.

Second force (f2), we identified, is due to the presence
of inter-neighborhood communication links. This force is
also a positive one towards the relational pair (p, q). Inter-
neighborhood links are the links between the neighbors of
only p with the neighbors of only q. For example in Figure 2,
blue edges connects a node from light red region of p’s
neighbor to light green region of q’s neighbor, i.e., friends of
p is in friend with the friends of q. This puts a peer pressure
in the relation (p, q) to come closer.

Not all the forces are positive for a relationship. There
are activities which may push two nodes apart. One such
force comes from the intra-neighborhood connectivity. It is
possible that the neighborhood of a node (say, p) is densely
connected with each other and this kind of higher density
of intra-neighborhood connections will form a strong group
within the node p’s neighborhood. This factor repulses p
to form a new connection with some other node q outside
the group, as p is busy and satisfied with his/her existing
friends. Therefore, such forces (f3 and f4) around both p
and q contribute negatively towards their relationship. The
regions of f3 and f4 are shown in Figure 2 with light red
and light green overlays respectively.

Thus there are three different components of the neigh-
borhood that generate four different forces for a relation-
ship. Two of them are positive, while the other two are
negative. A cumulative resultant tension force can quantify
the strength of a relationship in a social network. In the next
part, we mathematically formulate this tension force.
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4.1 Network Model
The network is represented with a graph G(V,E), where V
is the set of nodes and E is the set of edges. The network is
further granularized where each granule is a pair of nodes,
say {x, y} where x, y ∈ V . Let the set of all the granules
in the network be denoted by G. Consider a function e(.)
defined over a granule such that e({x, y}) = 1 if (x, y) ∈
E, and zero, otherwise. The neighborhood of a node p is
defined as Γ(p) =

{
g ∈ G | p ∈ g, e(g) = 1

}
.

4.2 Different forces between two actors
As stated earlier, to analyze a local relationship, we need to
see the neighborhood of the relationship. Here we express
the neighborhood (N ) of a node pair (p, q) in the notion of
the aforesaid double bounded rough set (Section 3) as

N∗(p, q) =
{

g | ∀x ∈ g, {x, p} ∈ Γ(p) & {x, q} ∈ Γ(q)
}

(7)

N ∗(p, q) =
{

g | ∀x ∈ g, {x, q} ∈ Γ(q)
}

(8)
∗N (p, q) =

{
g | ∀x ∈ g, {x, p} ∈ Γ(p)

}
(9)

Density of links in lower approximate region is the first
force and we can quantify it as

f1(p, q) =

∣∣∣∣{ g ∈ N∗(p, q)
∣∣ e(g) = 1

}∣∣∣∣∣∣N∗(p, q)
∣∣ (10)

The numerator counts the number of granules in the
lower approximate region where a physical link in the
network exists and the denominator is the count of all the
possible granules in the lower approximate region of the
pair p and q.

The second force (f2) is defined by the density of links
within the inter-neighborhood connections. In computing
this, we avoid the links within the common neighbors as
they are already considered by f1. Hence, f2 is defined as in
Equation 11.

f2(p, q) =

∣∣∣∣∣∣
{

g | x ∈
⋃

p∈∗N (p,q)\N∗(p,q)
p ∧ y ∈

⋃
q∈N∗(p,q)\N∗(p,q)

q where g = {x, y}; e(g) = 1

}∣∣∣∣∣∣∣∣∣∣∣∣
{

g | x ∈
⋃

p∈∗N (p,q)\N∗(p,q)
p ∧ y ∈

⋃
q∈N∗(p,q)\N∗(p,q)

q where g = {x, y}

}∣∣∣∣∣∣
(11)

The denominator of f2 counts the granules for which one
element is in the left boundary region and the other element
is in the right boundary region, and the numerator counts
how many granules of the denominator corresponds to a
physical link in the network.

The other forces, f3 and f4 are due to the link density
within the neighborhood of the participating pairs. These
intra-neighborhood forces are quantified by the ratio of the
number of granules in the left (or right) boundary region
having physical link in the network, and the total number
of granules in the left (or right) boundary region. The
mathematical formulae of f3 and f4 is as follows.

f3(p, q) =

∣∣∣∣{ g ∈∗ N (p, q) \ N∗(p, q)
∣∣ e(g) = 1

}∣∣∣∣∣∣∣{ g | g ∈∗ N (p, q) \ N∗(p, q)
}∣∣∣ (12)

f4(p, q) =

∣∣∣∣{ g ∈ N ∗(p, q) \ N∗(p, q)
∣∣ e(g) = 1

}∣∣∣∣∣∣∣{ g | g ∈ N ∗(p, q) \ N∗(p, q)
}∣∣∣ (13)

4.3 Tension Measure (T )

As real world social networks are psychologically driven, a
deep psychology works behind the creation of new relations
and breaking up of old relations in them. The density terms,
discussed before also incorporate the relational psychology.
The density component f1 and f2 contribute positively
towards strong relationship, but higher density value of f3

and f4 works negatively for the relation. The combination

of the four density terms results in the relational tension
strength of the pair of nodes p and q.

Tension T between a social pair (p, q) is defined as

T (p, q) = 1

2
× [f1(p, q) + f2(p, q)− f3(p, q)− f4(p, q)] (14)

Algorithm 1 shows a method to calculate the tension
value.

4.3.1 Characteristics
• The value of T (p, q) varies from −1 to +1.
• T (p, q) = 1 when f1 = 1 and f2 = 1, but f3

and f4 are zero (0). Physically it means that all the
common neighbors are linked with each other and
inter-neighbors are fully connected, but there is no
intra-neighborhood connections. Figure 3 shows an
example network with the said situation.

p q

Fig. 3: Network with T (p, q) = 1

• When f1, f2 = 0 and f3, f4 = 1, the value of T (p, q)
attains the value −1. In other words, the tension is
−1 when there is no connections within the common
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p q

Fig. 4: Network with T (p, q) = (−1)

neighbors and between inter-neighbors, but intra-
neighborhoods of both p and q are fully connected.
Figure 4 illustrates a situation where T = −1.

• Tension measure along the pair (p, q) would be zero
under three different conditions:

1) When all the density components are zero (0),
i.e., f1, f2, f3, f4 = 0, practically, it means the
nodes are way apart from each other.

2) When f1 + f2 = f3 + f4, indicating a neutral
strength of the relation between the pair, and

3) When all the forces attain their highest value
of unity, i.e., f1, f2, f3, f4 = 1. That is the
relation is neutral and saturated.

4.3.2 Observations in Synthetically Generated Networks

We generated two synthetic networks using LDBC [10]. The
details of these data sets are shown in Table 1. In each
network we calculated the tension measure for all the pairs
with physical edges in the network. Figures 5a and 5b show
the distributions of the value of T for the Data Set 1 and
Data Set 2 respectively. We found that for Data Set 1, out
of 51, 398 links 36, 166 links have T value greater than 0,
i.e., the network has 70.36% of links which have positive
tension. For Data Set 2, it is 71.75% positive and 28.25%
negative values for T . A tension measure shows the strength
in a relationship. Hence, it is expected that those having
physical link in the network will have a positive T . This is
also verified, to be true as we obtained higher percentage of
positive values for existing links experimentally. However,
there are negative values as well. For a dynamic social
network, links may change their status quo over time.
Negative value of tension for any physical link of such
network indicates that the link became inactive and it may
be removed from the network in future.

The distributions of four different forces are shown in
the Figures 6a and 6b. For both the networks most of the f1

values are distributed within the range of 0 to 0.5, whereas
the values of other three forces f2, f3 and f4 are distributed
between 0 to 0.2.

We also experimented with the non-linked pairs. For
these we choose random pairs of nodes of size 49, 614 and
1, 99, 670 respectively for Data Set 1 and Data Set 2. The
distributions of tension measure of these non-link pairs are
shown in Figures 5c and 5d. As expected most of these
values are negative; to be precise, it is 86.93% and 97.09%
negative for Data Set 1 and Data Set 2 respectively. Even
though they are not physically connected, about 11% and
2% (Figures 6c and 6d) nodes show positive tension value
depicting a possibility of link formation in future.

Algorithm 1 Tension calculation

1 ’ ’ ’G : networkx graph ; a , b : nodes ’ ’ ’
2 def GetTensionValue (G, a , b ) :
3 ten = 0 . 0 , c nbrs = s e t ( [ ] )
4 l nbrs = [ ] , r nbrs = [ ]
5
6 ’ ’ ’ i d e n t i f y i n g nodes in t h e
7 rough r e g i o n s o f t h e n e i g h b o r h o o d ’ ’ ’
8 tmp = s e t (G. neighbors ( b ) )
9 for n in G[ a ] :

10 i f n in tmp :
11 c nbrs . add ( n )
12 e lse :
13 l nbrs . append ( n )
14 r nbrs = tmp − c nbrs
15
16 ’ ’ ’ I n t e r boundary d e n s i t y ’ ’ ’
17 f2 = 0 , count = 0
18 for n in l nbrs :
19 x = s e t (G[ n ] ) . i n t e r s e c t i o n ( r nbrs )
20 count = count + len ( x )
21
22 ncl = len ( l nbrs ) ∗ len ( r nbrs )
23 i f ( nc l > 0 ) :
24 f2 = f l o a t ( count )/ nc l
25
26 ’ ’ ’ common n e i g h b o r h o o d d e n s i t y ’ ’ ’
27 count = 0 , f1 = 0
28 i f ( len ( c nbrs ) > 1 ) :
29 cmn = s e t ( c nbrs )
30 while cmn :
31 node = cmn . pop ( )
32 x = s e t (G[ node ] ) . i n t e r s e c t i o n (cmn)
33 count = count + len ( x )
34
35 f1 = f l o a t ( count )/ ncr ( len ( c nbrs ) , 2 )
36
37 ’ ’ ’ I n t r a n e i g h b o r d e n s i t y @ s r c ’ ’ ’
38 count = 0 , f3 = 0
39 i f ( len ( l nbrs ) > 1 ) :
40 srcn = s e t ( l nbrs )
41 while srcn :
42 node = srcn . pop ( )
43 x = s e t (G[ node ] ) . i n t e r s e c t i o n ( srcn )
44 count = count + len ( x )
45
46 f3 = f l o a t ( count )/ ncr ( len ( l nbrs ) , 2 )
47
48 ’ ’ ’ I n t r a Ne ighbor Dens i ty @ d s t end ’ ’ ’
49 count = 0 , f4 = 0
50 i f ( len ( r nbrs ) >1) :
51 dstn = s e t ( r nbrs )
52 while dstn :
53 node = dstn . pop ( )
54 x = s e t (G[ node ] ) . i n t e r s e c t i o n ( dstn )
55 count = count + len ( x )
56 f4 = f l o a t ( count )/ ncr ( len ( r nbrs ) , 2 )
57
58 ten = 0 . 5∗ ( f1 + f2 − f3 − f4 )
59 return ten
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Fig. 5: Distribution of T
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Fig. 6: Distribution of different forces

4.3.3 Observation in Real World Networks
We have observed the behavior of the tension measure
for pairs of nodes of five real world data sets including
two network data collected by us, namely Flickr friendship
network and Twitter Mention/Reply network. Features of
these data sets are shown in Table 2. In the experiment
we examined all the edged pairs for Wiki-Vote [11], [12]
and Facebook [13] networks, whereas it is 50000 randomly
selected edged pairs for Flickr, Twitter and Youtube [14] data.
Obtained results are shown in Table 3.

TABLE 1: Synthetic Data Sets

Data Set 1 Data Set 2
Nodes 3708 31444
Edges 51398 766948
Avg. Degree 27.7228 48.7818

It is evident from Table 3 that above 91% of the linked
pairs have positive tension value indicating their relational
tension strength positive. These results are as expected, and
it justifies the significance of the tension measure. Nearly
6 − 9% of the linked pairs were found to have tension
values less than zero. These linked pairs, that reside in
negative side of the distribution, indicate the possibility of
their removal or deletion in future. The distribution plots of
the linked pairs for all the data sets are shown in Figure 7.

We have also investigated the tension measure for non-
existing edged pairs. A set of 50, 000 non-linked node pairs
were selected randomly from all the data sets and we mea-
sured the tension score for all these links. The distributions
of tension measure for different data sets are plotted in
Figure 8. As expected, most of the tension values are either
less than or equal to zero. The data summarized in Table 3
show positive tension values for less than 4% in case of
facebook, youtube and twitter data, and less than 14% in
case of wiki-vote and flickr data. These positive tension
values indicate a possible future addition in physical links.

Thus, experimentally we found that for linked pairs,
the tension values are mostly positive, whereas for non-

linked pairs the tension is mostly either negative or zero.
These findings validate the theoretical claims (4.3) of the
tension measure. However, a major question arises from
the aforesaid experimental observation that ‘why there is
a high percentage (over 40%) of zero in tension values for
3 out of 5 data sets?’. Even for wiki-vote, more than 15%
pairs have tension measure zero. To understand the root
cause of this results one may dig into the properties of the
network. It is found that all these data sets contain high
number (32.53% for wiki-vote, 48.63% for twitter, 59.69%
for flickr and 52.88% for youtube) of nodes with degree
less than 2. So, if a node of the pair has degree below two,
then there would be less possibility of inter-connection in
neighborhood. Hence, the structural tension value would
be zero or indeterminable. We have also observed from the
global aspect that, this situation may arise if the clustering
coefficient of the whole network is very low. For example,
here the average clustering coefficient (CC) of the Facebook
network is 0.58, whereas for wiki-Vote, flickr, youtube and
twitter the CC values are 0.14, 0.176, 0.082 and 0.155 respec-
tively.

5 LINK PREDICTION

The problem of link prediction is to predict future links
between a pair of social actors for a given snapshot of the
network. It is an important problem to study as identifying
such missing links may help in solving many important
questions such as whether a person would like a book, a
place or a picture or not, whether two scholars will collab-
orate with each other or not, and whether a person would
receive some endorsement or not. Besides these academic
interests, link prediction has many commercial applications
as well, e.g., recommending friends in social network like
facebook or finding probable job applicant in LinkedIn. It
can also help in identifying the hidden groups in terrorist
network or inferring missing links in taxonomies [15].
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TABLE 2: Real World Data Sets

Wiki-Vote Facebook Flickr Youtube Twitter Haggle Digg Epinion EUEmail
Nodes 7115 4039 559136 1076748 80521 274 279630 131828 986
Edges 103689 88234 1991356 2826692 219285 2124 1548126 711783 16064
Avg. Degree 28.3238 43.6910 7.1230 5.2504 5.4467 15.5036 11.0727 10.7987 32.5842
Nodes in Largest CC 7066 4039 559134 1073152 73126 274 261489 119130 986
Edges in Largest CC 103663 88234 1991355 2823873 213817 2124 1536577 704572 16064
Avg. Clustering Coefcient 0.1409 0.6055 0.17605 0.08276 0.15502 0.63268 0.09244 0.12794 0.40705
Temporal Info No No No No No Yes Yes Yes Yes

TABLE 3: Tension for linked and unlinked pairs

Edged Pair Non-Edged Pair
Data Set +ve% (count) -ve% (count) 0% (count) +ve% (count) -ve% (count) 0% (count)
Wiki-Vote 92.72 (93430) 7.28 (7332) 0.00 (0) 13.17 (13119) 68.42 (68130) 18.41 (18334)
Facebook 94.10 (83030) 5.90 (5202) 0.00 (0) 2.67 (2636) 97.26 (96106) 0.07 (69)
Flickr 94.18 (47092) 5.82 (2908) 0.00 (0) 13.93 (6966) 40.61 (20306) 45.46 (22728)
Youtube 91.68 (45839) 8.30 (4152) 0.02 (9) 0.96 (482) 40.79 (20395) 58.25 (29123)
Twitter 91.25 (45627) 8.71 (4357) 0.03 (16) 3.66 (1835) 55.54 (27826) 40.79 (20437)
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Fig. 7: Distribution of T (p, q) where e(p, q) = 1
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Fig. 8: Distribution of T (p, q) where e(p, q) = 0

5.1 Related Work

Having multi-disciplinary applications, the problem of link
prediction has been in active research for couple of decades.
Generally the principle of link prediction algorithms is to
assign a likelihood score to each of the non-existing links,
order them according to their likelihood score [16] and select
some of the top ones as per the need. The assumption
here is that the links with the higher score have higher
probabilities to be a link in future [17]. Scholars used
different local and global characteristics to calculate the
likelihood values. Based on the topological properties used,
one may categorize the available algorithms in three [18]
different sections viz, those using (i) neighbor based metric
(ii) path based metric and (iii) random walk based metric.
It is considered that people create links when they are
close, and a well known assumption is that two unknown
persons may become known due to their neighbors. Hence,
people have designed many similarity metrics based on
the neighborhood of the nodes. Examples of such measures
are Common Neighbors [19], Preferential Attachment [20],
Hub Promoted [21], Adamic-Adar [22], Jaccard Coefficient

[23], Leicht-Holme-Nerman [24], Hub Depressed [25] and
Parameter-Dependent [26]. There are methods where the
path between two nodes has been used instead of their
neighborhoods for measuring the similarities between them.
These are the path based likelihood metrics. Katz measure
[27], Local Path Score [28], Relation Strength Similarity [29]
and FriendLink [30] are some of the popular path based link
prediction metrics. Another way to model social interactions
is the random walk algorithms where transition probabili-
ties are used to determine the destination of the random
walk from the current node. Based on these algorithms some
of the link prediction metrics like SimRank [31], Hitting
Time [32], PropFlow [33] and Rooted PageRank [33] have
been developed.

More recently, researchers are trying to incorporate other
social network theories along with the topological informa-
tion in solving the link prediction problem. Some of the
techniques developed in this approach are based on com-
bining community level feature [34], developing individual
relational network [35], and combining non-topological in-
formation such as user profile and geographical locations
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[36].
Many learning based link prediction methods using the

similarity matrices, non-topological attributes and external
information have also been reported in recent years. The
learning framework as used was supervised [37], [38], [39],
[40], semi-supervised [40] and unsupervised [41], [42].

5.2 Algorithm based on the proposed tension measure

In this section we propose a link prediction algorithm
using the tension measure defined in Section 4.3. Unlike
the existing popular link prediction algorithms, where a
similarity score is assigned to a node pair, here the tension
measure assigns a direction (positive or negative) along
with the similarity score. If the tension measure is positive
then we predict a link formation, whereas if the score is
negative then a link deletion is predicted. In other words,
our link prediction algorithm calculates the tension measure
for all the test pairs of nodes and then select the pairs with
positive tension value. Unlike the other algorithms, we do
not rank the predicted links because any positive tension
value (irrespective of its magnitude) refers as a possibility
of link formation between the concerned pair. The method
is listed in Algorithm 2.

Algorithm 2 Link prediction using Tension measure

1 ’ ’ ’ i n p u t f o r t h e program i s a
2 graph and l i s t o f t e s t p a i r s ’ ’ ’
3 def GetPredictedLinks (G, t e s t p a i r s ) :
4 output = {}
5
6 for ( x , y ) in t e s t p a i r s :
7 t = GetTensionValue (G, x , y )
8 i f t > 0 :
9 output [ ( x , y ) ] = t

10
11 return output

5.3 Descriptions of Data Sets

In our experiments we used two types of real world network
data (i) without temporal information and (ii) with temporal
information.

• Wiki-Vote: The data set was collected by SNAP
group and publicly available in their homepage [43].
The network contains all the Wikipedia voting data
till January 2008. Nodes represent Wikipedia users
and the connections represent who vote for whom.
The network is a directed one. However, we removed
here the direction and used the network as a undi-
rected network.

• Facebook: The source of the data is again SNAP
[43] group and the network contains the ego net of
Facebook users. It is an undirected network of 4039
users.

• Youtube: The youtube data was collected by OSNR
group of The Max Planck Institute of Software Sys-
tems and publicly available at [44]. The properties
are listed in Table 2.

• Flickr: The data was collected by us in our labora-
tory. The data contains the Flickr user-to-user links
crawled during November and December 2015. The
crawl was initiated by seeds of Indian origin in
Flickr. Total link crawled was about 2 million and
the features of the network are shown in Table 2.

• Twitter: The network is formed by the reply/men-
tions of tweets collected by us during January to July
2017. The network nodes represent the twitter users
and a link is added if an user is either replied or
(s)he mentions another name in her (his) tweet. The
features are listed in Table 2.

• Haggle [45], [46]: This data set is an undirected
temporal network of contacts between people within
wireless devices. A node represents a person and an
edge between two persons shows that there was a
contact between them.

• Digg [47], [48]: The temporal data set is a friendship
network of digg users collected in 2009.

• Epinion [49], [50]: This is a temporal trust network of
epinion, an online product rating site. The network
consist of individual users connected by directed
trust links.

• EUEmail: The network was generated using email
data from a large European research institution by
SNAP [43] group. An edge of this network represent
a email communication between the members.

5.4 Comparing Methods

We compared our proposed link prediction method based
on tension measure with different popular similarity met-
rics based link prediction algorithms []. The objective is
to demonstrate the effectiveness of the proposed tension
measure vise-a-vise the existing similarity matrices. The
different similarity metrics used so far are as follows:

• Common Neighbors: The common neighbor pre-
dictor assigns a similarity score to a pair of nodes
based on the number of common neighbors between
them. The philosophy behind the common neighbor
predictor is that a common friend may introduce
the two parties. Hence more the common friends
are, higher is the chance of them to become friend.
Common neighbor score CN(x, y) of x and y is
calculated as

CN(x, y) = Γ(x) ∩ Γ(y) (15)

where Γ(.) represents the neighbors of (.).
• Resource Allocation Index: The resource allocation

index gives different weights to different common
neighbors. It says, lesser the degree of a common
neighbor (p) of two nodes (a and b), higher the
chance of that pair (a, b) to be friend through p.
The resource allocation index is calculated by the
sum of inverse of the degree of each of the common
neighbors as

RA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

|Γ(z)|
(16)
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• Adamic Adar: Adamic Adar is a further modification
of resource allocation index and is calculated by

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log |Γ(z)|
(17)

• Preferential Attachment: Based on the scale free
properties of social networks, it is a well known fact
that a user with many friends tend to create more
future connections. Based on this, the preferential
attachment score is calculated as

PA(x, y) = |Γ(x)× Γ(y)| (18)

• Jaccard’s Coefficient: This is widely used in informa-
tion retrieval. The measure is capable of comparing
the similarity as well as the diversity in the neigh-
borhood of the concerning node pair. The Jaccard’s
coefficient is measured by

JC(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(19)

5.5 Experimental Setup
We have conducted experiments to compare the per-
formance of different similarity matrices (Equations (16)
to (19)) with the proposed tension measure (Equation (14)).
The experiments were executed over two different types of
network data, namely, those with temporal information and
those without temporal information.

For the data which do not have temporal information,
we have selected 10% of the links randomly and kept them
as the prob set (say, E′prob), and the remaining 90% links
were used for training. The graph generated from the train-
ing links was used as the input set of both proposed and
comparing algorithms for link prediction. Apart from the
prob set of 10% existing edges, we also randomly selected
non-lined pair (say, E′′prob) of similar size. Thus the total link
pair selected as prob set is Eprob = E′prob ∪E′′prob. However,
for the temporal data the prob set is selected based on
the temporal information. With these prob sets, following
quantitative and statistical indexes were computed for com-
parative study.

• Effectiveness (E): One way to determine the effec-
tiveness of a predictor is to measure the percentage
of relevant objects correctly identified, i.e., the true
positive (tp). However, in the process of maximizing
tp, a predictor may select non-relevant objects, i.e.,
the false positive (fp). So, we measured the effective-
ness, with the difference between the true positive
rate and false positive rate as,

E=
tp

tp + fn
− fp

tn + fp
(20)

where fn is the false negative and tn is the true
negative.

• Accuracy (A): Accuracy measure of a predictor is

A=
tp + tn

tp + fp + tn + fn
(21)

• Area under the receiver operating Characteristics
curve [51], [52]: This measure can be interpreted

as the probability that a randomly chosen missing
link is given a higher score than a randomly chosen
non-linked pair. Considering n independent compar-
isons, and the accuracy is measured as

AUC =
n′ + 0.5n′′

n
(22)

where n′ is the number of times a missing link is
given higher score and n′′ is the number of times a
missing link is given equal score to that of the non-
linked pair.

• f -score: The measure f -score is the harmonic mean
of precision and recall. Precision is defined as the
factor of identified links that were missing link. On
the other hand, recall is the factor of the missing link
selected. Hence, higher the value of f -score, better
the predictor. f -score is measured as

f = 2× Precision×Recall

Precision + Recall
(23)

where precision and recall are

Precision =
tp

tp + fp
(24)

Recall =
tp

tp + fn
(25)

5.6 Results
Table 4 shows the comparative values of the measure Effec-
tiveness E for different data sets. For all the data sets tension
based link prediction algorithm shows highest effectiveness-
value. For example, the improvement over the nearest algo-
rithm is 12.95% (from JC score) in wiki-vote, 4.29% (from
RA score) in facebook, 90.25% (from AA score) in flickr,
11.89% (from AA score) in youtube and 24.23% (from AA
score) in twitter. This indicates that the proposed method
is superior in selecting the missing links while rejecting
the falls positive, with E at least 10% better than others,
except the facebook data where tension is superior by 4.3%.
A graphic showing the box whiskers plot of the obtained
results is shown in Figure 9 for the measure E.
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0.8

Fig. 9: Effectiveness of different data sets for different al-
gorithms. The white bar within the box shows the median
value and the upper and lower boundary of the box are
the upper and lower quartiles of the obtained values. The
whiskers show the highest and lowest values reported.

A values of different algorithms for different data sets
are listed in Table 5. Similar to the E-index, the proposed
prediction method with T -measure, shows improvement
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TABLE 4: Comparison in terms of E

wiki-vote Facebook Flickr Youtube Twitter Haggle Digg Epinion EUEmail
Tension 0.689 0.826 0.527 0.347 0.395 0.330 0.235 0.294 0.546

Resource Allocation 0.484 0.792 0.010 0.207 0.237 0.014 0.127 0.199 0.003
Preferential Attachment 0.470 0.444 0.241 0.157 0.179 0.175 0.195 0.292 0.368

Adamic/Adar 0.536 0.654 0.277 0.311 0.326 0.108 0.198 0.178 0.459
Jaccard Coefficient 0.610 0.782 0.132 0.251 0.244 0.076 0.159 0.246 0.435

TABLE 5: Comparison in terms of A

wiki-vote Facebook Flickr Youtube Twitter Haggle Digg Epinion EUEmail
Tension 0.845 0.913 0.764 0.674 0.698 0.672 0.618 0.647 0.774

Resource Allocation 0.744 0.897 0.505 0.604 0.619 0.579 0.564 0.599 0.512
Preferential Attachment 0.737 0.724 0.621 0.579 0.590 0.648 0.598 0.646 0.689

Adamic/Adar 0.769 0.829 0.639 0.656 0.663 0.620 0.599 0.589 0.735
Jaccard Coefficient 0.806 0.892 0.566 0.625 0.622 0.604 0.580 0.623 0.723

TABLE 6: Comparison in terms of AUC

wiki-vote Facebook Flickr Youtube Twitter Haggle Digg Epinion EUEmail
Tension 0.860 0.991 0.827 0.602 0.782 0.710 0.520 0.650 0.830

Resource Allocation 0.922 0.995 0.826 0.734 0.783 0.730 0.660 0.765 0.925
Preferential Attachment 0.937 0.833 0.840 0.763 0.800 0.660 0.685 0.880 0.750

Adamic/Adar 0.927 0.993 0.817 0.721 0.778 0.770 0.675 0.790 0.870
Jaccard Coefficient 0.918 0.989 0.804 0.725 0.769 0.660 0.610 0.800 0.850

TABLE 7: Comparison in terms of f-Score

wiki-vote Facebook Flickr Youtube Twitter Haggle Digg Epinion EUEmail
Tension 0.838 0.907 0.735 0.522 0.588 0.616 0.413 0.476 0.760

Resource Allocation 0.656 0.884 0.020 0.343 0.384 0.028 0.225 0.332 0.006
Preferential Attachment 0.648 0.642 0.389 0.272 0.305 0.297 0.328 0.452 0.597

Adamic/Adar 0.703 0.792 0.434 0.475 0.492 0.196 0.332 0.302 0.648
Jaccard Coefficient 0.769 0.878 0.277 0.402 0.411 0.162 0.279 0.399 0.623
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Fig. 10: Accuracy of different data sets for different algo-
rithms. The white bar within the box shows the median
value and the upper and lower boundary of the box are
the upper and lower quartiles of the obtained values. The
whiskers show the highest and lowest values reported.

over the best obtained values of ‘accuracy’ by other methods
for all the data sets. The factor of improvement from the
highest score obtained by the existing algorithm is 4.83%,
2.35%, 19.56%, 2.74% and 5.28% respectively for wiki-vote,
facebook, flickr, youtube and twitter data. Figure 10 shows
a plot of the obtained results.

AUC score indicates whether the obtained values for
missing links are usually higher than the obtained values
of non-linked pairs. Table 6 shows the AUC values of all
the data sets for all the matrices. Unlike accuracy and
effectiveness, the proposed tension based link prediction
algorithm shows mixed results. For facebook, the proposed
method shows comparable results, whereas for flickr and
twitter it is comparable with others, except the Preferential

Attachment metric. For wiki-vote and youtube, the score is
lowest for the tension measure as compared to the other
comparing similarity matrices. A plot showing the obtained
results is in Figure 11.
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Fig. 11: AUC of different data sets for different algorithms.
The white bar within the box shows the median value and
the upper and lower boundary of the box are the upper and
lower quartiles of the obtained values. The whiskers show
the highest and lowest values reported.

Finally, the results of f -score are shown in Table 7. From
the table it is clear that the f -score for the proposed method
is high as compared to all the methods for all the data sets
we have experimented with. It indicates that the proposed
T measure can maximize both the precision and recall. That
is, while being precise it can select more relevant items
as compared to the other comparing matrices. Figure 12
summarizes the obtained f -scores in a box whiskers chart.

All the aforesaid experiments have been executed in an
Intel Core i5-5200U at 2.20 GHz based system with 8 GB



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. X, XXXXX 2018 11

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 12: f -score of different data sets for different algorithms.
The white bar within the box shows the median value and
the upper and lower boundary of the box are the upper and
lower quartiles of the obtained values. The whiskers show
the highest and lowest values reported.

DDR4 RAM. The programming language used is python
3.6 under fedora core 25. Multiprocessor coding has been
used to reduce the execution time of all the experiments.
The comparative execution times (for few data sets as ex-
ample) are shown in Figure 13. Each group corresponds to
a particular list of test pairs. ‘nl’ in the graph label refers
to the non link (E′′prob) prob set. Execution time-wise, the
method based on the proposed T is the slowest among the
all. However, one should note that the information content
of the proposed tension measure is more than those of
the other comparing matrices. For example, the proposed
method can easily predict the link removal along with its
ability in predicting future links, which is not possible by
others. Another observation from Figure 13 is that for all the
data sets the execution time of the proposed method for non
linked pairs is significantly lower than that of the missing
link pairs. On the other hand, the comparing methods take
similar execution time for missing and non lined pairs for
most of the data sets.
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Fig. 13: Execution time in log

6 DISCUSSION AND CONCLUSION

The contribution of the current investigation is three fold.
First, the social relation between two actors (nodes) is
viewed as a string with various forces acting on it. Ac-
cordingly, a tension measure which pulls two participating
nodes along the string is defined. Four different components
of the tension measure are identified. A new varient of
rough set, namely, double bounded rough set is introduced
in order to quantify the said forces mathematically. Finally,

an algorithm for link prediction in dynamic social network
is developed based on the proposed tension measure.

Double bounded rough set (Section 3) concerns with the
domain of a crisp relationship between two actors. It hinges
on the concept of two upper bounds (unlike Pawlaks rough
set [9]) along with the lower bound. Though its application
is shown here for social network analysis, it can be used for
other domains with relational data.

We identified that at least four forces are there between
any pair of actors in a social network. Two of the forces
are positively contributing to the relation, whereas the other
two negatively contribute. Positive force means pulling
of the participating nodes towards each other, while the
negative one indicates their repulsion. Experimentally, we
showed that more than 90% linked and less than 15% non-
linked pairs of nodes have positive tension value. It is also
found that for all the cases above 85% tension value is either
negative or zero for non-linked pairs. It means the tension
measure has a strong correlation with the physical links of
the network. This indicates the suitability of the tension
measure as an index for link prediction. It is shown sta-
tistically that the link prediction algorithm designed based
on the tension measure outperforms several well known
similarity based link prediction algorithms for most of the
data sets considered here.

Although the tension based link prediction method is
relatively slow, it has other merits and its application is
not limited to link prediction only. Its characteristics of
identifying the negative strength of relationship provide ad-
ditional benefits in social network analysis. With this ability,
one can identify the links which are possible candidates
for future removal. The tension measure, being capable
of predicting addition as well as deletion of links, can
well fit in modeling network evolution. It can further be
used to generate synthetic social network data with more
dynamic characteristics. Influence maximization is another
area where this measure may find application in rejecting
the inactive links while identifying the influencing actors.
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