

# ADSA

## Problem Set 4

1. Give an  $O(n^2)$  time algorithm to compute the length of a longest increasing subsequence in a given sequence of integers. A subsequence is an increasing subsequence if elements are sorted in an ascending order.
2. Give an  $O(n)$  time algorithm to find a contiguous subarray with the largest sum in an array of integers. Casually describe the working of your algorithm.
3. Suppose you are given three strings of characters:  $X$ ,  $Y$ , and  $Z$ , where  $|X| = n$ ,  $|Y| = m$ , and  $|Z| = n + m$ .  $Z$  is said to be a shuffle of  $X$  and  $Y$  iff  $Z$  can be formed by interleaving the characters from  $X$  and  $Y$  in a way that maintains the left-to-right ordering of the characters from each string. For instance, “cchocohilaptes” is a shuffle of “chocolate” and “chips”, but “chocochilatspe” is not.

Give an  $O(mn)$ -time dynamic programming algorithm that determines whether  $Z$  is a shuffle of  $X$  and  $Y$ .

4. You are given a directed acyclic graph  $G = (V, E)$  with real-valued weights and two distinguished vertices  $s$  and  $t$ . The weight of a path is the sum of the weights of the edges in the path. Give a dynamic-programming algorithm for finding a longest weighted simple path from  $s$  to  $t$ . What is the running time of your algorithm? Explain the working of your algorithm.
5. Is the path between two vertices in a minimum spanning tree necessarily a shortest path between the two vertices in the original graph? Give a proof or a counterexample.
6. Assume that all edges in the graph have distinct edge weights (i.e., no pair of edges have the same weight). Is the minimum spanning tree of this graph unique? Give a proof or a counterexample.
7. Suppose we are given the minimum spanning tree  $T$  of a given graph  $G$  (with  $n$  vertices and  $m$  edges) and a new edge  $e = \{u, v\}$  of weight  $w$  that we will add to  $G$ . Give an  $O(n)$  time algorithm to find the minimum spanning tree of the graph  $G + e$ .
8. Give an  $O(|E| \log |V|)$  time algorithm to find an MST of an undirected, weighted, and connected graph  $G$  that contains a specific edge  $e \in E(G)$ .

# Solutions

## Solution 1

Read [this](#).

## Solution 2

Read [this](#).

## Solution 3

Read [this](#).

## Solution 4

Read [this](#).

## Solution 5

No. Consider a complete graph of three vertices where every edge has weight 1. Now it is easy to find counter-example in such a graph.

## Solution 6

Read lemma 7.1 [here](#).

## Solution 7

Adding edge  $e$  to the MST creates a unique cycle. Delete the maximum weight edge on this cycle. Proving that what we get after doing this is indeed an MST is left to you.

## Solution 8

First include  $e$  in the MST and then run Kruskal's algorithm. The correctness follows from the cut based lemmas we have seen for MSTs.