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Abstract—The paper defines a new theoretical measure Total
Influence, of a node as well as a set of nodes in the social
network. Total influence uses probabilistic theory to obtain the
expected size of the information spreading in the social network
under the independent cascade model of diffusion. In order to
quantify the size of the spreading practically, the paper proposes
a new hybrid simulation methodology for the independent cascade
model. The hybrid method uses rough set theory and defines
rough knowledge agents around all the seed nodes from which
the information is propagating. The lower approximation is
calculated using the probabilistic approach, while the size of
influence in the boundary region is quantified by Monte-Carlo
simulation on a reduced network. The reduce network is formed
by compacting all the nodes in the lower approximate region as a
super-node. Experimental results on two synthetically generated
directed network show that the hybrid method runs magnitude
faster than its counterpart with a similar accuracy of the
spreading size.

Index Terms—Influence Maximization, Rough Granule, Rough
Set, Social Network, Spreding Size

I. INTRODUCTION

Independent Cascade (IC) model is one of the two (other
being Linear Threshold model) widely used information dif-
fusion models available to computer scientists. IC model is
a stochastic method in which information flows from a node
to another neighboring node based on probabilistic rules [1].
Given a set of starting nodes (referred as seed nodes) one
needs to run simulations for a sufficiently large number of
times to estimate the overall size of an information spread.
Usually, an average of 10000 or 20000 independent Monte-
Carlo simulations is used for a reasonable estimation of the
cascade size. Ten thousand simulations, even with the help
of modern technologies, is time-consuming, especially when
the social network is Big-data in size. Unfortunately, no
deterministic approach is available to date to measure the
spreading size.

The goal of the current research work is to provide an
alternative to these tedious simulations of the IC model. This
new alternative, in turn, helps in the development of algorithms
on information diffusion in Big-data social networks. In this
study, a network is modeled with a collection of rough
granules, called knowledge agent, around each seed node. A

knowledge agent spreads information in the network, and the
granule defines the region of the knowledge spread in the
network. A measure, namely total influence, is proposed to
mathematically determine the region of information spread
by a single knowledge agent. Besides, a measure to mathe-
matically determine the total information spread by a set of
knowledge agents is also proposed. In order to find out the total
information spread practically, a hybrid simulation mechanism
which uses the rough set theory has been developed. The
algorithm runs in two steps; first, it approximates the lower
bounds of the rough knowledge agents; and in the next
step, a Monte-Carlo simulation is run on a reduced graph
to approximate the “upper − lower” region of the agents.
Experimental results with two synthetically generated directed
network show that the proposed hybrid simulation is faster
than the conventional approach of Monte-Carlo simulation.

A. Related Work

Diffusion of innovation first studied by the sociologist [2],
[3] more than half a century back. With the digital presence
of the human being, the very topic is being explored by
different field of studies, including computer science for the
last few decades. One of the pioneering work [4], [5] on viral
marketing triggers a series of research studies on diffusion
models [1], [2], [6], [7] and several application of information
diffusion, especially in the online social networks [1], [5],
[8]–[13]. The main objective of these applications was to use
the information diffusion for viral marketing, diagnosis, and
controlling the epidemic spread and identifying threats, among
others. However, these algorithms are highly dependent on the
underlying information spreading model. Independent Cascade
(IC) model is one of the most popular information diffusion
model first used by [1] in order to find a solution for influence
maximization.

B. Independent Cascade Model

The diffusion of information in the IC model works as
follows. The nodes in the network can be in one of the two
states, namely, active and inactive. A node is active when the
node accepted the information being circulated in the network,
and a node is considered inactive when it does not have
the information. In each time step, one of the active nodes
tries to activate one of its inactive neighbors whom he never978-1-7281-5688-0/20/$31.00 c©2020 IEEE



tried before. That is a node never tries more than once to
activate the same neighbor. The inactive node gets activated
with a probability, namely, propagation/diffusion probability.
In a real scenario, propagation probability is the property of
individual relation, i.e., each relationship will have a different
probability of getting activated. However, most of the work
considers static propagation probabilities, that is the same
diffusion probability for all the edges.

C. Influence Maximization and Greedy Solution

In information diffusion literature, the problem of influence
maximization is to find a set of influential nodes in terms
of spreading size in the network. The natural solution to
the problem will be to select those persons having higher
numbers of neighbors. Domingos and Richardson were the
first to study the problem [4], [5] in the algorithmic aspect
and proposed probabilistic methods to solve it. Later, Kempe
et al. formulated it as a discrete optimization problem [1] and
showed that the problem is NP hard. They proposed a greedy
hill climbing algorithm shown in Algorithm 1. In each iteration
of the algorithm, the marginal contribution of every non-seed
node to the information diffusion is separately estimated, and
the highest contributor is selected as the next seed. Thus,
the algorithm maximizes the influence contribution during the
selection of seeds. It is the best-known solution of the influence
maximization problem to this day. The main drawback of the
algorithm comes from the marginal contribution estimation.

Algorithm 1 Greedy Hill Climbing Algorithm
input : A Social Network G(V,E) and k
output : Set S ∈ 2V having cardinality k

initialization: S := ∅
while |S| 6= k do

v∗ ← arg max
v∈V \S

σ̂(S ∪ {v})

; /* σ̂(.) returns the estimated influence */

S ← S ∪ {v∗}
end

There is no deterministic method available to get the
marginal contribution of a node. In their paper, Kempe et
al. [1] used Monte-Carlo simulation for the estimation of
such contribution. As the process of information diffusion is
highly stochastic, the simulation needs to be performed for
a sufficiently large number of times to obtain more accurate
results. It may take days to identify the top 50 seeds even
on a graph of the moderate size of 30K nodes [14]. The
current study tries to remove this bottleneck using a hybrid
simulation method described in the following sections. Very
recently, Zhou et al. [15] proposed a method to find the
upper bound of the influence and use it to determine the
influential nodes in a social network. This algorithm is further
improved in [16]. Both of these algorithms tried to reduce
the number of runs of Monte-Carlo simulations based on the
upper bound and the idea of the lazy forward method. On the
contrary to their work proposed work in this paper tries to

reduce the size of the network with the help of Rough Set
theory in order to gain execution time benefit in Monte-Carlo
simulation. Rough set had been successfully used to model
the overlapping neighborhoods [17], [18] in social network
analysis. The current paper uses rough set to model the region
of information spread in the network.

The paper is organized as follows. Section II defines the
total influence measure for both single and multiple nodes.
The methodology of hybrid simulation is presented in Section
III. Experimental results are reported in Section IV and finally,
Section V concludes the contribution and discuss the future
works.

II. TOTAL INFLUENCE

In the study of influence maximization in social network
analysis, a person is considered influential if a piece informa-
tion given to him/her reaches to the others in the network
over a certain period of time. These influencing person is
called information agent or knowledge agent. Size of influ-
ence is measured by the number of people (or nodes in
the graph representation) having the same information that
of the knowledge agent after the diffusion. Propagation of
information follows the domino effect. That is neighbors of
the knowledge agent (say level 1) get the message first.
Then if these nodes get influenced, their neighbors (level 2)
are informed and so on. This cascade flows in a stochastic
process. Nodes get influenced with a probability referred to as
propagation probability or diffusion probability. This section
formulates a measure to find the expected size of the influence
of knowledge agents. The size we referred to as total influence
as it comprises of the influences for all the level from the
knowledge agent.

When the same information is propagated from multiple
knowledge agents, the domain of ones’ total influence is
affected by the others. Further, the section proposes mathe-
matical formulas to calculate the total influence of a set of
information agents.

A. The Model

Let the social network is represented with a graph G(V,E)
where V is the set of nodes (denoting a person in a social
network) and E ∈ V × V is the set of edges (denoting the
relationships in the people). Each edge e ∈ E is associated
with a probability of activation/propagation λe. A node u
is influenced by node v via the edge (v, u) ∈ E with
a probability λ(v,u). The function Γ(v) returns the set of
neighbor of node v.

B. Total Influence of a Node

Definition 1 (Expected Influence at Level 1): For a given
information agent v the expected number of nodes influenced
at level 1 is defined by the expectation E(1) as:

E(1)(v) =
∑

u∈Γ(v)

λv,u (1)

Definition 2 (Expected Influence at Level 2): If a node u ∈
Γ(v) gets influenced at level 1 then only it can try to influence



its neighbors. Thus, the expected number of nodes influenced
at level 2 by node v is defined by the expectation E(2) as:

E(2)(v) =
∑

u1∈Γ(v)

(λv,u1
×

∑
u2∈Γ(u1)

λu1,u2
) (2)

Definition 3 (Expected Influence at Level j): The expected
number of nodes influenced at level j by node v is defined by
the expectation E(j) as:

E(j)(v) =
∑
u1∈Γ(v)(λv,u1

×
∑
u2∈Γ(u1)(λu1,u2

× ...
×

∑
uj∈Γ(uj−1) λuj−1,uj

)
(3)

Definition 4 (Total Influence of a Node): Total influence of
a knowledge agent in the network is the sum of the number of
nodes influenced in each level distance from the node. Here
the distance referred to the hop distance in the graph. Thus,
the total influence T (v) of an information agent v is

T (v) = Expected nodes influenced at level 1
+ Expected nodes influenced at level 2
+ ...

(4)

T (v) = E(1)(v) + E(2)(v) + ... (5)

=
∑

u∈Γ(v)

λu,v +
∑

u1∈Γ(v)

(λu1,v

×
∑

u2∈Γ(u1)

λu2,u1) + ... (6)

This equation can be rewritten using recursive function as

T (v) =
∑

u∈Γ(v)

(λu,v × (1 + T (u))) (7)

A point to mention here is that, for practical scenario
the recursion continues up to the diameter of the network.
Because, by definition that covers all the nodes in the network.

C. Total Influence of a Set of Nodes

Total influence of a set of nodes is the expected number
of nodes influenced when all the nodes in the set acts as an
information agent of the same information. So, here we need to
calculate the expected total node influenced by all the nodes in
the set. Simply summing up the total influence of each node
will not provide with the desire result because information
agents may have overlapping neighbors. One node influenced
by more than one information agents should be consider in
the calculation of expected values.

Equation 7 express the total number of nodes influenced by
an agent v. Let us consider the neighborhood of v is denoted
by η(v). The neighborhood η(v) can be expressed by the
following recursive function.

η(v) = Γ(v) ∪ (
⋃

u∈Γ(v)

η(u)) (8)

Probability that a node get influenced by node v is

Pr(v) =
T (v)∣∣η(v)

∣∣ (9)

Given a set of knowledge agents S, probability that a node
in the network get influenced by any node of the set S is

Pr(S) = Pr(
⋃
v∈S

v) (10)

Applying Inclusion-Exclusion theory on Equation 10 we
get,

Pr(S) =

n=|S|∑
q=1

((−1)q−1(
∑

I⊆{1,2,...,n},|I|=q

Pr(
⋂
i∈I

vi))) (11)

Based on this probability we can now calculate the value
of expected nodes influenced by a set of knowledge agents.

Definition 5 (Total Influence of a Set of Nodes): Total
influence of a set of knowledge agent S is defined as:

T (S) = Pr(S)×
∣∣η(S)

∣∣ (12)

where η(S) =
⋃
v∈S η(v).

By Bonferroni inequality, upper bound of Pr(S) is∑
v∈S Pr(v). So the upper bound of total influence of S is

sup T (S) =
∣∣η(S)

∣∣×∑
v∈S

Pr(v) (13)

III. HYBRID SIMULATION OF INDEPENDENT CASCADE
MODEL USING ROUGH KNOWLEDGE GRANULE

The previous section reports a measure of total influenced
by a set of information agents. This measure theoretically
provides the expected number of nodes influenced by a set
of nodes. However, deriving the value of T (S) as per the
Equation 12 is not practically feasible because the joint
probabilities for all the combinations are not available. It is
also very hard to measure these joint probabilities in real
scenarios. Researchers usually use Monte-Carlo simulation to
determine the value of T (S). As already mentioned in Section
I that the process is stochastic and one needs a sufficiently
large number of trials to get the reasonable approximation. For
a complex network, it is time-consuming, especially for the
greedy algorithm, which is known as the best solution for the
influence maximization problem. This section proposes a novel
simulation methodology based on the concept of rough set
theory. This new methodology reduces the stochastic process
into two distinct parts. One is the lower approximation of the
influenced set, and another one is the upper approximation
of the influenced set. The lower approximation of the set
is computed from the expectation, and the boundary region
is determined with the existing Monte-Carlo simulation. As
the problem space for the Monte-Carlo simulation reduced by
the number of edges in the lower approximation region, this
provides the opportunity to lower the running time sharply.



A. Rough Granules and Knowledge Agents

Rough granule, defined based on the rough set theory, is
constructed around all the knowledge agents in the seed nodes.
For a social graph G(V,E) let V be the universe of discourse
and S be the set of seed nodes. Information given to all the
nodes in S will be propagated to the network, and our goal
would be to measure the size of this information spread. The
rough granule around an information agent is defined as:

V (S, v) = {u ∈ V : u ∈ η(v) ∧ u /∈
⋃

w∈S\{v}

η(w)}(14)

V (S, v) = {u ∈ V : u ∈ η(v)} (15)

V1

V2

V3

1

2

Fig. 1: Knowledge agents and the granules. The lower approx-
imate region is shown in blue circles. Nodes with aqua colors
are in the overlapping region and belongs to the boundary
region of any two or more knowledge agents. E.g., node 1
belong to the upper approximate region of both V1 and V3,
whereas, node 2 is in the boundary region of V1 and V2.

Here, V (S, v) is the lower approximation of the knowledge
agent v containing all the nodes which can only be influenced
by v ∈ S. On the other hand, V (S, v) contains all the nodes
that can be influenced by any node u ∈ S as well as by v.
Thus, nodes in the boundary region, i.e., V (S, v) \ V (S, v)
are in the overlapping influence region. Figure 1 shows a toy
example with three knowledge granules. Multiple knowledge
agents can influence nodes in aqua color (e.g., 1, 2, etc.).
Hence, they belong to the boundary regions of the granule.
Nodes with the brown color can only be influenced by the
respective knowledge agent. Therefore, they are in the lower
approximation of corresponding knowledge granule (marked
with blue borderline).

The system of information diffusion will now be represented
by the collection of all the rough granules around all the
knowledge agents in S. So, for every v ∈ S, there is a
rough set defining its granule. The proposed hybrid simulation
works on this system of information diffusion in two steps, as
explained in the following part of the Section. A block diagram
of the whole process is shown in Figure 2.

Social Network

Seed Nodes

V1

V2

V3

Generate Rough
Knowledge Granules

Around all the seed nodes

V1

V2

V3

V1

V2

V3

Estimate diffusion size of
lower approximate regionReduced Graph

Monte-Carlo
Simulations

Estimated
Output

Stage 2 Stage 1

Text

Fig. 2: Block diagram of Hybrid ICM process

B. Stage 1: Expected size in lower approximate region

The first step is to calculate the expectation in the lower
approximate region of all the knowledge granules constructed
around each v ∈ S. There is no overlapping influence in
this region, hence the expected numbers can be calculated by
summing up the expectation in each level from the seed nodes.
A single run of BFS can be used to calculate the expected size
for this case.

C. Stage 2: Reduce Social Graph and Monte-Carlo Simulation

Multiple knowledge agents may influence a node in the
boundary region due to the overlapping influence. A reduced
graph is constructed by compacting all the nodes in the lower
approximation as a super-node and connecting them with all
the other nodes in the boundary region (Figure 3). Edge
propagation probabilities are calculated based on the path
probabilities. A Monte-Carlo simulation is performed on this
reduced graph for a sufficiently large number of times to get
an approximate influence in the boundary region of all the
knowledge agents.



V1

V2

V3

Fig. 3: Reduced graph for staged 2 of Figure 1

TABLE I: Synthetic Data set

Properties/Name Net200 NetBA
Network Type Directed Directed
Nodes 148 500
Edges 604 1984
Avg. Degree 4.0811 3.9680

Thus, one value is obtained from the stage 2 as the size of
the boundary/overlapping region of the knowledge agents and
|S| of values as the size of lower approximate regions of all
the knowledge agents. Finally, the cumulative value of all of
these is the total size of spreading in the network when we
propagated information via the set S.

IV. EXPERIMENTS AND RESULTS

Experiments have been performed on two synthetic data to
compare the between traditional Monte Carlo simulation and
the proposed hybrid simulation method. The Greedy algorithm
for influence maximization has been executed using both
the aforementioned methods, and the comparative results are
reported in this section.

A. Description of Data Set

Details of the two synthetically generated networks used in
the experiments are shown in the Table I. These networks are
referred to as Net200 and NetBA. Net200 is generated using
LDBC DATAGEN [19], and the data is based on Facebook
degree distribution. NetBA is generated using networkx inter-
nal graph generating algorithm which follows Barabási-Albert
preferential attachment model [20]. Both the network used in
the experiments are considered as a directed network.

B. Results

A version of the greedy algorithm for influence maxi-
mization [1] is implemented using Monte-Carlo simulations
(about 1000 runs) and using the proposed hybrid simulation.
Recorded execution time for extracting different number of
seed nodes (i.e., influencing nodes) is reported in Table II.
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Fig. 4: Execution time for Net200.
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Fig. 5: Execution time for NetBA.

TABLE II: Execution time of Greedy algorithm with different
simulation techniques for different values of k. (In Second)

Data set k Monte-Carlo Simulation Hybrid Simulation
1 80.311 0.0261
4 328.295 0.0895

Net200 7 584.191 0.2290
10 845.544 0.4319
13 1103.660 0.6758
15 1279.231 1.0737

1 879.732 0.0771
4 3583.240 0.8172

NetBA 7 6363.880 2.5676
10 9183.980 5.2605
13 12057.800 8.8544
15 14447.561 11.7210

TABLE III: Mean and variance of different experiments with
respect to propagation probabilities (PP) and k.

Monte-Carlo Hybrid Simulation
Data set PP k Mean Variance Mean Variance
Net200 0.1 15 7.866 10.201 8.303 11.175
Net200 0.1 10 5.871 7.91 5.873 7.509
NetBA 0.05 10 2.144 2.225 2.152 2.003
NetBA 0.05 7 1.761 2.12 1.727 1.81



It is clear from the record that the proposed hybrid simula-
tion based greedy algorithm runs magnitude faster than the
traditional Monte-Carlo method based greedy algorithm. For
better understanding a pictorial plot is provided in the Figures
4 and 5. With both the final 15 seeds resulted by both the
greedy algorithms, separate Monte-Carlo simulations (about
1000 runs) were performed to see the comparative size of
the spread. It is found that the spread size is comparative for
Net200 (28.494 for Monte-Carlo and 28.815 for the hybrid
simulation) and very close for NetBA (76.689 for the Monte-
Carlo and 80.914 for hybrid simulation).

As the size of the spread is different, close observation was
required. It is found that the seed set obtained by the two
methods are different, and about 20% seeds in Net200 and
about 30% in NetBA are not common. These findings lead
to a question, “Will the same seed produces same spread size
with both the simulation?” A new experiment is conducted
to answer the question in concern. A seed set generated
uniformly randomly with a pre-defined size k is used to
estimate the spread using both the Monte-Carlo and hybrid
simulation. The experiment is repeated for 100 times with
separate independent choices of seed. Mean and variance
of these experiments are presented in the Table III. It is
clear from the data that the mean is very close for most of
the experiment demonstrating the validation of the proposed
hybrid simulation.

V. CONCLUSIONS

The contribution of the paper is two fold. Section II
proposed a new measure to quantify the expected spreading
size of the information under the independent cascade model
of diffusion. The measure is called total influence. A total
influence measure to calculate the spreading size for a set of
nodes is also presented in the same Section. Total influence
measure is based on the probability theory; Obtaining the
joint probabilities therein is difficult to calculate for practical
social networks. To overcome this difficulty, Section III outline
a novel methodology of hybrid simulation which quickly
measures the size of information spread under the independent
cascade model of information diffusion. The hybrid simulation
uses rough set theory to define rough knowledge granules.

Experimental results show that the proposed hybrid simula-
tion can quantify the size of information spreading magnitude
faster than Monte-Carlo simulation. Thus, it improves the
running time of the greedy algorithm for influence maximiza-
tion. It is also showed that the cascade size measured by the
hybrid method is comparable with more traditional Monte-
Carlo simulations. The simulation of IC model needs to handle
two possible uncertainties arises in the IC method; one is
due to the probability of activation of edges, and the second
one is due to the overlapping influence region. The proposed
simulation method able to produce comparable results with
more traditional Monte-Carlo experiments because the method
correctly modeled the uncertainties due to the overlapping
influence region with the help of the rough set. Accordingly,
hybrid-simulation uses traditional Monte-Carlo methods only

for the overlapping region while it uses probability theories to
calculate the influence in the non-overlapping region.

All the experiments were conducted on the directed syn-
thetic social graph. A future interest of the work would be to
testify the hybrid simulation methodology for undirected as
well as real social networks.
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[1] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
New York, NY: ACM Press, 2003, p. 137.

[2] M. Granovetter, “Threshold models of collective behavior,” The Ameri-
can Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.

[3] E. M. Rogers, Diffusion of Innovations, 5th ed. Free Press, 2003.
[4] P. Domingos and M. Richardson, “Mining the network value of cus-

tomers,” in Proc. of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. San Francisco, CA: ACM,
2001, pp. 57–66.

[5] M. Richardson and P. Domingos, “Mining knowledge-sharing sites
for viral marketing,” in Proc. of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Edmonton,
Alberta: ACM Press, 2002, pp. 61–70.

[6] D. J. Watts, “A simple model of global cascades on random networks,”
Proceedings of the National Academy of Sciences, vol. 99, no. 9, pp.
5766–5771, 2002.

[7] A. L. Hill, D. G. Rand, M. A. Nowak, and N. A. Christakis, “Infectious
Disease Modeling of Social Contagion in Networks,” PLOS Computa-
tional Biology, vol. 6, no. 11, pp. 1–15, 2010.

[8] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in Proc.
of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. San Jose: ACM Press, 2007, pp. 420–429.

[9] T. Carnes, C. Nagarajan, S. Wild, and A. van Zuylen, “Maximizing
influence in a competitive social network: a follower’s perspective,”
in Proceedings of the ninth international conference on Electronic
commerce. ACM, 2007, pp. 351–360.

[10] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social networks,” in Proc. of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Paris: ACM
Press, 2009, pp. 199–208.

[11] R. Narayanam and Y. Narahari, “A Shapley value-based approach to
discover influential nodes in social networks,” IEEE Transactions on
Automation Science and Engineering, vol. 8, no. 1, pp. 130–147, 2011.

[12] C. Wang, W. Chen, and Y. Wang, “Scalable influence maximization for
independent cascade model in large-scale social networks,” Data Mining
and Knowledge Discovery, vol. 25, no. 3, pp. 545–576, apr 2012.

[13] S. K. Pal, S. Kundu, and C. A. Murthy, “Centrality measures, upper
bound, and influence maximization in large scale directed social net-
works,” Fundamenta Informaticae, vol. 130, no. 3, pp. 317–342, 2014.

[14] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in Proc. of 2010 IEEE
International Conference on Data Mining. Sydney: IEEE, 2010, pp.
88–97.

[15] C. Zhou, P. Zhang, W. Zang, and L. Guo, “On the Upper Bounds of
Spread for Greedy Algorithms in Social Network Influence Maximiza-
tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 10, pp. 2770–2783, oct 2015.

[16] J. Shang, “Dynamic Update Upper Bounds Influence Maximization
Algorithm,” in Proc. of the 2018 2Nd International Conference on
Computer Science and Artificial Intelligence. Shenzhen, China: ACM,
New York, 2018, pp. 212–217.

[17] S. Kundu and S. K. Pal, “Fuzzy-rough community in social networks,”
Pattern Recognition Letters, vol. 67, pp. 145–152, 2015.

[18] ——, “Double Bounded Rough Set, Tension Measure and Social Link
Prediction,” IEEE Transactions on Computational Social Systems, vol. 5,
no. 3, pp. 841–853, 2018.

[19] A. Prat, “DATAGEN: data generation for the Social Network Bench-
mark,” 2015. [Online]. Available: http://ldbcouncil.org/blog/datagen-
data-generation-social-network-benchmark

[20] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, oct 1999.


