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Abstract Social networks are becoming an integral part of the modern society.
Popular social network applications like Facebook, Twitter produces data in huge
scale. These data shows all the characteristic of Big data. Accordingly, it leads to a
deep change in the way social networks were being analyzed. The chapter describes
a model of social network and its applications within the purview of information
diffusion and community structure in network analysis.Here fuzzygranulation theory
is used to model uncertainties in social networks. This provides a new knowledge
representation scheme of relational data by taking care of the indiscernibility among
the actors as well as the fuzziness in their relations. Various measures of network
are defined on this new model. Within the context of this knowledge framework
of social network, algorithms for target set selection and community detection are
developed.Here the target sets are determinedusing the newmeasure granular degree,
whereas it is granular embeddedness, together with granular degree, which is used
for detecting various overlapping communities. The resulting community structures
have a fuzzy-rough set theoretic description which allows a node to be a member of
multiple communities with different memberships of association only if it falls in
the (rough upper - rough lower) approximate region. A new index, called normalized
fuzzy mutual information is introduced which can be used to quantify the similarity
between two fuzzy partition matrices, and hence the quality of the communities
detected. Comparative studies demonstrating the superiority of the model over graph
theoretic model is shown through extensive experimental results.

1 Introduction

Social network is a collection of social ties among friends and acquaintances. After
a child is born, (s)he gets immediately connected with the members of the family.
Over the course of time (s)he develops connections with larger networks like village,
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school, and office. Due to the technological advancement, distance travel, global
communication and digital interaction have been growing in numbers and in effect
social networks are also growing steadily in complexity. This complex “connected-
ness” of modern society got the attention of different fields of studies.

The term “social network” was coined by the social scientists. The network was
considered as a theoretical construct to study the relationships between individuals,
groups, organizations or even the entire society. However, the recent boom in online
services related to social networks, viz Facebook, Twitter, WhatsApp, LinkedIn,
provides new research opportunities to the scholars of computer science, because the
data available from these networks are dynamic, large, diverse and complex. That
is, it shows all the characteristics of Big Data [69] such as Velocity, Volume, and
Variety. Accordingly, recent algorithms [43, 53, 61, 85] are addressing the Big Data
issues related to social networks.

Since its inception in early 20th century, social networks are represented using
graphs [58], and graph analysis has become crucial to understand the features of
these networks [24]. Due to the recent revolution in computing (processing) power,
one can now handle relatively larger real networks [67] potentially reaching millions
of vertices. Accordingly, it leads to a deep change in the way social networks were
being analyzed.

In contrast to random network, social networks shows fascinating patterns and
properties [57]. The degree distribution follows power law [5, 21] or truncated geo-
metric distribution [8]. Diameter of the network is very small compared to the size
of the network, and the network possesses high concentration of edges in its certain
parts forming groups. Such groups with high internal edge density within them-
selves and low between them characterizes the community structure (or clusters) of
the network.

Two of themajor research areas in Social NetworkAnalysis (SNA) are (a) analysis
of network values [16, 39, 96], and (b) community detection [9, 65]. The objective
of the former is to analyze the relative importance of a node in the network. One of
the major research application of this area is target set selection. In this problem,
one seeks to find a set of influential nodes for which the information diffusion over
the network is maximum. It is effectively used in viral marketing [81] through online
social networks. In addition, this can be used for finding the top stories from a
news network, spreading of social awareness or combat with deceptions spreading
over social media. Other applications of network values include study on epidemic
spreading, diffusion of innovations, homophily analysis and optimal price-setting in
market.

Several attempts [16, 35, 37, 38, 40, 76, 81, 95] were made to solve the target set
selection problem. However, these are very restrictive either in terms of performance
or in execution time, specifically for large scale social networks. For example, greedy
hill climbing algorithm of [37] provides approximationwithin a factor of (1 − 1

e − ε)
to the optimal solution. Here e is the base of natural logarithm, and ε depends on the
accuracy of Monte-Carlo estimate of influence spread. But it takes days to compute
the set of seeds, even for a moderate sized social network. In contrast to this, heuristic
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methods (e.g., [10, 11]) are fast but provides sub-optimal output as compared to the
greedy method of [37].

Community detection, on the other hand, deals with the problem of identifying
virtual groups in a network. A community is formed when a group of nodes are
more densely connected with each other compared to rest of the network. In addition
to the social implication study of such groups, the solution to this problem has
broad application in different fields. For example, in world wide web it will help to
optimize the Internet infrastructure [42], in a purchase network it can boost the sell
by recommending the appropriate products [78], and in computer network it will
help to optimize the routing table creation [84].

Scientists from several disciplines studied the community detection problem for
a long time [28, 54, 62, 63, 77, 80, 89]. These involve mainly two strategies for
finding different communities in a network. The first approach considers a partition
of the whole network into disjoint communities (i.e., a node belongs to only one
community). The second strategy, on the other hand, allows a node to be a member of
multiple communities with equal membership. However, for large-scale networks,
it is possible that a node may belong to more than one community with different
degrees of association.

Beside these, highly overlapping neighborhoods in real life big social networks
enforce uncertainties in decision making. Although the graph modeling has been in
use for social networks since its inception in 1934 [58], a better modeling to deal
with these uncertainties is in need. The new modeling may lead to a deep change in
the way social networks were being analyzed.

2 Preliminaries

2.1 Social Network Analysis

At amore precise level, a network is any collection of objects in which some pairs are
connected by links [17]. Based on configuration, different forms of relationships or
connections may be used to define links. Due to this flexible options, it is easy to find
network in different domains. Graph based modeling is a typical way to represent
social networks. Let us first explain some of the basic elements of graphs before
providing a review on modeling social network.
Graph, Nodes and Edges: Conceptually, a graph is formed by nodes (vertices) and
edges (links) connecting the nodes. Formally, a graph is an ordered pair (V, E)where
V is the set of nodes and E is the set of edges, formed by pairs of nodes.
Undirected and Directed Graphs: Edges can be symmetric such as in Fig. 1a, or
asymmetric like in Fig. 1b. The former is referred as undirected graph or simply
graph and the latter is called directed graph.
Graphs as Models of Networks: Graphs are useful in social network study as they
serve as mathematical models of network structure. Let us now replace aforesaid toy
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example Fig. 1 with a real social network of Fig. 2. It is popularly known as Zachary
karate club [92]. This network shows the friendship relations between 34members of
a US karate club in 1970s. People are represented by nodes and edges are constructed
where two people shows friendship outside the context of club. Note that the actual
placement of nodes is immaterial. All that matters is which node is connected with
which others. Statistics about the network is shown in Table1.
Paths and Cycles: A path is a sequence of nodes where each consecutive pair in the
sequence is connected by an edge. For example, in the Zachary karate club we have a
path from node 1 to 34 as 1, 14, 3, 34. A path can repeat nodes such as, 1, 4, 13, 1, 12.
Cycle is a specific kinds of path which forms a ring like structure. For example, in
Zachary karate club 11, 5, 7, 6, 11 is a cycle.
Connectivity: Whether we are dealing with small or large scale social networks, it
is natural to check if every node can reach every other node via a path. We say a
graph is connected if for every pair of nodes there exists a path between them. For
any social network it may happen that two persons are not reachable via a valid path.
This then leads to a disconnected network. For example, Fig. 3 shows a disconnected
network of metabolic cellular network.

v1

v2

v3

v4v5

(a) (b)Undirected Graph

v1

v2

v3

v4v5

Directed Graph

Fig. 1 Example: graphs, nodes, edges

Fig. 2 Zachary karate club
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Table 1 Statistics of Zachary
karate club network

Nodes 34

Edges 78

Nodes in largest Weakly Connected
Component(WCC)

34

Edges in largest WCC 78

Nodes in largest Strongly Con-
nected Component(SCC)

34

Edges in largest SCC 78

Diameter 5

Avg. clustering coefficient 0.570638

Fig. 3 Metabolic cellular network data for Oryza Sativa [33]

Components (Weakly Connected versus Strongly Connected) If a graph is not
connected it breaks apart naturally. These separate subsets are called components.
Each of the components when considered separately represents a connected graph.
For example the disconnected network in Fig. 3 has 6 connected component.

For directed social network the notion of connectivity can be expressed in two
different forms, namely, weakly connected component and strongly connected com-
ponent. A weakly connected component is a subgraph of a directed graph such that
for every pair of nodes u, v in the subgraph, there is an undirected path from u to v

and a directed path from v to u. On the other hand, a strongly connected component is
a subgraph of a directed graph such that for every pair of nodes u, v in the subgraph,
there is a directed path from u to v and a directed path from v to u.
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(a) (b)Frequency CDF

Fig. 4 Degree distribution of Zachary karate club network

Neighbors and Hop Distance: Two nodes u and v are said to be neighbors or
adjacent when they are connected with an edge, i.e., (u, v) is a valid edge in the
graph. If two nodes are not adjacent the distance along a path is usually measured
by hop count. Hop count refers to the number of nodes one needs to pass from the
source node to the destination node. That is a hop is one portion of the path from
source to destination.
Shortest Path and Diameter: One may reach to a node u from another node v

through different paths in the network. Shortest among them has significant value in
the network study. A path p between nodes u and v is said to be the shortest if no
other path between them in the network holds lesser length (in terms of hop distance)
than p.

The diameter of a network is the length of the longest of the shortest paths in the
network. In other words, among the all pairs shortest paths, the highest hop distance
is the network diameter. For real world social networks, it is found that the diameters
tend to be very small. For example, the diameter of the karate club network (Fig. 2)
is 5. This phenomenon is called small world property of the social network.
Degree and Degree Distribution: Degree of a node is measured by the number
of incident edges on it. It is denoted by d(v). For directed graphs, a node has two
different degrees, the in-degree, which is the number of incoming edges, and the
out-degree, which is the number of outgoing edges.

Degree distribution refers to the frequency distribution of the degrees of a net-
work. Degrees are usually plotted in x-axis and the frequencies are plotted in y-axis.
Figure4a shows the degree distribution of the karate club data. Similarly we can plot
cumulative distribution function (CDF) as shown in Fig. 4b.

An observation can be made from the degree distribution of the karate club data
that the number of nodes with higher degree is low as compared to the number of
nodes with lower degree values. Similar long tail can be found in most of the real
world networks. This is different from randomgraphs and due to this, social networks
are referred as scale free network.
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2.2 Fuzzy Sets

Traditional set theory deals withwhether an element “belongs to” or “does not belong
to” a set. Fuzzy set theory [93], on the other hand, concernswith the continuumdegree
of belonging, and offers a new way to observe and investigate the relation between
sets and its members. It is defined as follows:

Let X be a classical set of objects, called the universe. A fuzzy set A in X is
a set of ordered pairs A = {(x,μA(x))|x ∈ X}, where μA : X → M is called the
membership function of x in A which maps X to membership space M . Membership
μA(x) indicates the degree of similarity (compatibility) of an object x to an imprecise
concept, as characterized by the fuzzy set A. The domain of M is [0, 1]. If M = {0, 1},
i.e., the members are only assigned either 0 or 1 membership value, then A possesses
the characteristics of a crisp or classical set.

The set of all elements having positive memberships in fuzzy set A constitutes its
support set, i.e.,

Support (A) = {x |μA(x) > 0}. (1)

The cardinality of the fuzzy set A is defined as

|A| =
∑

x∈X

μA(x). (2)

Union and intersection of two fuzzy sets A and B are also fuzzy sets andwe denote
them as A ∪ B and A ∩ B respectively. The membership functions characterizing
the union and intersection of A and B are as follows:

μA∪B(x) = max(μA(x),μB(x)), x ∈ X (3)

μA∩B(x) = min(μA(x),μB(x)), x ∈ X. (4)

2.3 Rough Sets

Let X be a classical set of objects, in a universe of discourse U . Under situations
when relations exist among elements of U , X might not be exactly definable in U as
some elements of U that belong to the set X might be related to some elements of
U that do not belong to set X .

When a relation, say R, exists among elements of U , limited discernibility draws
elements of U together governed by the relation R resulting in the formulation of
granules in U . Here, a set of elements in U that are indiscernible from or related
to each other is referred to as a granule. Let us represent granules using Y and the
family of all granules formed due to the relation R using U/R.
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As mentioned earlier, the relation R among elements of U might result in an
inexact definition of X . To tackle such cases, in rough set theory, X is approximately
represented by two exactly definable set R X and �R X in U given as

R X =
⋃

{Y ∈ U/R|Y ⊆ X} (5)

�R X =
⋃

{Y ∈ U/R|Y ∩ X �= } (6)

In the above, the set R X is defined by the union of all granules that are subsets of
the set X and the set �R X is defined by the union of all granules that have non-empty
intersection with the set X . The sets R X and �R X are respectively called the lower
approximation and upper approximation of X with the imprecise concept R.

Fuzzy set and rough set are reputed to handle uncertainities arising from overlap-
ping concepts (or characters) and granularity in the domain of discourse respectively.
While the former uses the notion of class membership of an element, the latter hinges
on the concept of approximating from lower and upper side of a set defined over a
granular domain.

2.4 Granular Computing

Granular computing (GrC) is a problem solving paradigm with the basic element,
called granules. The construction of granules is a crucial process, as their sizes and
shapes are responsible for the success of granular computing based models. Further,
the inter and intra relationships among granules play an important role. A granule
may be defined as the clump of elements that are drawn together, for example,
by indiscernibility, similarity and functionality. Each of the granules according to
its shape and size, and with a certain level of granularity may reflect a specific
aspect of the problem. Granules with different granular levels may represent a system
differently.

Granulation is the process of construction, representation and interpretation of
granules. It involves the process of forming larger objects into smaller and smaller
into larger based on the problem in hand. According to Zadeh [94], “granulation
involves a decomposition of whole into parts. Conversely, organization involves an
integration of parts into whole.”

One of the realizations behind GrC is that - precision is sometimes expensive
and not very meaningful in modeling and controlling complex systems. When a
problem involves incomplete, uncertain and vague information, it may sometimes
become difficult to differentiate the individual elements, and one may find it conve-
nient to consider granules to represent a structure of patterns evolved by performing
operations on the individual patterns [26]. Accordingly, GrC became an effective
framework in designing efficient and intelligent information processing systems for
various real life decision-making applications. The said framework can be modeled,
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for example, with the principles of fuzzy sets, rough sets, neural networks, power
algebra, interval analysis [73]. For further details on the significance and various
applications of GrC, one may refer to [7, 66, 68, 70, 72, 91].

3 Literature Review

3.1 Modeling Social Networks

As mentioned in Sect. 2.1, network structures with actors and their relationships are
usually modeled as graphs. In sociology, this representation is sometime referred
as sociogram. In a sociogram, actors are represented by vertices of a graph, and
relations by edges. Graphs appear naturally here as it is useful to represent how
things are either physically or logically linked together. Sociogram was developed
by Moreno [58] to analyze the choices of preferences within a group. It was used to
diagram the structure and patterns of group interactions.

Social network data, sometime represented in two-way matrices, is termed as
sociomatrices [88]. The two dimensions of a sociomatrix are indexed by the senders
(rows) and the receivers (column) of relationships. Usually the matrix has n rows
and n columns, where n represents the number of actors in the network. Thus a
basic sociomatrix is square. Sociomatrices were first used together with sociogram
by Moreno [58] who showed how social relationship can be pictured through these.

The same network can also be represented using the relational form. Relational
algebras (also called role algebras) are used to analyze the structure of social roles by
emphasizing multiple relations rather than actors. Harrison White and his students
[6, 90] pioneered this approach as an extension to block modeling. A block model is
a representation of objects in groups based upon patterns that occur in the relations
between these objects [3]. The structure of a block model is a matrix in which the
(i, j)th entry denotes the number of directed edges from nodes in cluster i to nodes
in cluster j . A block models can represent any pattern that arises in the relations
between objects, such as bipartite relations, hierarchies, rings, bridges, and other
unique aggregate connectivity patterns between groups of vertices.

Another approach to model social networks is based on statistical modeling. The
idea of statistical modeling of network is to represent the main features of the social
network by a few parameters and express the uncertainty of those estimates by
standard error, p-value, posterior distribution etc. There are two ways for statistical
modeling of network, viz. model-based inference and design-based inference. When
a sample is drawn froma larger graph, design-basedmethod can be used. Link-tracing
technique [83] is one kind of design based method. Examples of this technique
are snowball design and random walk design. On the other hand, in model-based
inference, it is required to construct a probability model with the assumption that
the observed data can be regarded as the outcome of a random draw from this model
[25, 27]. Multiple linear regression models are an example.
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Thus several models for describing social network exist starting from 1930s.
Recently, the development on modeling social network problems using multi-agent
theory and/or game theory has been observed. In their paper [41], Kleinberg et. al.
modeled a network with n distinct agents who build link to one another based on a
strategic game. The payoff to an agent arises as a difference of costs and benefits.
Narayanamet. al. [60], on theother hand,mapped the informationdiffusionprocess of
social network to the formation of coalitions in an appropriately defined cooperative
game. In [34], authors modeled the user interactions of a network to explore the
dynamic evolutionary process of knowledge sharing among users using the agent-
based computational approach. But the focus of these researches is mostly problem
centric.

Fuzzy set theory has also received attention on social network analysis in recent
years. In their work, Nair and Sarasamma [59] analyzedmulti-modal social networks
using fuzzy graphs and referred it as fuzzy social network. Later in 2008, Davis
and Carley [14] used a stochastic model to identify fuzzy overlapping groups in
social networks. Here they modeled the fuzzy overlapping group detection using an
optimization problem. Another area where fuzzy sets have been used by different
scientists is positional analysis (finding similarities between actors in the network)
of social networks [22]. Instead of a general framework, these recent developments
of fuzzy set theoretic approach in social network are more focused on a particular
type of the network or particular application of the network.

Beside these, an attempt was made to use the concept of granular computing to
model relational database for association discovery [32]. The technique is a spe-
cialized version of the general relational data mining framework which efficiently
provides the search space for association discovery. Also, there were several research
investigations focused on a problem oriented modeling of social network using dif-
ferent soft computing tools. For example, Chen and Li [9] proposed evolutionary
computing based algorithm to detect community structures in complex networks.
Genetic algorithm based diffusion model for information cascade in a social net-
work is used in [46, 52]. For target set selection problem, Wang et al. [86] proposed
a set-based coding genetic algorithm. However, none of these techniques provides
any general framework which can serve as a generic platform, similar to sociogram
or sociomatrices, to analyze social network data in view of different problems in the
field.

Algorithm 1: Greedy Hill Climbing Algorithm
input : A Social Network G(V, E) and k
output : Set S ∈ 2V having cardinality k

initialization: S := ∅
while |S| �= k do

v∗ ← argmax
v∈V \S

σ̂(S ∪ {v}) ; /* σ̂(.) returns the estimated influence */

S ← S ∪ {v∗};
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3.2 Target Set Selection

In the area of information diffusion, finding a target set is to find the influential nodes
mainly in terms of the total influence in the network. The natural solution to the prob-
lemwill be to select those persons having higher numbers of neighbors. That is, select
the nodes based on their degree centrality scores. Domingos and Richardsonwere the
first to study the problem [16, 81] in the algorithmic aspect and proposed probabilis-
tic methods to solve it. Later, Kempe et al. formulated it as a discrete optimization
problem [37] and showed that the problem is NP hard. They proposed a greedy hill
climbing algorithm shown in Algorithm 1. In each iteration of the algorithm, mar-
ginal contribution of every non seed node (i.e., nodes in V \ S) to the information
diffusion is separately estimated and the highest contributor is selected as the next
seed. Thus the algorithmmaximizes the influence contribution during seed selection.
Hence it is able to find higher quality seeds. However, for the same reason it leads to
high computational time, specially for large scale networks. The main drawback of
the algorithm comes from the marginal contribution estimation. There is no deter-
ministic methods available till date to get the marginal contribution of a node. In their
paper, Kempe et al. [37] uses Monte Carlo simulation for the estimation os such con-
tribution. As the process of information diffusion is highly stochastic, the simulation
needs to be performed for a sufficiently large number of times to obtainmore accurate
results. It may take days to identify top 50 seeds even on a graph of moderate size
of 30K nodes [12]. To overcome this drawback, several algorithms were proposed
in last few years [11, 18, 30, 49]. Notably, in [49] Leskovec et al. presented a cost-
effective lazy forward (CELF) method which exploits the sub-modularity property
of the influence function. For any given set function σ(.), sub-modularity property
confirms that the effect of v to a subset is always higher than that of the super set.
That is, σ(S ∪ {v}) > σ(T ∪ {v}) if S ⊂ T . Authors argued in [49] that most of the
realistic outbreak detection objectives are sub-modular. Their experiments with blog
network and water network show that CELF runs 700 times faster than the greedy
algorithm of [37]. However, CELFmethod still takes hours to generate 50 seeds [11].
Improvement in execution time was also sought by considering the properties of the
underlying diffusion model. One of such popular diffusion models is Independent
cascade model. In this model of information diffusion, information propagates in
discreet time steps. In each time t , one node with the information tries to influence
one of its neighbors who does not have the information already. Success depends on a
probability called propagation probability. Irrespective of the success, the same node
will never get a chance to influence the same neighbor again. In [11], authors provide
two new greedy algorithms designed on independent cascade model of information
diffusion. One of them, NewGreedyIC, uses a random removal of edges instead of
Monte Carlo simulation to estimate a node’s marginal contribution. The random
removal uses the propagation probability to identify the edges to be removed. This
process leads to an improvement in execution time. Further they integrated the idea
of the CELF inside the NewGreedyIC and proposed improved MixGreedyIC. Goyal
et al. [30] suggested an improved version of CELF as CELF++ and showed empiri-
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cally that the algorithm is faster than CELF with insignificant amount of additional
memory usage. In CELF++, authors maintained a heap with intermediary results
of the Monte Carlo simulation, which reduces the execution time of the subsequent
iterations. A greedy sketch-based influence maximization (SKIM) was described in
[13] very recently and it is reported that it may be scaled to large social network data.

In contrary, several heuristic algorithms [10–13]were proposedwhich improve the
performance compared to the centrality measures while the execution time remains
lower than that of the greedy. One such algorithm is degree discount heuristic of
[11], which runs with the following principle. If a node u is already considered as
a seed then in later iterations a node v’s degree is calculated after discounting the
edge e(u, v). This algorithmworks verywell for undirected social networks. In 2012,
Wang et al. [87], reported a heuristicmethod named prefix excludingmaximum influ-
ence path (PMIA) where the propagation probability of a path is calculated and used
to identify a node’s contribution in the diffusion. These heuristic approaches used
underlying diffusion principles to improve the performance. Some of the heuristic
algorithms, on the other hand, are designed to perform well on specific social net-
works. For example, Chen et al. [12] proposed a liner time algorithm for directed
acyclic graphs, and Gomez- Rodriguez and Schölkopf [29] proposed probability
based methods to identify influential nodes for continuous time diffusion networks.
Similarly, Aslay et al. [4] described a target set selection algorithm for topic-aware
influence maximization queries and Li et al. [51] reported a location-aware target set
selection method using spacial-based indexes.

3.3 Community Detection

Community detection is to identify virtual groups of a network. The main challenge
is to identify the groups and possibly their hierarchical organization by only using the
network topology. One of the first studies on community identification was carried
out by Rice [80]. In the work, clusters were identified in a small political body
based on their voting patterns. Later in 1955, Jacobson [89] studied community
structure within a government agency [89]. They have separated work-groups by
removing those people who work with different groups. This idea of removing edges
is the basis of several algorithms in recent times. One such algorithm, presented
by Girvan and Newman [28], aims at the identification of the edges lying between
two communities for possible removal. These edges were identified based on their
centrality values. The concept is considered as the start of modern era in community
detection. In [63], Newman [63] proposed the modularity measure to quantify the
quality of the identified community structure. Themodularity is, up to amultiplicative
constant, the number of edges falling within groups minus the expected number in
an equivalent network with edges placed at random [64]. Modularity value can be
either positive or negative. Positive value of modularity indicates the presence of
community structures. So, onemay partition the network with the aim tomaximizing
the modularity value of the community structure. This idea of optimizing modularity
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using some optimization technique is used to identify the community structure by
Newman [62]. On the contrary, Raghavan et al. [77] described a near liner localized
community detection algorithm based on label propagation which does not optimize
any similar measures of community strength. In this method, initially each node is
assignedwith a unique label. At every iteration of the algorithm, each node adopts the
label which is used by maximum number of its neighbors. Ties are broken randomly.
At the end of the algorithm, nodes with the same label are grouped together to
form a community. Density based graph partitioning algorithm is also available in
the literature. Example of one such algorithm is by Falkowski et al. [20]. More
traditional methods such as hierarchical [31] and partition based clustering, where
vertices are jointed into groups as per their mutual similarities, are also used for
identifying communities in a social network.

All these algorithms discussed above create a crisp partition in the network. That
is, a node belongs to a single community only. However in a real life a person may
belong tomultiple groups, i.e., the existence of overlapping community structures. In
[36, 79], authors showed that overlapping is indeed a significant feature of many real
world social networks. One of the most popular overlapping community detection
algorithms, namely, clique percolation method (CPM) of [71], detects overlapping
communities by searching of adjacent cliques. The algorithm first searches for all the
cliques of size k and constructs another graph by considering a k-clique as a node. A
link is added when two cliques share k − 1 edges. Each connected component on this
newgraph is considered to be a community in the network, and k-cliques belonging to
a component are considered to be in the same community.Overlap is possible because
a node can be a member of multiple cliques. A version of the same algorithm for
weighted network was proposed by Farkas et al. [23]. Here k-cliques with weight
greater than a threshold are considered for the community. Another approach to get
overlapping community structure is to partition links instead of nodes. Ahn et al. [2]
used hierarchical clustering to partition edges of the network. In this algorithm, each
edge belongs to a unique cluster but nodes may naturally belong to different clusters.
Evans and Lambiotte [19], on the other hand, constructed a new weighted line graph
by considering links of the original graph as a node and then partition this new graph
using disjoint community detection algorithm. Although the link partitioning for
overlapping detection seems conceptually to be natural, there is no guarantee that it
provides higher quality than the node based detection does [24]. Readers may refer
to [24, 50] for review on different Community detection algorithms.

4 Fuzzy Granular Social Networks (FGSN)

Social network is nothing but a collection of relations between social actors and their
interactions. Social actors often form closely operative groups among themselves,
which are often indistinguishable. A granule is a clump of objects (points) in the
universe of discourse, drawn together, for example, by indistinguishability, similarity,
proximity or functionality [94]. So, the characteristic of indistinguishability among
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closely operative groups of the social actors may be modeled using the concepts of
granules for further processing.

Further, the basic concepts of conceptual similarities between nodes, cluster of
nodes, relations between nodes and their interactions etc. do not lend themselves
to precise definition, i.e., they have ill-defined boundaries. So, it is appropriate and
natural if a social network is viewed in terms of a collection of fuzzy granules. Based
on these notions, a new unified framework to model social networks effectively and
efficiently in the framework of granular computing is developed [44, 45]. In this
model a granule is constructed around a node with fuzzy boundary. The membership
function for computing the degree of belonging of a node to the said granule is
determined depending upon the problem in hand. Within this framework, some of
the popularly known network measures are redefined [44].

4.1 The Model

Global phenomenon of a social network always ensembles the local behaviors of
individuals as well as their closely related neighborhoods. While the concept of
neighborhoods in the network can be modeled in terms of granules, the vagueness in
term “closeness” can be quantified using fuzzy set theory. In this section, we provide
the description of the model fuzzy granular social network (FGSN).
Knowledge Representation: Let us consider the graph G(V, E) represents a social
network,whereV is the set of all nodes (or vertices) and E represents the relationships
(or edges). If I is the unit interval [0, 1], a fuzzy granular neighborhood defined over
V is a function φ : V → A(V ), which assigns every node v ∈ V to a fuzzy set
A ∈ I V . When φ(v) is non empty, we call it the fuzzy neighborhood of the node v,
i.e.,φ(v) is the granule defined around the node v. Due to the complex nature of social
networks a node can be a member of different such neighborhood sets reflecting its
different degrees of association. Let family of fuzzy sets associated with the node
v ∈ V be Φ(v). Φ(v) represents the neighborhood sets of node v. A fuzzy granular
social network is represented by a triple:

S = (C,V,G) where (7)

• V is a finite set of nodes of the network

• C ⊆ V is a finite set of granule representatives

• G is the finite set of all granules,

i.e.,G = {
⋃

Φ(c)|c ∈ C}

A granule g ∈ G around a representative node (c ∈ C) is constructed by assigning
fuzzymembership values to its neighborhood nodes. Due to the overlapping nature of
the neighborhoods, a node may belong to more than one granule. Their association
with different granules may have different degrees as well. However, in case of
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directed social network, two different granules may be constructed around one single
node. One for inbound relations and other for the outbound relationships [44].

4.2 Network Measures of FGSN

A social network is analyzed based on social measures defined over its graph rep-
resentation. Similarly, several equivalent granular measures available for FGSN are
provided in this section.

Let us first see the construction of FGSN of our example network shown in Fig. 2.
Our objective here is to model the graph representation G(V, E) by a fuzzy granular
social network representationS(C,V,G). So, we need to define three sets C,V and G
from the network G(V, E).

We consider preserving the maximum information of the network inside the
FGSN. So, we constructed granules around every nodes in the network. Following
is the definition of S(C,V,G) for Zachary karate club data.

• V = {v|∀v ∈ V }
• C = {c|∀c ∈ V}
• G = {Ac|∀c ∈ C, Ac ≡

∑

v∈V
μ̃c(v)/v}.

Normalized membership value μ̃c(v) is the degree of belonging of node v in the
granule (Ac) around node c. μ̃c(v) is calculated based on the Eq.8 with minimum
hop distance as the distance metric and r = D, the network diameter.

μ̃c(v) = μc(v)
∑

i∈C μi (v)
such that

∑

i∈C
μ̃i (v) = 1 (8)

where,

(a) (b)Granule of 1 Granule of 34

Fig. 5 Color coded granules of Zachary karate club
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Fig. 6 FGSN features of Zachary karate club

μc(v) =
⎧
⎨

⎩

0 for d(c, v) > r
1

1 + d(c, v)
otherwise

(9)

where d(c, v) is the distance between node v and the center c.
Two such granules around nodes 1 and 34 are shown in Fig. 5. Here darker shades

of brown represent higher values ofmembership.Asweusednormalizedmembership
values, the nodes in less overlapping region may turn to have higher membership
than the center nodes of the granules. This indicates that those nodes belong only to
a fewer number of granules as compared to the centers. This is intuitively appealing
as the former ones have higher possibilities of ‘definitely belonging’ to a granule
than the latter ones
Granular Degree of a Node: Granular degree of a node in FGSN is equivalent to
the degree measure of a node in graph representation. Granular degree of a node c is
the cardinality of the granule constructed around the node c [44]. Here each granule
is represented by a fuzzy set, so we use Eq.2 to compute the granular degree of a
node c as

D(c) = |Ac| =
∑

v∈V
μ̃c(v) (10)

In the karate club example (Fig. 2), node 34 has a granular degree of 3.38026 and
node 1 has a granular degree of 3.0044. Figure6a shows the distribution of granular
degree of karate club data.
Granular Betweenness of a Node: Granular betweenness of a representative node
c in FGSN is quantified by the sum of membership values that c possesses for
all granules in the system [44]. Using the normalized membership values (Eq.8),
granular betweenness of c ∈ C is calculated as follows.

B(c) = 1

max
i∈C

(μ̃i (c))
(11)
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B(c) takes values in [0, |C|]. In our example karate club network, granular
betweenness of node 1 and node 34 is 9 and 9.5, respectively. The distribution of
granular betweenness of karate club data is shown in Fig. 6b.
Granular Embeddedness of a Pair of Nodes: Granular embeddedness for any pair
of nodes defines howmuch a granule centered at one node is embedded inside that of
the other [44]. It may be measured by the cardinality of the intersection of granules
centered by the pair of points. Using Eqs. 4 and 2, granular embeddedness of a pair
of nodes a and b is defined as

E(a, b) = |Aa ∩ Ab| =
∑

v∈V
min(μ̃a(v), μ̃b(v)) (12)

where Aa and Ab are the fuzzy sets representing the granules having the center nodes
a and b, respectively.

In the example of karate club, the embeddedness of 1 and 34 is found to be
0.610714when r = 2, and 0.959073when r = D(= 5), the diameter of the network.

4.3 Uncertainties in FGSN

Uncertainties in a social network arises due to the presence of vaguely defined close-
ness between nodes. Each relationship has a degree of togetherness. The presence of
a relational link in a network does not imply that both the nodes are 100% committed
towards each other. Similarly, the absence of a link does not necessarily mean they
are not following each other. Let us now define two measures of uncertainties in
FGSN in terms of fuzziness, as follows:
EnergyMeasure of aGranule inFGSN: Let us consider amonotonically increasing
mapping e : [0, 1] → [0, 1] with the boundary conditions e(0) = 0 and e(1) = 1.
An energy measure of a granule Ac ∈ G, denoted by E(Ac), is a function of its
characterizing membership values, represented as

E(Ac) =
∑

x∈V
e[μ̃c(x)] (13)

This measure quantifies the energy associated with the granule Ac. The energy
increases as the membership values of its supporting nodes increase. The energy
measure of Ac reduces to its cardinality if we use the identity mapping e(x) =
x ∀x ∈ V , i.e.,

E(Ac) =
∑

x∈V
μ̃c(x) = |Ac| (14)

One can also think of a different functional for e other than the identity mapping,
for example, e(x) = xa, a > 0 or e(x) = sin( π

2 x).
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Entropy Measure of FGSN: Given a FGSN S(C,V,G), each granule Ac ∈ G rep-
resents a fuzzy equivalence class under the attribute set C. If we have n objects in
the universe V then the fuzzy relative frequency [56] of a granule will be

ρ(Ac) = |Ac|
n

(15)

where |Ac| is the cardinality of the granule Ac. Based on this relative frequency of
granules, one can find the information gain of the FGSN through its entropy, using
Shannon’s logarithmic function, as

H(S) = −
∑

Ac∈G
ρ(Ac)logβ(ρ(Ac)) (16)

where β represents the base of logarithm. Applying Eq.15 into Eq.16 we get

H(S) = −1

n

∑

Ac∈G
|Ac|logβ(

|Ac|
n

). (17)

The value of H(S) can vary in [0, logβ(|C|)]. H(S) = 0 means the FGSN is least
uncertain, while its value equal to logβ(|C|) signifies the highest uncertainty. Readers
may refer [82] for generalized entropy measures in the granular space.

4.4 Granular Degree Heuristic for Target Set Selection in
FGSN

The section report the experimental results demonstrating the applicability of fuzzy
granular social network for target set selection problem.
Problem Statement: Let us consider an influence function σ : 2V → N, defined for
a social network S(C,V,G), such that given a set of initial active nodes K ∈ 2V ,
σ(K ) returns the expected number of active nodes at the end of information cascade.
The problem of target set selection is to find the k number of influential nodes for
which influence in S is maximum. So, this is a maximization problem defined as

max
K

σ(K )

subject to |K | = k, k > 0.

Data Sets: In the experiments, we used three data sets, namely Zachary karate
club [92], Dolphin social network [55], and Political blog network [1]. We already
described the details of Zachary karate club in Sect. 2.1. Properties of Dolphin social
graph and Political blog network are shown in Figs. 7 and 8 respectively.
Results: We first selected the top-k nodes (that is, the centers of the granules) from a
given FGSN, in descending order of granular degree value. We refer this algorithm
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Fig. 7 Dolphin social graph

as Granular degree heuristic. Then we pass these top k nodes, as the set of seeds,
in the Monte Carlo simulation of information diffusion (independent cascade model
[37]). The output of the simulation process represents the number of total nodes
influenced due to the said set of input seeds. We have varied the value of k from 1 to
15. These results are reported graphically in Fig. 9. Here X -axis shows the value of
k and the Y -axis presents the total number of nodes influenced. As the Monte Carlo
process is a stochastic process, we executed each experiment for 10000 trials and
reported here the average values. It is clear from the figure that, for Zachary karate
club andDolphin social networks, results obtainedwith the proposed granular degree
heuristic on FGSN outperform those obtained by other graph theoretic algorithms
(High degree heuristic, Random and Diffusion degree heuristic [67]) for most values
of k. This signifies that the set of seeds selected using the FGSN basedmethod is able
to determine the superior top k influential nodes. For Political blogs, the performance
is at par with the High Degree Heuristic, superior to random and inferior to Diffusion
Degree Heuristics.

Execution time (in seconds) of different algorithms for 1000 runs is shown in
Table2. As expected, the random selection method needs least time for all the data
sets. Diffusion degree heuristics, on the other hand, takes longest time for all the
cases. The proposed Granular degree heuristic requires much lower execution time
as compared to diffusion degree for all the data sets. For Zachary karate club and
Dolphin social graph, it is almost as fast as the high degree heuristics. For Political
blog network, however, the proposed algorithm takes longer time compared to high
degree heuristics. Further the algorithm is seen to perform best for r = 2. For other
values e.g., r = 1, 3, 4, 5, the performance deteriorates [44].
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Network
Nodes 1490
Edges 16718
Nodes in largest Weakly Connected Component (WCC) 1222
Edges in largest WCC 16717
Nodes in largest Strongly Connected Component (SCC) 1
Edges in largest SCC 0
Diameter 10
Avg. clustering coefficient 0

Statistics

(a)

(b)

Fig. 8 Political blogs network

The computation complexity of the granular degree heuristic is O(|V | + |E | +
|C| + kn) as reported in [44]. Here k is the number of desire seeds and n is the number
of granules having granular degree greater than 1.

4.5 Fuzzy-Rough Community (FRC) Detection

A new community detection algorithm within the new knowledge representation
scheme of FGSN is described in this section. Communities detected here show fuzzy-
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Fig. 9 Variation of total
influence with k for different
algorithms (r = 2)
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Table 2 Execution time (in sec) of different algorithms for 1000 runs

Data Sets

Algorithms Zachary karate club Dolphin social graph Political blogs network

Granular degree
heuristics

0.311 0.52 27.26

High degree heuristics 0.3 0.48 3.7

Random selection 0.2 0.2 0.5

Diffusion degree
heuristics

12.19 16.532 9.29 × 104

rough characteristics [45]. Nodes surely belong to a community constitute its lower
bound (i.e., core region) in the notion of rough set theory while the others possibly
belonging to the community are identified as members of “upper - lower” bound
or boundary region. The nodes in the core region of the community are assigned
with “unity” (full) membership to that community and “zero” (no) for the remaining
community. The nodes in boundary region belong to multiple communities with
different memberships of association. We assign fuzzy membership to these nodes
based on their connectivity with different core regions, thereby resulting in unequal
membership unlike the previous available methods.
TheAlgorithm:Acommunity is formedwhennodes are densely connected, compare
to the other parts of the network. In the new knowledge representation scheme of
fuzzy granular social network we would like to find out such densely connected
groups. The key idea of finding such groups is to identify the granules with dense
neighborhood and merge them when they are nearby (merging dense regions). Thus
the first step is to find those granuleswhere granular degree (Eq.10) exceeds a certain
threshold (θ) indicating dense region. These granules are referred as θ-Core.

A community may have multiple such θ-cores. The algorithm needs to identify
the set of those close by θ-cores. So, the goal is to search for θ-cores which belong to
same community. These are called ‘community reachable cores’ [45]. To understand
community reachability, we need to understand how the neighborhood of a granule
is defined. Neighborhood of a granule Ac is the set of all granules whose centers lie
in the support set of Ac [45], i.e.,

Γ (Ac) = {Ai |Ai ∈ G and i ∈ Support (Ac)∀i �= c}

where Support (Ac) = {v|μ̃c(v, r) > 0} and r is the radius of the granule.
Based on the neighborhood, thus defined, we can find the θ-cores which are com-

munity reachable to each other, i.e., belong to the same community. There are three
notions of community reachability. Two θ-cores are said to be (1) directly community
reachable when one of them is in the neighborhood of the other, (2) indirectly com-
munity reachable, when one is reachable via a chain of directly community reachable
θ-cores to the other and (3) r -connected community reachable when both of them
are indirectly community reachable to a third θ-core r .
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In a network, there might be nodes, which reside at the boundary regions and
have neighborhood spread over multiple groups. To represent the notion of this
overlapping, a normalized granular embeddedness measure [45] is introduced as

E(Ap, Aq) = |Ap ∩ Aq |
|Ap ∪ Aq | .

E = 0 implies no overlapping between granules Ap and Aq . E = 1 signifies com-
plete overlapping.

On the basis of community reachable θ-cores one may define community as
follows.

Definition 1 (Community) Given a social network S = (C,V,G), and θ and ε, a
communityC is a non empty subset of granulesG satisfying the following conditions:

• ∀Ap, Aq ∈ C, Ap and Aq are community reachable cores
• ∀Ap ∈ C, E(Ap,

⋃
Aq∈C\Ap

Aq) > 1
ε

θ and ε are referred as density and coupling co-efficient of the community respec-
tively [45]. One may note that the communities, thus identified, have fuzzy (ill
defined) boundaries. These communities can further be viewed in terms of lower
and upper approximations in the framework of rough set theory. That is, each com-
munity has a lower approximate region reflecting nodes definitely belonging to, and
a boundary (i.e., upper - lower) region reflecting the nodes possibly belonging to.
Therefore it may be appropriate to assign fuzzy membership values in (0, 1) to only
those nodes which lie within the said (upper - lower) region, and assign unity (1)
value to those of lower approximation. The fuzzy-rough communities are accordingly
defined (Definition 2).

Definition 2 (Fuzzy-Rough Community) Let the n communities found for a social
network be C1,C2, ...,Cn , and the upper and lower approximation of the i th com-
munity be Ciθ and Ciθ respectively. Then

Ciθ = {x |x ∈ Support (Ap) ∧ x /∈ Support (Aq);
∀Ap ∈ Ci and Aq ∈ C j ; i �= j} (18)

Ciθ = {x |x ∈ Support (Ap); Ap ∈ Ci }

Fuzzy-Rough membership function characterizing the community Ci is defined
as,

δθ
Ci

(x, r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈ Ciθ
∑

c∈Ci θ

μ̃c(x, r) if x ∈ Ciθ \ Ciθ

0 Otherwise

(19)

where μ̃c(x, r) is defined in Eq.8.
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initialize:
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Ac ∈ G

θ-Cores
← θ-Cores ∪{Ac}

Ac ← next
granule

Ac ∈ θ-Cores

C ← {Ac} Ac ←next granule
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Rechable
← {X|X ∈ Γ (Ac) AND X ∈ θ-Cores}
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Rechable \ C = ∅

no more granule in θ-Cores

Fig. 10 Block diagram of FRC-FGSN algorithm

Orphans: A node is said to be orphan if it is not a member of any identified com-
munity.

Given a social network, the algorithm (FRC-FGSN) finds its various communities
(Definition 1) with fuzzy-rough description (Eq.19) defined over the granular model
(Eq.9) of knowledge representation. Nodes not included as a part of any community
are designated as orphans. A block diagram of the algorithm is shown in Fig. 10 [45].
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LFR Benchmark Data: LFR benchmark data is one of the popular benchmark
data for comparing community detection algorithms [48]. Later, it was modified to
accommodate more properties of network and communities viz. directed, weighted
network and overlapping communities [47]. The idea is to generate network graphs
based on various parameters. These parameters are

• Size of the network N
• Size of the communities (within Cmin to Cmax )
• Mixing parameter, i.e., the average ratio of edges within community and edges
with other communities (η)

• Fraction of overlapping nodes (On) and
• Number of overlapping communities (Om)

With LFR data, we compare the identified community structures with the output
of three popular graph theoretic algorithms. These are, centrality based community
detectionmethod [28],Modularity optimizationmethod [62] and k-cliquepercolation
method (CPM) [71]. A point to note here is that, CPM can identify overlapping
communities whereas the other two comparing methods identify non-overlapping
partitions of the network.

Normalized fuzzy mutual information [45] is used to compare different commu-
nity detection algorithms. For two community structuresCX andCY the NFMI value
can be calculated as

N F M I (CX : CY ) = 1

2

[
H(CX ) − H(CX |CY )

H(CX )

+ H(CY ) − H(CY |CX )

H(CY )

] (20)

where H(CX |CY )(or H(CY |CX )) is the conditional information measure in terms
of lack of information of CX (or CY ) given C

Y (or CX ). Here, H(CX )(or H(CY )) is
the information contained in CX (or CY ) and is defined as

H(CX ) = −
∑

P∈CX

λX
P log2(λ

X
P ) (21)

where λX
P = ∑n

i m X
P (i) is the fuzzy relative frequency of community P ∈ C

X .
In the experiments, the size of the network is fixed to 1001 and we vary the other

variables, and analyze the algorithms and their performance. The benchmark data
generated by LFR algorithm for overlapping communities is far from the reality. It
considers a fixed number of overlaps for the nodes which is unusual for real world
networks. Furthermore, for nodes in overlapping region, we are assigning different
memberships for belonging to different communities, but the network generated by
LFR assigns unity value to these nodes. So, it is not the perfect data set to test our
algorithms, yet results are convincing, as described below.
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Fig. 11 Comparative results
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First, we vary the mixing parameter η from 0.0 to 1.0 by fixing the fraction of
overlap to 0.15 and run all the four algorithms. We measure NFMI of each output
with the ground truth. Figure11, shows the variation of NFMI with respect to η for
these algorithms. As expected, NFMI decreases when η increases in all the cases. For
lower values of η, modularity and centrality based algorithms show better results, but
for η ≥ 0.3 the proposed FRC-FGSN shows prominent improvement over all other
methods.

In another experiment, we vary the fraction of overlapping nodes (On) from 0.0
to 0.5 by fixing the mixing parameter at 0.4. Results are reported in Fig. 12. It shows
that the proposed FRC-FGSN produces superior performance for On ranging from
0.2 to 0.4 and second best for On < 0.2.

Onemay restrict the number of granules to reduce the execution time to a tolerable
range. We perform an experiment to observe this phenomenon. The result in this
regard for one of the benchmark networks is shown in Fig. 13. Here, x-axis shows
the percentage of granules corresponding to the number of nodes in the network. The
blue curve with square points shows the time taken by the proposed FRC-FGSN and
the red curve with circular points shows its accuracy in terms of NFMI. As expected,
the time and accuracy both decrease as we reduce the number of granules from 100
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Fig. 13 Plot showing the
performance on number of
granules for LFR data
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Table 3 Characteristics of generated data sets

Datasets

Properties Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Nodes 8404 16998 25761 34328 42965

Edges 163397 396178 660909 934708 1233418

Closed
triangles

349156 879612 1526011 2178342 2952935

Open triangles 22228753 66714578 125632613 183297754 256587753

Approx. full
diameter

4 5 5 5 5

90% effective
diameter

2.875267 2.900036 2.931684 2.932677 2.935486

to 50%. Interestingly, the rate of drop in execution time is higher than that of the
accuracy. This shows that by reducing the number of granules in FGSN one may
obtain execution benefits in the algorithm.

4.6 Scalability of FGSN

We conducted experiments to understand the performance of FGSN with the grow-
ing number of links in the network. We used LDBC DATAGEN [75] to generate
social network data of different scale. LDBC DATAGEN is a synthetic graph data
generator which internally uses S3G2 [74] algorithm to generate social network data.
DATAGEN generates realistic social networks based on the link distributions found
in a real social network such as Facebook [75]. DATAGEN follows the MapReduce
[15] paradigm, allowing for the generation of large data sets on commodity clusters.

With the help of DATAGEN, we generated five data sets. Characteristics of these
networks are listed in Table3. We observed the time required to convert these net-
works into FGSNmodel. Python modules NetworkX and Pandas are used for graph-
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Fig. 14 Variation of
conversion time with the
number of links in the
network

Fig. 15 Variation of
execution time with number
of links in the network

based operations and granule based operations respectively. Figure14 shows the
results in graphical format. The x-axis shows the number of links in the network and
y-axis shows the time required for the conversion. As expected, the time increases
with the number of links in the network. Clearly the curve shows a quadratic pattern.
It is seen that for a network with over 1.23 millions of edges require slightly over
15min of time for the conversion. A point to note here is that this time is required
only once and the granular social network thus produced can be saved in flat files
or database for future use. After the conversion, one may efficiently execute algo-
rithms designed for the granular social networks. For example, the granular degree
heuristic algorithm for the problem of target set selection is magnitude faster than
the high degree heuristic. Figure15 shows the execution time for extracting 50 seeds
with aforesaid two algorithms on different data sets. The time here corresponds to
100 runs. The granular degree heuristics take only 1.93 s for the network with 1.23
millions edges, where as for the same network high degree heuristic took 69.14 s.
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5 Discussions and Conclusions

In this chapter, we described a model of social network based on fuzzy granulation
theory.Granules in themodel characterize the closely operative groups formedwithin
the highly overlapping neighborhood of social networks. The presence of vaguely
defined closeness in relationships is modeled through the fuzzy set theory. Themodel
is named fuzzy granular social network (FGSN).

In the graph representation of network, an individual node is used as an actor,
whereas in FGSN, a granule is considered as an actor. A granule is constructed
around each node in the network. This enables to capture the maximum information
of the network inside the FGSN model. Under this granular framework, character-
istics of a network are described using various measures defined over one or more
granules. These measures include granular degree, granular betweenness and gran-
ular embeddedness.

The FGSN framework assumed the same role for all the actors in a network.
This means, the model is valid for any social network as long as the roles of all the
actors in the network remain the same. However, if a network has different roles
for its different actors, then a modification may be required to accommodate such
characteristics.

The data used in the experiment are collected with the view of graph representa-
tion. Hence, we had to convert such graph networks into the new knowledge repre-
sentation of FGSN. Time taken for these conversions in seconds is seen to be 3.61,
12.54 and 7.09 × 103 for the Zachary karate club network, Dolphin social graph and
Political blog network respectively. Once the modeling is complete, algorithms for
different tasks of network analysis can be formulated.

A point to note here is that FGSN only encodes the structural information of
the network. However for online social networks, many other contents (like posts,
images, tags and profile) are also available to attribute with the actors. How to encode
these information inside the granular social network model is not addressed in the
current study.

Two major tasks concerning social network analysis are provided in this article.
These are target set selection and community detection. Granular degree heuristic
algorithm described for target set selection on FGSN uses granular degrees to rank
the influencing nodes. Top k nodes selected from this ranked list are then used as
the seed for the problem of target set selection. This selected target set is seen to
perform better for most of the test cases in the undirected social networks of karate
club network and Dolphin social graph. For directed network it is at par with the
high degree heuristic but lower than that of the diffusion degree heuristics.

The output communities found by FRC-FGSN are characterized with crisp lower
and fuzzy upper memberships, and are designated as “fuzzy-rough communities”.
A fuzzy membership is assigned only to those nodes which fall into the boundary
(upper - lower) region of a community signifying that a node in that region can
belong to multiple communities with different degrees of association. Nodes in the
lower approximate region are assigned unity membership reflecting the certainty in
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belonging. In the process orphan (nodes with zero membership to all communities)
are detected automatically.

Normalized fuzzy mutual information (NFMI) quantifies well the goodness of
the identified communities. Larger is the value of NFMI between two community
structures, higher is their similarity. It is shown that the FRC-FGSN algorithm pro-
duces superior outcome as compared to other popularly known community detection
algorithms when the network contains overlapped communities.

Social networks available from popular mobile and Internet applications produce
data in huge scale. These data show all the characteristics of Big data. Scalability
is one of the important issues for Big data analysis. In case of big social networks,
FGSN has the following two advantages over the graph modeling. First, in FGSN,
the network properties of a node are embedded inside the granule constructed around
it. If an algorithm demands to work on fewer nodes rather than the full network then
onemay avoid feeding the full network into the algorithm and yet can get the network
properties from the granular characteristics. Even for the global property analysis,
for reducing the execution time of data processing one may restrict the number of
granules either based on a threshold, decided over the cardinality of the granule, or
with human intervention. Experimentally, we found thatwith the reduction in number
of granules, the rate of improvement in execution time is exponential while the rate of
drop in accuracy is linear. Second, FGSN supports asynchronous nature of distributed
computing better than the graph modeling. Two of the major challenges involving
the distributed computing are, (1) coping with the intrinsic asynchrony between the
different entities, and (2) coping with the spatial distribution of these computing
entities. Granules may be more effectively fed into such asynchronous distributed
systems where one computing unit will only deal with a subset of granules. Whereas
feeding a graph model in such system is difficult. With graphs an additional care
needs to be taken to work with synchronous algorithms in a distributed environment.

It is seen experimentally that the algorithm scales well with the growing number
of links in the network. DATAGEN, a Hadoop/MapReduce based data generator is
used to generate synthetic data for scalability analysis. The growth in execution time
with the number of links for granular degree heuristics is found to be linear and the
slope is also very low.

The model of FGSN is seen here to perform effectively and efficiently for two
of the major applications in the domain of social network analysis. There are other
applications in social network analysis e.g., link prediction and evolution of social
network which are also very important to study. For example existing algorithms
on link prediction through graph implementation find the similarity between two
nodes which in turn provides the plausibility that a link may form between them
in future. Similarities can easily be identified using the normalized embeddedness
measure in FGSN. If two granules are highly embedded to each other, then there is
a high possibility that there would be a link between the centers of the granules in
the network.

Although, some of the algorithms available in the domain might provide bet-
ter solutions as compared to the proposed methodologies, the way of modeling a
network with FGSN opens a new avenue and provides directions on using the estab-
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lished granular computing theory and other efficient data mining techniques into the
demanding dynamics of social networks and related problems with a scope of newly
defined measures and efficient algorithms.
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