
Complexity Theory 

Problem Set 1 

1. Design TMs for functions    and   

2. Prove that functions  and  are time-constructible.

      3. Define a bidirectional TM to be a TM whose tapes are infinite in both directions. For   
      every  and time-constructible , if    is computable in
      time  by a bidirectional TM , then it is computable in time  by a  
      standard (unidirectional) TM . (Claim 1.8 from Arora-Barak)

4. Define a TM  to be oblivious if  halts after the same number of steps on inputs of 
same length and for every input  and , the location of each of ’s 
heads at the th step of execution on input  is only a function of  and . Show that 
for every time-constructible , if DTIME , then there is an oblivious 
TM that decides  in time . (Exercise 1.5 from Arora-Barak.)

5. Show that the following languages are undecidable:
    a) AcceptTM =  is a TM that accepts* 
    b) ReverseTM =  is a TM that accepts  if it accepts  

          c) ExactOneTM =  is a TM that accepts exactly one input !
*We say a TM  accepts  if  on input  halts with a  on the output tape. 
Similarly, we say a TM  rejects  if  on input  halts with a  on the output tape.)

6. Let NP. Are  and  also in NP? Prove your answer.
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Solutions 

1. Skipped as the solutions are easy but tedious. You can search online for TMs that add or 
multiply.

2. Skipped. It is easy to see that the functions are time-constructible if we know that 
 is time-constructible. 

3. Read the proof of Claim 1.8 from the book.

4. Suppose  has a TM  that decides it and runs in time , where  is time-
constructible. We will construct an oblivious TM  that decides  and runs in time . 

 will have as many tapes as  and a few more. Alphabet  of  will contain symbols  
and  for every symbol  of alphabet of .  The presence of  for every  will help in 
keeping track of tape-heads. 

 on input  will work in the following manner:
1.  will first compute  on a work tape. (Since  is time-constructible it can be 

done in time .)
2.  will simulate one step of  in one back and forth sweeps from the left-most cell to 

the th cell. Current cells have symbols  instead of just  to indicate the tape-
head in over them.
1. While going from left-most cell to the th cell,  will collect the current 

symbols.  will need the computed value of  to do this operation.
2. Then it will use  of  to determine the modifications, the head movements, and the 

next state (we can assume the states are stored in some other tape).
3. Finally, ’ will come back to the left-most cell while making necessary head changes 

using the  symbol.

5. a)  We can reduce HALT to AcceptTM. 
The function  maps  to the , such that  on input  starts simulating  on 
. If  ever halts on , then  accepts , otherwise it keeps simulating  on . 

     
Clearly, if  halts on , then  accepts . Else,  does not accept .

b) We can reduce HALT to ReverseTM. 
The function  maps  to the TM  , such that  rejects all the inputs immediately 
except when the input is  and . When the input is  it accepts it immediately. When 
the input is  it starts simulating  on . If  ever halts on ,  will accept . Else,  
will continue the simulation 
     

f (n) = n

L M T (n) T
M′ L T (n)2

M′ M Γ′ M′ c
̂c c M ̂c c

M′ x
M′ T ( |x | ) T

O(T ( |x | ))
M′ M

T ( |x | ) ̂c c

T ( |x | ) M′ 
M′ T ( |x | )

δ M

M
̂

f ⟨M, x⟩ ⟨M′ , x′ ⟩ M′ x′ M
x M x M′ x′ M x

M x M′ x′ M′ x′ 

f ⟨M, x⟩ M′ M′ 
10 01 10

01 M x M x M′ 01 M′ 



Clearly, if  halts on , then  accepts both  and . If  does not halt on , then  
accepts only .

c) We can reduce HALT to ExactOneTM. 
The function  maps  to the TM  , such that  rejects all the inputs immediately 
except when the input is 1. When the input is 1,  starts simulating  on . If  ever halts 
on  it accepts 1, otherwise it keep simulating  on . 
     
Clearly, if  halts on , then  accepts only 1. If  does not halt on , then  accepts no 
inputs.

6. Let  and  be NTMs for  and , respectively. We can construct NTM  for 
 in the following way.  on input  will first simulate  on . If  rejects  along 

some computation paths during the simulation, then  will also halt immediately and 
reject . If  accepts  along some computation paths during the simulation, then  starts 
simulating  on . Finally,  will accept only along those computation paths where 
accepts .

Construction of NTM for  is similar.
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