Complexity Theory Problem Set 3

- 1. Show that the following languages are NL-complete.
 - a) $CYCLE = \{ \langle G \rangle \mid G \text{ is a directed graph that contains a directed cycle} \}$
 - b) **STRONGLY-CONNECTED** = { $\langle G \rangle$ | *G* is a strongly connected directed graph} c) **2SAT**

2. Show that $\overline{BIPARTITE} \leq_l UPATH$, where $BIPARTITE = \{G \mid G \text{ is an undirected bipartite graph}\}$ $UPATH = \{(G, s, t) \mid G \text{ is an undirected graph and } s, t \in V(G) \text{ such that } \exists \text{ a path} from s \text{ to } t\}$

3. Prove that $SPACE(n) \neq NP$.

4. Define **polyL** to be $\bigcup_{c>0}$ DSPACE(log^{*c*} *n*). Steve's class, **SC**, is defined to be the set of languages that can be decided by deterministic TMs that run in polytime and $O(\log^c n)$ space for some c > 0. Does Savitch's theorem imply $NL \subseteq SC$? Is $SC = polyL \cap P$?

5. The Japanese game Go-Moku is played by two players, "X" and "O" on a 19×19 grid. Players take turns placing markers, and the first player to achieve five of her markers consecutively in a row, column, or diagonal is the winner. Consider this game generalized to an $n \times n$ board.

Let $GM = \{\langle B \rangle \mid B \text{ is a position in generalized Go-Moku, where player "X" has a winning strategy}.$

By a position we mean a board with markers placed on it, such as may occur in the middle of a play of the game, together with an indication of which player moves next. Show that $GM \in PSPACE$.

6. Show that there exists a computable function > n that is not time-constructible.

7. Show that the following language is undecidable.

{ $\alpha \mid M_{\alpha}$ is a machine that runs in at most $100n^2 + 200$ steps.}

Solutions

- **1.** a) *https://cs.stackexchange.com/questions/109972/showing-cycle-is-nl-complete*
 - b) Solution 3 here http://users.cms.caltech.edu/~umans/cs151/soln2.pdf
 - c) For NL part see this: https://cs.brown.edu/people/jsavage/book/Page.363.364.pdf. For NL-hard part see this: https://cse.iitkgp.ac.in/~abhij/course/theory/CC/Spring04/soln3.pdf.

2. http://homepage.divms.uiowa.edu/~sriram/131/spring07/homework4Hints.pdf

3. https://axion004.wordpress.com/2019/02/22/np-spacen/

4. It's isn't clear how Savitch's theorem implies $NL \subseteq SC$. One way Savitch's theorem would have proved $NL \subseteq SC$ if the *REACH* procedure also ran in polynomial time. This is because *PATH* is *NL*-hard and *PATH* can be solved using the *REACH* procedure in $O(\log^2 n)$ space but not in polynomial time.

Also, it is not known whether $SC = polyL \cap P$. Notice that SC is the set of languages that can be solved by algorithms/TMs that simultaneously run in polytime and $O(\log^c n)$ space, while $polyL \cap P$ is the set of languages that can be solved by algorithms that run in polytime and also by algorithms that run in $O(\log^c n)$ space.

5. See the second problem here *http://web.cse.ohio-state.edu/~rademacher.10/Sp16_6321/ ps6sol.pdf*

6. See this https://math.stackexchange.com/questions/55096/non-time-constructible-functions

7. See the first answer here: *https://math.stackexchange.com/questions/36704/to-prove-an-undecidable-language-on-halting*