Complexity Theory

Vimal Raj Sharma

Lecture 1 Course Overview

Overview of complexity theory:

- Qn: What is computation?
 Ans: Producing output from input in a finite number of steps.
- MULT: Given two numbers x and y, compute x.y.
 - Design a fast algorithm to compute $x \cdot y$. (Algorithms)
 - Prove that no faster algorithms exist. (Complexity Theory)
- Resources for computation: Time, Space, Interactions, Random Bits, etc.
- Central goal of Complexity Theory: Proving non-existence of efficient algorithms for problems.
- What we actually do in Complexity Theory:
 - Prove non-existence of efficient algorithms. (E.g., GeneralisedChess ∉ P.)
 - Interrelate different complexity questions.
 - Are L_1 and L_2 not solvable in polytime?
 - L_1 is not polytime solvable $\iff L_2$ is not polytime solvable.
 - Classify problems based on the amount of resources required to solve them and compare those classes.

vs

- X = Set of problems solvable in logspace.
 - Y =Set of problems solvable in polytime.
 - Z = Set of problems solvable in polyspace.

Computability Theory

(deals with proving non-existence of any algorithms)

 $X \subset Y \subset Z$

 $(X \neq Y?, Y \neq Z?, X \neq Z)$

(deals with proving non-existence of efficient algorithms)

Complexity Theory

Glimpses of this course:

• Is P = NP?

P = Set of problems that are polytime solvable.

NP = Set of problems whose solutions are polytime verifiable.

Examples:

PATH: Given a graph G and $u, v \in G$, find whether $u \rightsquigarrow v$.

HAMPATH: Given a graph G, find whether a path exists that consists of all the vertices of G.

- Are there problems solvable in $O(n^3)$ time that are not solvable in O(n) time?
- Problems beyond NP. Example:

INDSET: Given a graph G and an integer k, find whether G has an independent set of size k. (\in NP)

EXACT-INDSET: Given a graph G and an integer k, find whether the size of the largest independent set of G is k. ($\in \Sigma_2^p$)

- Given a directed graph G and $u, v \in G$, can we find whether $u \rightsquigarrow v$ in logspace? (Is L = NL?)
- Can we use randomness to speed up the computation?

P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

Examples:

- 1. PRIMES: Is x prime? (Is in BPP. Not known to be in P in past, but in P presently (AKS'02))
- 2.PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer coefficients find whether there is an assignment of values to variables such that polynomial evaluates to non-zero. (Is in BPP, but not known to be in P.)

*detailed syllabus on mail.

Grading:

- 5% Class Participation.
- 15% 20 minutes presentation on a paper/topic in groups of two or single.
- 20% Best two out of three quizzes. (Mostly MCQs and T/F).
- 30% Minors (15% each).
- 30% Major.

Books:

- Computational Complexity: A Modern Approach by Arora and Barak.
- Computational Complexity: A Conceptual Perspective by Goldreich.
- Introduction to the Theory of Computation by Sipser.

Office Hours:

Wednesday: 4-6 PM. (From next week.)

Course Site:

https://home.iitj.ac.in/~vimalraj/courses/csl7140

Attendance:

As per institute policy.