D'Alembert's solution of wave equation

Consider the initial value problem of Cauchy type given by

$\displaystyle u_{tt}-c^2u_{xx}$ $\displaystyle =0,~-\infty<x<\infty,~t>0,$ (3.50)
$\displaystyle u(x,0)$ $\displaystyle =u_0(x),$ (3.51)
$\displaystyle u_t(x,0)$ $\displaystyle =v_0(x),$ (3.52)

where initial displacement $u_0(x)$ and the initial velocity $v_0(x)$ are assumed to be twice continuously differentiable functions. As we have derived in the previous Sec. [*], the general solution of the wave equation is given by

$\displaystyle u(x,t)=F(x-ct)+G(x+ct),$ (3.53)

where $F$ and $G$ are arbitrary functions of their respective arguments. By using Eq. ([*]) and Eq. ([*]), one gets

$\displaystyle u(x,0)=F(x)+G(x)=u_0(x),$ (3.54)

and by using Eq. ([*]) and Eq. ([*]), one gets

$\displaystyle u_t(x,0)=-cF'(x)+cG'(x)=v_0(x).$ (3.55)

By integrating Eq. ([*]) w.r.t. $x$, one gets

$\displaystyle -F(x)+G(x)=\frac{1}{c}\int_{0}^{x}v_0(x)dx.$ (3.56)

Solving Eq. ([*]) and Eq. ([*]) for $F(x)$ and $G(x)$, one gets

$\displaystyle G(x)=\frac{u_0(x)}{2}+\frac{1}{2c}\int_{0}^{x}v_0(x)dx,$

and

$\displaystyle F(x)=\frac{u_0(x)}{2}-\frac{1}{2c}\int_{0}^{x}v_0(x)dx,$

Using this in Eq. ([*]), one gets

$\displaystyle u(x,t)=\frac{1}{2}\big[u_0(x-ct)+u_0(x+ct)\big]+\frac{1}{2c}\big[-\int_{0}^{x-ct}v_0(x)dx+\int_{0}^{x+ct}v_0(x)dx\big]$

$\displaystyle u(x,t)=\frac{1}{2}\big[u_0(x-ct)+u_0(x+ct)\big]+\frac{1}{2c}\big[\int_{x-ct}^{x+ct}v_0(x)dx\big]$ (3.57)

This is known as the D'Alembert solution of $1-D$ wave equation.

Remark This result shows that the two initial conditions (initial velocity and initial displacement) determine the solution of wave equation.