
Complexity Theory

Problem Set 1

1. Design TMs for functions and

2. Prove that functions and are time-constructible.

 3. Define a bidirectional TM to be a TM whose tapes are infinite in both directions. For
 every and time-constructible , if is computable in
 time by a bidirectional TM , then it is computable in time by a
 standard (unidirectional) TM . (Claim 1.8 from Arora-Barak)

4. Define a TM to be oblivious if halts after the same number of steps on inputs of
same length and for every input and , the location of each of ’s
heads at the th step of execution on input is only a function of and . Show that
for every time-constructible , if DTIME , then there is an oblivious
TM that decides in time . (Exercise 1.5 from Arora-Barak.)

5. Show that the following languages are undecidable:
 a) AcceptTM = is a TM that accepts*
 b) ReverseTM = is a TM that accepts if it accepts

 c) ExactOneTM = is a TM that accepts exactly one input !
*We say a TM accepts if on input halts with a on the output tape.
Similarly, we say a TM rejects if on input halts with a on the output tape.)

6. Let NP. Are and also in NP? Prove your answer.

f (n1, n2) = n1 + n2 f (n) = n2 .

n2 n⌊log n⌋ + 1

f : {0,1}* → {0,1}* T : ℕ → ℕ f
T (n) M O(T (n))

M′

M M
x ∈ {0,1}* i ∈ ℕ M

i x |x | i
T : ℕ → ℕ L ∈ (T (n))

L O(T (n)2)

{⟨M, x⟩ ∣ M x}
{⟨M ⟩ ∣ M reverse(w) w}

{⟨M ⟩ ∣ M }
M x M x 1

M x M x 0

L1, L2 ∈ L1 ∪ L2 L1 ∩ L2

Solutions

1. Skipped as the solutions are easy but tedious. You can search online for TMs that add or
multiply.

2. Skipped. It is easy to see that the functions are time-constructible if we know that
 is time-constructible.

3. Read the proof of Claim 1.8 from the book.

4. Suppose has a TM that decides it and runs in time , where is time-
constructible. We will construct an oblivious TM that decides and runs in time .

 will have as many tapes as and a few more. Alphabet of will contain symbols
and for every symbol of alphabet of . The presence of for every will help in
keeping track of tape-heads.

 on input will work in the following manner:
1. will first compute on a work tape. (Since is time-constructible it can be

done in time .)
2. will simulate one step of in one back and forth sweeps from the left-most cell to

the th cell. Current cells have symbols instead of just to indicate the tape-
head in over them.
1. While going from left-most cell to the th cell, will collect the current

symbols. will need the computed value of to do this operation.
2. Then it will use of to determine the modifications, the head movements, and the

next state (we can assume the states are stored in some other tape).
3. Finally, ’ will come back to the left-most cell while making necessary head changes

using the symbol.

5. a) We can reduce HALT to AcceptTM.
The function maps to the , such that on input starts simulating on
. If ever halts on , then accepts , otherwise it keeps simulating on .

Clearly, if halts on , then accepts . Else, does not accept .

b) We can reduce HALT to ReverseTM.
The function maps to the TM , such that rejects all the inputs immediately
except when the input is and . When the input is it accepts it immediately. When
the input is it starts simulating on . If ever halts on , will accept . Else,
will continue the simulation

f (n) = n

L M T (n) T
M′ L T (n)2

M′ M Γ′ M′ c
̂c c M ̂c c

M′ x
M′ T (|x |) T

O(T (|x |))
M′ M

T (|x |) ̂c c

T (|x |) M′
M′ T (|x |)

δ M

M
̂

f ⟨M, x⟩ ⟨M′ , x′ ⟩ M′ x′ M
x M x M′ x′ M x

M x M′ x′ M′ x′

f ⟨M, x⟩ M′ M′
10 01 10

01 M x M x M′ 01 M′

Clearly, if halts on , then accepts both and . If does not halt on , then
accepts only .

c) We can reduce HALT to ExactOneTM.
The function maps to the TM , such that rejects all the inputs immediately
except when the input is 1. When the input is 1, starts simulating on . If ever halts
on it accepts 1, otherwise it keep simulating on .

Clearly, if halts on , then accepts only 1. If does not halt on , then accepts no
inputs.

6. Let and be NTMs for and , respectively. We can construct NTM for
 in the following way. on input will first simulate on . If rejects along

some computation paths during the simulation, then will also halt immediately and
reject . If accepts along some computation paths during the simulation, then starts
simulating on . Finally, will accept only along those computation paths where
accepts .

Construction of NTM for is similar.

M x M′ 01 10 M x M′
10

f ⟨M, x⟩ M′ M′
M′ M x M

x M x

M x M′ M x M′

M1 M2 L1 L2 M
L1 ∩ L2 M x M1 x M1 x

M
x M1 x M

M2 x M M2
x

L1 ∪ L2

