Complexity Theory Problem Set 2

1. Show that if P = NP, then every language $L \in NP$, except $L = \phi$ and $L = \Sigma^*$, is NP-complete.

- 2. Show that if *FACTOR* is **NP-complete**, then **NP = coNP**.
- **3.** Suppose $L_1, L_2 \in NP \cap coNP$. Then show that $L_1 \oplus L_2$ is in NP $\cap coNP$, where $L_1 \oplus L_2 = \{x \mid x \text{ is in exactly one of } L_1, L_2\}.$
- **4.** Prove that the following languages are **NP-complete**.
 - a) 0/1-*INTEGERPROG* = { $x \mid x \text{ is a list of } m$ linear inequalities with rational coefficients over n variables u_1, u_2, \dots, u_n (a linear inequality has the form $a_1u_1 + a_2u_2 + \dots + a_nu_n \leq b$ for some coefficients a_1, \dots, a_n, b) such that there is an assignment of 0s and 1s to u_1, u_2, \dots, u_n satisfying all the inequalities}
 - b) $CLIQUE = \{(G, k) \mid G \text{ has a clique of at least } k \text{ many vertices} \}$
 - c) **EXACTONE3SAT** = { $\phi \mid \phi$ is a 3CNF formula such that there exists a satisfying assignment *u* for ϕ such that every clause of ϕ has exactly one True literal}
 - d) **SUBSETSUM** = {(*S*, *k*) | *S* is a set of *n* numbers such that there is a subset of *S* whose sum of elements is *k*}
 - e) $UHAMPATH = \{G \mid G \text{ is an undirected graph that contains a hamiltonian path.}\}$
- 5. Show that HALT is NP-hard. Is it NP-complete?
- **6.** Show that $MULT = \{(\langle n \rangle, \langle m \rangle, \langle nm \rangle) \mid n, m \in \mathbb{N}\}$ is in L.

Solutions

1. Let *L'* be any language in NP. We will show that *L'* can be reduced to any language *L* in NP if $L \neq \phi$ and $L \neq \Sigma^*$ and P = NP. Consider the function *f* such that f(x) = a when $x \in L'$ and f(x) = b when $x \notin L'$, such that $a \in L$ and $b \notin L$. This function *f* is also polynomial-time computable because if P = NP, then given *x* you can find whether $x \in L'$ in polynomial-time and then map it to a fixed $a \in L$ or a fixed $b \notin L$ appropriately.

Such an *f* does not exist for $L = \phi$ and $L = \Sigma^*$ because $L = \phi$ does not have an $a \in L$ and $L = \Sigma^*$ does not have a $b \notin L$.

2. We will show both $NP \subseteq coNP$ and $coNP \subseteq NP$, if *FACTOR* is NP-complete.

FACTOR \in **NP-complete** implies **NP** \subseteq **coNP**. Take any $L \in$ **NP**, then **coNP** NTM *M* for *L* on input *x* will first reduce *x* to *f*(*x*), such that $x \in L \iff f(x) \in$ **FACTOR**, and then run **coNP** NTM of **FACTOR** on *f*(*x*). If $x \in L$, then *M* will accept it along all paths, else *M* will reject it along at least one path.

Now we can use NP \subseteq coNP to prove that coNP \subseteq NP. NP \subseteq coNP \Longrightarrow SAT \in coNP \bullet coN

3. See the answer to Problem 5 here <u>https://courses.engr.illinois.edu/cs579/sp2017/solutions/hw1sol.pdf</u>

4. a) See Theorem 2.16 in Arora-Barak.

b) Reduce the Independent Set problem to this. The reduction is (G, k) to (G', k), where G' is a complement of G.

c) See this: <u>https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#Exactly-1_3-satisfiability</u>
d) See this: <u>https://www.cs.mcgill.ca/~lyepre/pdf/assignment2-solutions/</u> <u>subsetSumNPCompleteness.pdf</u>

e) See this: <u>https://www.andrew.cmu.edu/user/ko/pdfs/lecture-21.pdf</u>

5. *HALT* is not **NP-complete** as it would imply that it is in **NP** and hence can be decided by an **EXP** machine. But it is **NP-hard**. See the first answer here.

https://cs.stackexchange.com/questions/69448/show-that-halting-problem-mathsfhp-text-ismathsfnp-text-hard

6. See the first answer here <u>https://cs.stackexchange.com/questions/87716/how-to-show-mult-abc-</u> <u>a-b-c-binary-natural-numbers-and-a-b-c-is-in-log-s</u>