Complexity Theory Problem Set 4

1. Say that a class C_1 is superior to a class C_2 if there is a machine M_1 in class C_1 such that for every machine M_2 in class C_2 and every large enough n, there is an input of size between n and n^2 on which M_1 and M_2 answer differently. Is DTIME $(n^{1.1})$ superior to DTIME (n)?

2. Prove or disprove. If $P \neq NP$, $\exists L_1, L_2 \in NP$, such that L_1, L_2 are not empty set or Σ^* and neither $L_1 \leq_p L_2$ nor $L_2 \leq_p L_1$. (Warning: I don't have an answer for this problem. It might be too hard.)

3. Show that if 3SAT is polynomial-time reducible to 3SAT, then PH = NP.

4. Try to modify some **NP-complete** problems so that they remain in Σ_2^p but not seemingly in **NP**.

5. The class DP is defined as the set of languages L for which there are two languages $L_1 \in NP$, $L_2 \in coNP$, such that $L = L_1 \cap L_2$. (Do not confuse DP with NP \cap coNP, which may seem superficially similar.) Show that (a) EXACT-INDSET $\in \Pi_2^p$

(b) EXACT-INDSET \in DP.

(c) Every language in DP is polynomial-time reducible to EXACT-INDSET.

6. Suppose A is some language such that $P^A = NP^A$. Then, show that $PH^A \subseteq P^A$.

Solutions

1. https://cs.stackexchange.com/questions/54801/problem-in-computational-complexity-superiorclass

2. I do not have the answer.

3. If *3SAT* is polynomial-time reducible to $\overline{3SAT}$, then **NP** \subseteq **coNP**. **NP** \subseteq **coNP** \Longrightarrow **NP** = **coNP**. Thus hierarchy collapses to **NP**.

4. You can convert problems like VertexCover, etc.

5. https://zoo.cs.yale.edu/classes/cs468/previous-years/spr15/solutions/HW3-Solutions.pdf

6. Go through the proof of P = NP implies PH = NP and see whether the result holds true for and oracle *A* as well.