Complexity Theory
 Problem Set 2

1. Show that if $\mathrm{P}=\mathrm{NP}$, then every language $L \in \mathrm{NP}$, except $L=\phi$ and $L=\Sigma^{*}$, is NP complete.
2. Show that if FACTOR is NP-complete, then NP $=$ coNP.
3. Suppose $L_{1}, L_{2} \in \mathrm{NP} \cap$ coNP. Then show that $L_{1} \oplus L_{2}$ is in NP \cap coNP, where $L_{1} \oplus L_{2}=\left\{x \mid x\right.$ is in exactly one of $\left.L_{1}, L_{2}\right\}$.
4. Prove that the following languages are NP-complete.
a) $0 / 1-$ INTEGERPROG $=\{x \mid x$ is a list of m linear inequalities with rational coefficients over n variables $u_{1}, u_{2}, \ldots u_{n}$ (a linear inequality has the form $a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n} \leq b$ for some coefficients $\left.a_{1}, \ldots, a_{n}, b\right)$ such that there is an assignment of 0 s and 1 s to $u_{1}, u_{2}, \ldots u_{n}$ satisfying all the inequalities $\}$
b) CLIQUE $=\{(G, k) \mid G$ has a clique of at least k many vertices $\}$
c) EXACTONE3SAT $=\{\phi \mid \phi$ is a 3CNF formula such that there exists a satisfying assignment u for ϕ such that every clause of ϕ has exactly one True literal\}
d) SUBSETSUM $=\{(S, k) \mid S$ is a set of n numbers such that there is a subset of S whose sum of elements is $k\}$
e) UHAMPATH $=\{G \mid G$ is an undirected graph that contains a hamiltonian path. $\}$
5. Show that HALT is NP-hard. Is it NP-complete?
6. Show that MULT $=\{(\langle n\rangle,\langle m\rangle,\langle n m\rangle) \mid n, m \in \mathbb{N}\}$ is in \mathbf{L}.

Solutions

1. Let L^{\prime} be any language in NP. We will show that L^{\prime} can be reduced to any language L in NP if $L \neq \phi$ and $L \neq \Sigma^{*}$ and $\mathrm{P}=$ NP. Consider the function f such that $f(x)=a$ when $x \in L^{\prime}$ and $f(x)=b$ when $x \notin L^{\prime}$, such that $a \in L$ and $b \notin L$. This function f is also polynomial-time computable because if $\mathrm{P}=\mathrm{NP}$, then given x you can find whether $x \in L^{\prime}$ in polynomial-time and then map it to a fixed $a \in L$ or a fixed $b \notin L$ appropriately.

Such an f does not exist for $L=\phi$ and $L=\Sigma^{*}$ because $L=\phi$ does not have an $a \in L$ and $L=\Sigma^{*}$ does not have a $b \notin L$.
2. We will show both $N P \subseteq$ coNP and coNP \subseteq NP, if FACTOR is NP-complete.

FACTOR \in NP-complete implies NP \subseteq coNP. Take any $L \in$ NP, then coNP NTM M for L on input x will first reduce x to $f(x)$, such that $x \in L \Longleftrightarrow f(x) \in F A C T O R$, and then run coNP NTM of FACTOR on $f(x)$. If $x \in L$, then M will accept it along all paths, else M will reject it along at least one path.

Now we can use NP \subseteq coNP to prove that coNP $\subseteq N P . N P \subseteq \operatorname{coNP} \Longrightarrow S A T \in \operatorname{coNP} \Longrightarrow \overline{S A T}$ $\in N P \Longrightarrow \operatorname{coNP} \subseteq$ NP $(\because \overline{S A T}$ is coNP-complete $)$.
3. See the answer to Problem 5 here
https://courses.engr.illinois.edu/cs579/sp2017/solutions/hw1sol.pdf
4. a) See Theorem 2.16 in Arora-Barak.
b) Reduce the Independent Set problem to this. The reduction is (G, k) to $\left(G^{\prime}, k\right)$, where G^{\prime} is a complement of G.
c) See this: https://en.wikipedia.org/wiki/Boolean satisfiability problem\# Exactly-1 3-satisfiability
d) See this: https:/|wwww.cs.mcgill.cal~lyeprelpdf/assignment2-solutions/
subsetSumNPCompleteness.pdf
e) See this: https://wwww.andrew.cmu.edu/user/ko/pdfs/lecture-21.pdf
5. HALT is not NP-complete as it would imply that it is in NP and hence can be decided by an EXP machine. But it is NP-hard. See the first answer here.
https://cs.stackexchange.com/questions/69448/show-that-halting-problem-mathsfhp-text-is-mathsfnp-text-hard
6. See the first answer here https://cs.stackexchange.com/questions/87716/how-to-show-mult-abc-a-b-c-binary-natural-numbers-and-a-b-c-is-in-log-s

