Complexity Theory
 Problem Set 6

1. Describe a real number ρ such that a PTM that chooses δ_{0} with probability ρ and δ_{1} with probability $1-\rho$ can decide an undecidable language in (probabilistic) polynomial time.
2. Complexity class BPL is the set of languages that can be decided by a logspace PTM that gives the right answer with probability at least $2 / 3$. Prove that $\mathbf{B P L} \subseteq \mathbf{P}$.
3. Prove that a language L is in ZPP iff there exists a polynomial-time PTM M with outputs $\{0,1, ?\}$ such that for every $x \in\{0,1\}^{*}$, with probability $1, M(x) \in\{L(x), ?\}$ and $\operatorname{Pr}[M(x)=?] \leq 1 / 2$.
4. Show that if $\mathbf{N P} \subseteq \mathbf{B P P}$, then $\mathbf{N P}=\mathbf{R P}$. (Use the idea of self-reducibility)

Solutions

1. https://cstheory.stackexchange.com/questions/43831/how-to-use-a-coin-so-a-tm-can-decide-an-undecidable-language-in-polynomial-ti
2. Let M be a BPL machine. We will design a polynomial time TM M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$. On input x, M^{\prime} will first construct the configuration graph $G_{M, x}$.

For every $v \in G_{M, x}$. let $\operatorname{prob}(v)$ denote the probability of reaching an accepting configuration from $v . M^{\prime}$ computes the $\operatorname{prob}(v)$ for every vertex in the following way.

1) Set $\operatorname{prob}(v)=1$, if v is an accepting configuration and $\operatorname{prob}(v)=0$ if v is a rejecting configuration.
2) For every vertex v whose $\operatorname{prob}(v)$ is still not computed, set
$\operatorname{prob}(v)=\frac{1}{2} \cdot \operatorname{prob}\left(v_{1}\right)+\frac{1}{2} \cdot \operatorname{prob}\left(v_{2}\right)$, if $\operatorname{prob}\left(v_{1}\right)$ and $\operatorname{prob}\left(v_{2}\right)$ are already computed and there is an edge from v to both v_{1} and v_{2}.
3) Repeat 2 until $\operatorname{prob}(v)$ is computed for all $v \in G_{M, x}$.

In the end, M^{\prime} accepts x if and only if $\operatorname{prob}\left(v_{\text {init }}\right) \geq \frac{2}{3}$, where $v_{\text {init }}$ is the initial configuration. The procedure to compute $\operatorname{prob}(v)$ s can easily be done by M^{\prime} in time polynomial in $\left|G_{M, x}\right|$ and since M is a BPL machine, $\left|G_{M, x}\right|$ is also polynomial in the length of x.
3. Let's call the new class as $\mathbf{Z P P}^{\prime} . \mathbf{Z P P}^{\prime} \subseteq \mathbf{Z P P}$ can be proven by repeating the $\mathbf{Z P P}^{\prime}$ machine inside a ZPP machine again and again until you get a non "?" output. The expected time of ZPP machine will clearly be polynomial. $\mathbf{Z P P} \subseteq \mathbf{Z P P}$ ' can be proven by running ZPP machine inside a ZPP' machine for $2 T$ steps, where T is ZPP machine's expected time. Within $2 T$ time if $\mathbf{Z P P}$ machine answers something, ZPP' machine will answer the same, else it will output "?". The probability analysis can be done using Markov's inequality.
4. https://cs.stackexchange.com/questions/80509/show-that-if-np-subseteq-bpp-then-also-np-rp-considerations-about-solution

