Formation of first order PDE

Let $\psi_1(x,y,u)$ and $\psi_2(x,y,u)$ be two given functions. Let $F$ be an arbitrary function of $\psi_1$ and $\psi_2$ in the form

$\displaystyle F(\psi_1,\psi_2)=0.$ (1.3)

We can form a differential equation by eliminating the arbitrary function $F$. Differentiate Eq.([*]) w.r.t. $x$ and $y$ gives,

\begin{displaymath}\begin{split}
\frac{\partial F}{\partial \psi_1}\bigg[\frac{\...
...}{\partial u}\frac{\partial u}{\partial y}\bigg]=0.
\end{split}\end{displaymath} (1.4)

For the existence of solution

$\displaystyle \begin{vmatrix}
\frac{\partial \psi_1}{\partial x}+\frac{\partial...
...psi_2}{\partial y}+\frac{\partial \psi_2}{\partial u}u_y
\par
\end{vmatrix}=
0
$

Therefore,

$\displaystyle (\psi_{1,x}+\psi_{1,u}u_x)(\psi_{2,y}+\psi_{2,u}u_y)-(\psi_{2,x}+\psi_{2,u}u_x)(\psi_{1,y}+\psi_{1,u}u_y)=0,$

This simplifies to

$\displaystyle \boxed{ u_x\frac{\partial(\psi_1,\psi_2)}{\partial(y,u)}+ u_y\fra...
...(\psi_1,\psi_2)}{\partial(u,x)}= \frac{\partial(\psi_1,\psi_2)}{\partial(x,y)}}$ (1.5)

This gives rise to

$\displaystyle \boxed{ a(x,y,u)u_x+ b(x,y,u)u_y=c(x,y,u),}$ (1.6)

where

$\displaystyle a=\frac{\partial(\psi_1,\psi_2)}{\partial(y,u)}~b=\frac{\partial(\psi_1,\psi_2)}{\partial(u,x)}~$and$\displaystyle ~\frac{\partial(\psi_1,\psi_2)}{\partial(x,y)}.$

Example 1.2.1   Form the PDE by eliminating the arbitrary function from

$\displaystyle F(x+y+u,x^2+y^2+u^2)=0.$

Solution Let $\psi_1=x+y+u~$and$~\psi_2=x^2+y^2+u^2$ and differentiating $F$ w.r.t. $x$ and $y$, one get

\begin{displaymath}\begin{split}
F_{\psi_1}(1+u_x)+F_{\psi_2}(2x+2uu_x) &=0,\\
F_{\psi_2}(1+u_y)+F_{\psi_2}(2y+2uu_y)&=0,\nonumber
\end{split}\end{displaymath}    

$\displaystyle \begin{vmatrix}
1+u_x & 2x+2uu_x \\
1+u_y& 2y+2uu_y
\end{vmatrix}=
0,
$

$\displaystyle \implies~(1+u_x)(y+uu_y)-(1+u_y)(2y+2uu_y)=0,$

$\displaystyle \implies~y+uu_y+yu_x+uu_xu_y-x-uu_x-xu_y-uu_xu_y=0,$

$\displaystyle (y-u)u_x+(u-x)u_y=(x-y),$

which is required PDE.

Example 1.2.2   Form the PDE by eliminating the arbitrary function from

$\displaystyle F(x^2+y^2-2u,xyu)=0.$

Answer : $x(y^2+u)u_x-y(x^2+u)u_y=(x^2-y^2)u$