Complexity Theory Problem Set 6

1. Describe a real number ρ such that a PTM that chooses δ_0 with probability ρ and δ_1 with probability $1 - \rho$ can decide an undecidable language in (probabilistic) polynomial time.

2. Complexity class **BPL** is the set of languages that can be decided by a logspace PTM that gives the right answer with probability at least 2/3. Prove that **BPL** \subseteq **P**.

3. Prove that a language *L* is in **ZPP** iff there exists a polynomial-time PTM *M* with outputs $\{0,1,?\}$ such that for every $x \in \{0,1\}^*$, with probability $1, M(x) \in \{L(x),?\}$ and $\Pr[M(x) = ?] \le 1/2$.

4. Show that if $NP \subseteq BPP$, then NP = RP. (Use the idea of self-reducibility)

Solutions

1. https://cstheory.stackexchange.com/questions/43831/how-to-use-a-coin-so-a-tm-can-decidean-undecidable-language-in-polynomial-ti

2. Let *M* be a **BPL** machine. We will design a polynomial time TM *M*' such that L(M) = L(M'). On input *x*, *M*' will first construct the configuration graph $G_{M,x}$.

For every $v \in G_{M,x}$. let prob(v) denote the probability of reaching an accepting configuration from v. M' computes the prob(v) for every vertex in the following way.

1) Set prob(v) = 1, if v is an accepting configuration and prob(v) = 0 if v is a rejecting configuration.

2) For every vertex v whose prob(v) is still not computed, set

 $prob(v) = \frac{1}{2} \cdot prob(v_1) + \frac{1}{2} \cdot prob(v_2)$, if $prob(v_1)$ and $prob(v_2)$ are already

computed and there is an edge from v to both v_1 and v_2 .

3) Repeat 2 until prob(v) is computed for all $v \in G_{M,x}$.

In the end, M' accepts x if and only if $prob(v_{init}) \ge \frac{2}{3}$, where v_{init} is the initial configuration. The procedure to compute prob(v)s can easily be done by M' in time polynomial in $|G_{M,x}|$ and since M is a BPL machine, $|G_{M,x}|$ is also polynomial in the length of x.

3. Let's call the new class as **ZPP**'. **ZPP**' \subseteq **ZPP** can be proven by repeating the **ZPP**' machine inside a **ZPP** machine again and again until you get a non "?" output. The expected time of **ZPP** machine will clearly be polynomial. **ZPP** \subseteq **ZPP**' can be proven by running **ZPP** machine inside a **ZPP**' machine for 2*T* steps, where *T* is **ZPP** machine's expected time. Within 2*T* time if **ZPP** machine answers something, **ZPP**' machine will answer the same, else it will output "?". The probability analysis can be done using Markov's inequality.

4. https://cs.stackexchange.com/questions/80509/show-that-if-np-subseteq-bpp-then-also-np-rp-considerations-about-solution