
Indian Institute of Technology
Jodhpur

B.Tech Project

Semester VI

Textual Video to Speech
Interface

Author:
Abhay Kumar Singh
(UG201310003)
Deepshi Garg
(UG201313008)

Mentor:
Dr. Gaurav Harit

Abstract

Our aim is the development of an interface to textual information
for the visually impaired that uses video, image processing, optical-
character-recognition (OCR) and text-to-speech (TTS). The video
provides a sequence of low resolution images in which text must be de-
tected, rectified and converted into high resolution rectangular blocks
that are capable of being analyzed via off-the-shelf OCR. To achieve
this, various problems related to feature detection, mosaicing, bina-
rization, and systems integration were solved in the development of
the system.

For getting the image sequences, we will cut out frames at regular
interval from the video, then pre-process that image to get a clearer
image. After that, using image stiching tool of OpenCV Python, we
will be making a single image of the whole text. Thereafter, that
image will be given to the OCR (Tesseract), which further will give
it’s output to the Google Text To Speech engine (gTTS) to make a
final audio speech output.

1 Introduction

1.1 Problem Statement

Information from books can be extracted in many ways. But videos provides
us a way to make all the recording in a go and later extract required image.
These images might not be apt for the OCR to extract all the text from that
image because of some noise. Therefore, a still and super resolved image is
extracted by image mosaicing and given as input to the OCR.

However, before such a system can be successfully implemented, several
problems arising from text identification in images, low resolution sensors,
image stabilization, text being warped, and others on the one hand, and
practical system integration issues, on the other, have to be solved. We
describe here the development of a preliminary prototype device for scene
text acquisition and processing. The system consists of a computer, a digital
Video Camera, an audio interface.

1

Fig. 1. Schematic Diagram

The camera captures text from the scene, with full control of focus and
zoom that depends on orientation and quality of the document video. Video
is ’conditioned’ before feeding to the OCR, by performing operations such as
image mosaicing, binarization, etc. The OCR software recognizes text from
still and super-resolved images of whole text blocks, and the recognized text
is read back by speech-to-text.

In general, off-the-shelf OCR systems are successful if:

• Document images are binarized and enhanced

• All Text has the same degree of skew and slant

• The text image has sufficient number of pixels per character ≥ 12

To calculate number of frames(patches), it is necessary to determine font-
size of text, we then zoom into each patch to obtain the image that satisfy
font-size constraint and capture the whole page while it is in-focus. Then, the
super-resolved image from the mosaicing algorithm is interpreted by OCR
and TTS.

2

Therefore, we will be making an inerface that will take input a video of
texts, then we will process that video to get a sequence of frames. Further,
those frames will be stiched together for form a single super resolved image.
That image will be given to the OCR tool (Tesseract) as input and it will
give a text file as output. That text file will be given to the Google TTS
engine (gTTS) which will convert it into a audio speech.

1.2 Motivation and Scope

A very large number of our population suffer from low vision due to old
age or any other factor. While this population may legally be classified as
blind, they do have some residual vision that can be aided by prostheses
and computer processing. In this paper, we describe the development of
an interface that can help them to observe and receive textual information
available in their environment.

2 Literature survey

• Tesseract is an optical character recognition engine for various oper-
ating systems. It is free software, released under the Apache License,
Version 2.0, and development has been sponsored by Google since 2006.

• gTTS (Google Text to Speech): a Python interface to Google’s Text
to Speech API. Create an mp3 file with the gTTS module or gtts-cli
command line utility. It allows for unlimited lengths of spoken text by
tokenizing long sentences where the speech would naturally pause.

• OpenCV (Open Source Computer Vision) is a library of programming
functions mainly aimed at real-time computer vision

• Flask is a micro web framework written in Python and based on the
Werkzeug toolkit and Jinja2 template engine.

3 Technologies Used

• Language : Python for feature implementation, CSS Bootstrap for
building User Interface

3

• For Web Application : Python Flask (micro web framework written in
Python based on the Werkzeug toolkit and Jinja2 template engine)

• Environment used : OpenCV (Open Source Computer Vision) Python
which is a library of programming functions mainly aimed at real time
computer vision

4 Methodologies

• Process the given video by sequencing its frames to form different im-
ages of the text. After experimenting on number of videos, we decided
to extract every 80th frame from the input video (assuming the video
is not too fast). This part of the project majorly used OpenCV python
function VideoCapture() which gave output a descriptor that whenever
called produces the next frame from the video and a boolean variable
signifying success or failure of frame capturing. These all frames are
saved in a folder names ’images’ with every successive frame named as
’framenumber’.jpg.

• After capturing all the frames and storing it in a folder named ’images’,
we pre-processes images for better stitching. First, image is binarized
based on type of image. Pytesseract OCR itself performs Otsu Bina-
rization, but to improve the results we performed Adaptive Thresh-
olding on the images. Two types of thresholding were considered for
Binarization : Simple Threholding and Adaptive Gaussian Threshold-
ing.

– Simple Thresholding : If pixel value is greater than a threshold
value, it is assigned one value (may be white), else it is assigned
another value (may be black). The function used is cv2.threshold.
First argument is the source image, which should be a grayscale
image. Second argument is the threshold value which is used to
classify the pixel values. Third argument is the maxVal which rep-
resents the value to be given if pixel value is more than (sometimes
less than) the threshold value.

– Adaptive Gaussian Thresholding : It decides how thresholding
value is calculated. In case of Adaptive Gaussian Threshold-
ing, threshold value is the weighted sum of neighbourhood values

4

where weights are a gaussian window.
cv2.ADAPTIVE THRESH GAUSSIAN C is given as the 3rd ar-
gument of cv2.adaptiveThreshold() function to perform this bina-
rization.

• After Binarizing all the images, they are resized using ’imutils’ library
of python. It has a series of convenient functions to make basic image
processing functions such as translation, rotation, resizing, skeletoniza-
tion, displaying Matplotlib images, sorting contours, detecting edges
much more easier with OpenCV and Python.

• After getting all the images, images are sequentially sent to stitch()
function. This function uses OpenCV Python function SIFT() to ob-
tain keypoints in a particular image. SIFT stands for Scale Invariante
Feature Transform. sift.detectAndCompute() function directly finds
keypoints and descriptor in a single image. Then FlannBasedMatcher
interface is used in order to perform a quick and efficient matching of
2 images by using the FLANN (Fast Approximate Nearest Neighbor
Search Library) and if they matches considerably, they are stitched
together and then dewarped. The final image is stored as mosaic.jpg

• Python has a library called pytesseract which is basically a python
wrapper of Google’s OCR tesseract. Text is extracted from the stitched
images by giving input the image to image to string() function of pytesser-
act and saving it in a text.txt file.

• Conversion of this text into speech is done using Google Text To Speech
engine (gTTS). This module requires Internet connectivity, hence some-
times creates time lag depending upon the speed of internet and amount
of text.

• These all modules are integrated together in one file of python and
worked successfully.

• GUI of this software is implemented in Python flask. Flask is a micro
web framework written in Python and based on the Werkzeug toolkit
and Jinja2 template engine. ’index.html’ file is run when application
is started which asks for a video as input. After uploading the com-
plete video, the software perform rest of the process in the background

5

and after it’s completion, ’index1.html’ file is run which shows the final
stitched image with it’s text and an option to play the audio. Informa-
tion is transferred from flask to html using Markup and Jinja template.

• Final Python application is run on local host and tested with different
set of inputs. The selected video is uploaded in ’uploads’ folder and
outcome related to that video is stored in a folder named after video’s
name.

5 UML Diagrams

‘ Fig. 2. Use Case Diagram

6

Fig. 3. Activity Diagram

7

Fig. 4. Sequence Diagram

6 Experiments and Results

• When a video with text of very small font size was taken as input, OCR
could not convert it to text efficiently.

• When the font style was chosen to be different from standard book
styles, OCR could not recognize it.

8

• We used many input test cases differentiated in terms of radial distor-
tion and brightness, and the best results were obtained with standard
brightness of text on a plain sheet of paper with no distortion.

• When a long video with too many frames was considered, a blurred
image after stitching was formed.

• This software gives best results for a video not longer than 15 seconds
with text on a plain sheet of paper with no distortion and standard
font size and font style.

• With extensive experimentation, we can also state that texts with rela-
tively larger font size and bold font style can be binarised only with sim-
ple threshold binarisation technique, whereas for standard book texts,
only adaptive gaussian threshold binarisation technique gave desired
results.

7 Conclusion

• This software can be used as a reading tool by the visually challenged
with no requirement of long term hard disk memory or any other special
tools.

• Owing to the limitations of the OCR tool tesseract, only the texts with
standard font styles are processed.

• This software accepts videos only in .mp4 format.

• Stitching large number of frames leads to segmentation fault, hence the
software expects a video of maximum duration of 20 seconds.

• Text to speech conversion is performed using Google TTS which re-
quires internet connectivity which makes the run time complexity of
the software dependent on the speed of the connection.

• Video is expected to be clear and slow. Blurred and shaky videos lead
to undesired results by the OCR.

9

References

[1] Ali Zandifar, Ramani Duraiswami, Antoine Chahine, Larry S. Davis
[Perceptual Interfaces and Reality Laboratory, University of Maryland,
USA] [Video Based Interface to Textual Information for the Visually
Impaired. Multimodal Interfaces, 2002. Proceedings. Fourth IEEE Con-
ference]

[2] Research Paper by Silvio Ferreira, C´eline Thillou [From Picture to
Speech : an Innovative Application for Embedded Environment.]

[3] Image Preprocessing for Improving OCR Accuracy [Wojciech Bieniecki,
Szymon Grabowski and Wojciech Rozenberg]

[4] https://github.com/gali8/Tesseract-OCR-iOS/wiki/Tips-for-Improving-
OCR-Results

[5] http://www.pyimagesearch.com/2016/01/11/opencv-panorama-
stitching/

[6] http://flask.pocoo.org/ . [For creating the web application of the software.]

[7] http://docs.opencv.org/3.1.0/d0/de3/tutorialpyintro.htmlgsc.tab =
0.[ForlearningthebasicsofOpenCV Python.]

10

